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Preface

This volume contains the final proceedings of the Sixth International Andrei
Ershov Memorial Conference on Perspectives of System Informatics (PSI 2006),
held in Akademgorodok (Novosibirsk, Russia), June 27-30, 2006.

The conference was held to honour the 75th anniversary of a member of
the Russian Academy of Sciences Andrei Ershov (1931–1988) and his outstand-
ing contributions towards advancing informatics. The role of Andrei Ershov in
the establishment and development of the theory of programming and systems
programming in our country cannot be overestimated. Andrei was one of the
founders of the Siberian Computer Science School. He guided and took active
part in the development of the programming system ALPHA and the multi-
language system BETA, and authored some of the most remarkable results in
the theory of programming. Andrei is justly considered one of the founders of the
theory of mixed computation. In 1974 he was nominated as Distinguished Fel-
low of the British Computer Society. In 1981 he received the Silver Core Award
for services rendered to IFIP. Andrei Ershov’s brilliant speeches were always in
the focus of public attention. Especially notable were his lectures “Aesthetic and
Human Factor in Programming” and “Programming—The Second Literacy.” He
was not only an extremely gifted scientist, teacher and fighter for his ideas, but
also a bright and many-sided personality. He wrote poetry, translated the works
of R. Kipling and other English poets, and enjoyed playing guitar and singing.
Everyone who had the pleasure of knowing Andrei Ershov and working with
him will always remember his great vision, eminent achievements and generous
friendship.

Another aim of the conference was to provide a forum for the presentation
and in-depth discussion of advanced research directions in computer science. For
a developing science, it is important to work out consolidating ideas, concepts
and models. Movement in this direction was a further goal of the conference.

The previous five PSI conferences were held in 1991, 1996, 1999, 2001, and
2003, and proved to be significant international events. The sixth conference fol-
lowed the traditions of the previous ones and included many of their subjects,
such as theoretical computer science, programming methodology, and new in-
formation technologies, which were among the most important contributions of
system informatics. Similarly to the previous PSI conferences, the programme
includes invited papers in addition to contributed regular and short papers.

This time 108 papers were submitted to the conference by researchers from
28 countries. Each paper was reviewed by three experts, at least two of them
from the same or closely related discipline as the authors. The reviewers gener-
ally provided high-quality assessment of the papers and often gave extensive
comments to the authors for the possible improvement of the presentation.
As a result, the Program Committee selected 30 high-quality papers for reg-
ular presentations and 10 papers for short presentations. A broad range of hot
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topics in system informatics was covered by five invited talks given by prominent
computer scientists from different countries.

We are glad to express our gratitude to all the persons and organisations who
contributed to the conference – to the authors of all the papers for their effort in
producing the material included here, to the sponsors for their moral, financial
and organizational support, to the members of the Steering Committee for the
coordination of the conference, to the Programme Committee members and the
reviewers who did their best to review and select the papers, and to the members
of the Organizing Committee for their mutual contribution to the success of this
event. Finally, we would like to mention the fruitful cooperation with Springer
during the preparation of this volume.

November 2006 Irina Virbitskaite
Andrei Voronkov
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Separability in Conflict-Free Petri Nets

Eike Best1, Javier Esparza2, Harro Wimmel1, and Karsten Wolf3

1 Parallel Systems, Department of Computing Science
Carl von Ossietzky Universität Oldenburg, D-26111 Oldenburg, Germany

{eike.best,harro.wimmel}@informatik.uni-oldenburg.de
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esparza@informatik.uni-stuttgart.de

3 Institut für Informatik, D-18051 Universität Rostock
karsten.wolf@uni-rostock.de

Abstract. We study whether transition sequences that transform mark-
ings with multiples of a number k on each place can be separated into
k sequences, each transforming one k-th of the original marking. We
prove that such a separation is possible for marked graph Petri nets, and
present an inseparable sequence for a free-choice net.

1 Introduction

In concurrent systems verification, it is desirable to keep the portion of the
state space that needs to be explored in order to check some property as small
as possible. For example, if a system can be viewed as the composition of k
independent but similar systems, it may be sufficient to check only one of them,
instead of the whole set.

We are interested in Petri nets with k-markings, where by definition, a k-
marking is a marking with a multiple of k tokens on each place (k being some
positive natural number). We study under which conditions a Petri net with an
initial k-marking M0 can be separated, that is, viewed as k independent systems,
each with initial marking (1/k)·M0. In such cases, some verification problems
(for example, the reachability of a k-marking) can be solved in a system with
greatly reduced state space.

The concept of separability has first been introduced and motivated in the
context of workflow nets [6]. In that paper, a class of acyclic marked graphs [1,4]
was proved to enjoy the separability property. In the present paper, we extend
this result to all marked graphs. We also show by means of a counterexample
that the separability property is not generally valid for free-choice nets [2].

The paper is organised as follows: Section 2 contains basic definitions and
introduces the notion of separability formally. Section 3 contains the proof of
the main result. In Section 4, we explore generalisations and limitations of this
result. Section 5 contains concluding remarks.

I. Virbitskaite and A. Voronkov (Eds.): PSI 2006, LNCS 4378, pp. 1–18, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



2 E. Best et al.

2 Definitions

Definition 1 (Petri net). A Petri net (S, T, F, M0) consists of two finite and
disjoint sets S (places) and T (transitions), a function F : ((S×T )∪(T ×S)) → N

(flow) and a marking M0 (the initial marking). A marking is a mapping M : S →
N. A Petri net is plain if the range of F is {0, 1}, i.e., F is a relation. A place
s is a side-condition of a transition t if F (s, t) �= 0 �= F (t, s).

Definition 2 (Incidence matrix, Parikh vector). For a transition t, let Δt
be the vector with index set S defined by Δt(s) = F (t, s)−F (s, t). The incidence
matrix C is an S × T matrix of integers where the column corresponding to a
transition t is, by definition, equal to the vector Δt. For a sequence σ of tran-
sitions, its Parikh vector Ψσ is a vector of natural numbers with index set T ,
where Ψσ(t) is equal to the number of occurrences of t in σ.

A transition t is enabled (or activated) in a marking M (denoted by M [t〉) if, for
all places s, M(s) ≥ F (s, t). If t is enabled in M , then t can occur (or fire) in M ,
leading to the marking M ′ defined by M ′ = M + Δt (notation: M [t〉M ′). We
apply definitions of enabledness and of the reachability relation to transition (or
firing) sequences σ ∈ T ∗, defined inductively: M [ε〉M , and M [σt〉M ′ iff there is
some M ′′ with M [σ〉M ′′ and M ′′[t〉M ′. A marking M is reachable (from M0) if
there exists a transition sequence σ such that M0[σ〉M . We also generalise these
notions to subsets U ⊆ T . A marking M enables U as a step (or concurrently)
if for all places s, M(s) ≥

∑
t∈U F (s, t). If U is enabled in M , all transitions of

U can occur from M in some arbitrary order.
Two firing sequences σ and σ′ are said to arise from each other by a single

permutation if they are the same, except for the order of an adjacent pair of
transitions which is concurrently enabled by the marking preceding them, thus:

σ = t1 . . . tktt′ . . . tn and σ′ = t1 . . . tkt′t . . . tn,

such that the marking reached after t1 . . . tk concurrently enables {t, t′}. Two
sequences σ and σ′ are said to be permutations of each other (written σ ≡ σ′) if
they arise out of each other through a sequence of single permutations.

For any string w and letter a, let #(a, w) denote the number of times a
occurs in w. Two strings v1 and v2 are called Parikh equivalent if for all letters
a, #(a, v1) = #(a, v2). Note that if a firing sequence σ′ is a permutation of a
firing sequence σ, then #(t, σ) = #(t, σ′) for each transition t, and so σ and σ′

are Parikh equivalent. However, two Parikh equivalent firing sequences are not
necessarily permutations of each other.

For any string w define a pair of strings (v1, v2) to be a border of w if v1 is a
prefix of w, v2 is a suffix of w, and v1, v2 are Parikh equivalent.1 Every string w
has the trivial borders (ε, ε) and (w, w).

Definition 3 (k-marking, separation). Let k be a positive natural number.
A k-marking M is a marking where, for all places s, M(s) is divisible by k. For a
1 Normally, one requires v1 = v2, but this is too strong for our purposes.



Separability in Conflict-Free Petri Nets 3

k-marking M and a transition sequence τ such that M [τ〉M ′, a separation (of τ ,
starting from M) is a list τ1, . . . , τk of transition sequences and a list M1, . . . , Mk

of markings such that

∀j, 1 ≤ j ≤ k :
1
k

M [τj〉Mj and
k∑

j=1

Ψτj = Ψτ .

Note that it depends on k whether or not some sequence can be separated. For
instance, if k = 1, then every marking is a k-marking and every sequence σ can
trivially be separated.

We will argue that separability is very much tied to the absence of arc weights
greater than 1 and to the absence of conflicts. Intuitively speaking, a conflict sit-
uation is one in which some enabled transition can be disabled by the occurrence
of some other transition.

2 2

(i)

t

(ii)

t

t1

t2

t3

t4

Fig. 1. A simple non-separable example (i) and an expansion (ii)

Consider the net in Figure 1(i), whose arcs have weight 2 and whose initial
marking is a 2-marking. The firing sequence σ = t (moving two tokens at the
same time) cannot be separated (for k = 2), since no sequence can move only
one token. Note that this net is (intuitively) free of conflicts.

Let us try to simulate such a net with arc weights ≤ 1. One possibility is
shown in Figure 1(ii). This construction (using the regulatory circuit around t1
and t2) avoids both conflicts and deadlocks. The sequence σ′ = t1t2tt3t4 sim-
ulates the sequence σ = t of Figure 1(i). However, σ′ is separable (for k = 1);
indeed, the initial marking is no longer a 2-marking. Putting one more token
on the marked place of the regulatory circuit yields a 2-marking, but intro-
duces a conflict between t1 and t2 after firing t1 (and a deadlock as well, after
t1t1). The same is true if the circuit is omitted altogether. Thus, it appears
impossible to simulate a conflict-free net with initial 2-marking and with ar-
bitrary arc weights by a conflict-free net, also with initial 2-marking, which is
plain.

In order to eliminate the first, rather trivial, source of non-separability, we
will henceforth require all Petri nets to be plain, i.e., all arc weights to be 0 or
1. We then focus on studying what effects the absence or presence of conflicts
has on separability.

In Petri net theory, the ‘absence of conflicts’ can be captured by defining various
net classes which intuitively guarantee the absence of conflicts. In Section 3, we
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concentrate on marked graphs, which are a particularly simple and well-unders-
tood class of conflict-free nets. In Section 4, we recall other classes of conflict-free
nets.

Definition 4 (Marked graphs [1,4]). A net N = (S, T, F, M0) is called a
marked graph, if for all places s,

∑
t∈T F (s, t) ≤ 1 and

∑
t∈T F (t, s) ≤ 1.

3 Marked Graphs Are Separable

3.1 Theorem Statement, and Proof Outline

Theorem 1. Let N be a marked graph and let M0 be a k-marking (k ≥ 1). Let
τ ∈ T ∗ be a firing sequence starting from M0. Then there is a separation of τ .

Proof. By induction on k ≥ 1.

Base: k = 1. Then the result is immediate: define τ1 = τ .

Step: k ≥ 2. Then k = k′ + 1, with k′ ≥ 1. Consider the firing sequence M0[τ〉.
As a consequence of Lemma 1, whose proof can be found below, there are firing
sequences η and ξ with (k′

k M0)[η〉, ( 1
kM0)[ξ〉, and Ψη + Ψξ = Ψτ .

Since k′

k M0 is a k′-marking and k′ < k, we may apply the induction hypothesis,
finding k′ sequences τ1, . . . , τk′ with

(
1
k′ (

k′

k
M0))[τj〉 for every j, and

k′
∑

j=1

Ψτj = Ψη.

Putting τk = ξ yields a separation τ1, . . . , τk of τ . 1

The remainder of this section describes the proof of the following auxiliary result.
Throughout this section, we assume N to be a marked graph, M0 to be its initial
marking, and M0 to be a k-marking with k = k′ + 1 and k′ ≥ 1.

Lemma 1. Let τ be a firing sequence from M0. Then there are firing sequences
η and ξ such that

(
k′

k
M0)[η〉, (

1
k

M0)[ξ〉, and Ψη + Ψξ = Ψτ .

The main idea is to use coloured firings in order to separate τ . Originally, all
tokens are assumed to be ‘black’. We may colour them, in some appropriate way,
into red and green tokens. By r-firing (g-firing), we mean that a firing consumes
and produces only red (green, respectively) tokens. We use indices r and g, or
red and green, to indicate this. Any coloured set of tokens can be decoloured
by turning red and green back into black. Separating a black firing sequence
additively into two subsequences will be done by choosing a red/green-colouring
and realising the black sequence by r-firings and g-firings. Once this is done, all
r-firings can easily be collected into one subsequence and all g-firings into the
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t1

t2 t

t1

t2 t

Fig. 2. A net with red and green tokens: initially (l.h.s.), and after [t1t2t1t2t〉r (r.h.s.)

other subsequence. The main difficulty of the proof is to show that every black
sequence can indeed be realised by r-firings and g-firings.

Figure 2 shows an example. Red tokens are represented as solid circles. The
other (plain circle) tokens are supposed to be green. This colouring could corre-
spond to a case in which k′ = 1. Let M0 be the initial marking of the net shown
on the left-hand side, with black tokens, i.e., the decoloured version of the one
actually shown in the figure. We discuss how the (black) firing sequence

M0 [ t1 t2 t1 t2 t t 〉

can be separated into two sequences, using the two colours. Suppose that we use
red tokens as much as possible. Then we can fire as follows:

M0 [ t1 t2 t1 t2 t
︸ ︷︷ ︸

red

〉M [ t 〉¬ g
¬ r

where M is the marking shown on the right-hand-side of Figure 2. At this point,
t is (black-)enabled and needs to be fired next, but it is neither red- nor green-
enabled. Obviously, a separation of (black) t1t2t1t2tt cannot be found in this
way. We need to use coloured firings more judiciously. For instance, if we choose
to let the second subsequence t1t2 green-fire instead of red-fire, then we get

M0 [ t1 t2︸︷︷︸
red

t1 t2︸︷︷︸
green

t︸︷︷︸
red

〉 M̃ [ t 〉g¬ r.

In terms of black tokens, M̃ is the same as M . However, red and green tokens are
distributed differently, and t can green-fire at M̃ . In this way, we get a separation
of (black) τ = t1t2t1t2tt into (red) τ1 = t1t2t and (green) τ2 = t1t2t. Indeed,
Ψτ = Ψτ1 + Ψτ2 , as required.

By a recolouring of a firing sequence, we mean a sequence in which some
firings have been coloured differently. A recolouring does not itself have to be
a firing sequence, but we will be careful to apply recolouring when it is certain
that the recoloured sequence is actually firable. A recoloured sequence is Parikh
equivalent to the original, since the transition count is not affected.
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By a rearrangement of a firing sequence, we mean a firing sequence that arises
from the original one by permutations and/or recolourings. The Parikh vector
of a rearranged sequence is still identical to that of the original sequence. In
particular, if two sequences are rearrangements of each other, and if they are
started from the same (black) marking, then they reach the same marking.

We return to the proof of Lemma 1. An appropriate r/g-colouring will be
defined as follows. Since M0 is a k-marking, there is, for every s ∈ S, a number
ds ≥ 0 with M0(s) = ds·k. Recall that k = k′ + 1. For every s ∈ S, we define

M0,red(s) = ds·k′ and M0,green(s) = ds. (1)

Then on each marked place, the ratio of red tokens to green tokens is k′, and
decolouring gives back the original M0. If we can realise a black firing sequence
with red-/green-firings starting from such a colouring, the red part can be seen
to start from (k′/k)M0 and the green part from (1/k)M0, as required in the
lemma. It follows that Lemma 1 is proved, provided we can prove the following:

Lemma 2. With a red/green-colouring as in (1), whenever t is a transition and

M0 [ σ 〉 M [ t 〉¬ g
¬ r

(that is, σ leads from M0 to M , M enables t, and M neither r-enables nor
g-enables t), then there is a rearrangement σ′ of σ such that M0[σ′〉M̃ and
M̃ r-enables t or M̃ g-enables t.

Proof. This proof is divided into three steps as follows. Section 3.2 contains a
lemma about borders in marked graphs, Section 3.3 describes the special case
that σ has only r-firings, and the general case is dealt with in Section 3.4. 2

3.2 Borders of Firing Sequences in Marked Graphs

The next lemma holds for arbitrary (uncoloured) marked graphs. Its purpose is
to identify subsequences of firing sequences, such as t1t2 in the example, which
need to be coloured in different colours.

Lemma 3. Let t be a transition and let σ be a firing sequence starting from M0.
Suppose that #(t, σ) ≥ 1. Then σ can be permuted into a sequence σ̃ such that
σ̃ has a border (β1, β2) with the following property:

∀x ∈ T : #(x, β1) = #(x, β2) =
{

1 if #(x, σ) > #(t, σ)
0 if #(x, σ) ≤ #(t, σ).

In particular, the border that is claimed to exist by this lemma does not contain
t, because t does not occur more than #(t, σ) times in σ.

Proof. We will proceed by induction, primarily on the number of transitions that
occur more often than t in σ, and secondarily on the length of σ. That is, we
consider a constant number of t s. Let the length of σ be n.
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Base case: All transitions occur at most #(t, σ) times in σ. Then we immedi-
ately have a border of the desired kind, namely (ε, ε).
Induction step: Assume that there is at least one transition x with #(x, σ) >
#(t, σ).

The first thing we will do is to permute σ in such a way that the first transition is
one which occurs most often in σ. More precisely, let m = max{#(x, σ) | x ∈ T }
and let U = {u ∈ T | #(u, σ) = m}. By the above assumption, we have t /∈ U .
We will make sure that the new first transition is one from the set U .

To this end, we start with σ, pick any u ∈ U and consider the first (leftmost)
occurrence of u in σ. We try to exchange this occurrence of u successively with
its immediate left neighbouring transition. Suppose that this is not possible, for
some left neighbour u′. Then we have the following situation:

M0 [ . . . 〉 M ′ [ u′ 〉 M̂ [u 〉 M ′′ [ ρ
︸︷︷︸

u occurs #(u, σ)−1 times

〉 Mn

such that there is some place s ∈ u′• ∩ •u with M ′(s) = 0. Transition u′ cannot
occur less often in σ than u, because otherwise, s could not get sufficiently many
tokens during the tail ρ for u to occur as often as it does there (namely #(u, σ)−1
times, since we chose the first occurrence).

Hence, u′ is another transition in U . We abandon u and continue in the same
way with u′, choosing its first occurrence in the part leading up to M ′′. Moving
this occurrence of u′ to the left cannot encounter u again, since all occurrences of
u are to the right. Continuing in this way, eventually, we end up with a sequence
of the form

M0 [ t1

σ0
︷ ︸︸ ︷
t2 . . . t . . . tn︸ ︷︷ ︸

σ′

〉 M

in which t1 ∈ U , and in particular, #(t1, σ) > #(t, σ). Call this sequence σ′ and
note that t1 �= t and that, by construction, σ′ ≡ σ.

We chop the first element, viz. t1, off σ′, denoting by σ0 the shorter sequence,
viz. t2 . . . tn. This sequence starts with the marking M1 reached after t1, i.e. by
firing M0[t1〉M1. Note that we might have t2 = t. Note also that σ0 still contains
every transition except t1 (and in particular, t) as often as σ does.

Now it is possible to apply the inductive hypothesis to σ0. The induction
hypothesis implies that there is some permutation σ̃0 of σ0 such that σ̃0 has
a border, say (γ1, γ2), which contains exactly once every transition that occurs
more often than t in σ0 (and that is also the set of transitions the desired border
of the longer sequence should contain, except possibly for t1).

Let us now consider the following sequence σ′′:

M0 [ t1

σ̃0
︷ ︸︸ ︷
γ1 . . . t . . . γ2︸ ︷︷ ︸

σ′′

〉 Mn,

which is a permutation of σ′ since σ̃0 is a permutation of σ0. σ′′ has a prefix of
the form t1 γ1 and a suffix of the form γ2. Note that γ1 and γ2 do not overlap,
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since there is some t in between, and neither of them contains t. If we could find
some occurrence of t1 between γ1 and γ2 which could be moved in front of the
suffix γ2, then we would have constructed a border of the longer sequence and
we would be done.
First case: γ1 (and hence also γ2) does not contain t1. Then, there is some
occurrence of t1 between them, because otherwise, there would be only one
occurrence of t1 in the whole of σ′′ (namely, its first element), contradicting the
fact that t1 occurs at least twice (at least once more often than t, which occurs
at least once) in σ′′.
Choose the last occurrence of t1 (which is also the last one between the two γ s).
This can be moved to the right in front of the γ2, for the following reason:

Suppose that there is some occurrence of some transition t′ with which this
last occurrence of t1 cannot be permuted. We show that this occurrence of
t′ must be in the first element of the suffix-border γ2, and hence that we
have moved t1 far enough already. More precisely, we consider the following
situation:

M0 [ t1 γ1 . . . 〉 M ′ [ t1 〉 M̂ [t′ 〉 M ′′ [ . . . γ2 〉 Mn

such that there is some place s ∈ t1
• ∩ •t′ with M ′(s) = 0. Because M ′(s) = 0,

there are at least as many instances of t′ in the sequence leading from M0 to
M ′ as there are instances of t1 in it. But because we are moving the last t1 and
since t1 ∈ U , we also have t′ ∈ U , and moreover, the t′ after M̂ is the last of
its kind. By t1 �= t′, t′ ∈ U , and the inductive hypothesis, there must be some
occurrence of t′ in γ2. But because the t′ after M̂ is the last of its kind, it is the
first element of the border.

Hence, in this case, we find a permutation σ̃ of σ′′ (and hence of σ) of the
form

M0 [

β1
︷︸︸︷
t1 γ1 . . . t . . .

β2
︷︸︸︷
t1 γ2︸ ︷︷ ︸

σ̃

〉 Mn

with border (β1, β2) = (t1γ1, t1γ2).

Second case: t1 occurs in γ1 and in γ2. Consider the (unique) occurrence of
t1 in the prefix γ1, which is the second overall occurrence of t1 in σ′′. Because
every other transition in γ1 occurs there once only, this occurrence of t1 can be
right-moved to the end of the prefix γ1. Thereafter, we may just forget about it,
i.e., exclude it from the border-to-be-constructed.

More precisely, we now have a permutation σ̃ of σ′′ of the following form:

M0 [ t1

≡ γ1
︷︸︸︷
γ′
1 t1 . . . t . . . γ2

︸ ︷︷ ︸
σ̃

〉 Mn
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where γ′
1 does not contain t1, but is otherwise is the same as γ1. We can now

combine the very first t1 with γ′
1 to form a border (β1, β2) = (t1γ′

1, γ2) of σ̃:

M0 [

β1
︷︸︸︷
t1 γ′

1 t1 . . . t . . .

β2
︷︸︸︷
γ2

︸ ︷︷ ︸
σ̃

〉 Mn.

The two cases are exhaustive.2 This proves the claim. 3

3.3 A Special Case of Lemma 2

Note first that the colouring defined in (1) satisfies the following properties:

(A): ∀s ∈ S : M0,red(s) ≥ M0,green(s)
(B): ∀s ∈ S : M0,red(s) > 0 ⇒ M0,green(s) > 0.

Lemma 4. Let t be a transition and let M0 [σ〉red M [t〉¬ g
¬ r.

Then there is a firable (at M0) rearrangement of σ, leading to M̃ , such that
M̃ g-enables t.

Note that the conclusion is slightly stronger than required to prove Lemma 2.
This facilitates the inductive proof of the general case, as will be seen later.

Proof. Suppose that
σ = t1 . . . tn

with n ≥ 0. We construct a rearrangement of σ such that t is eventually g-
enabled.

First, note that M0 does not enable t, for the following reason. Since t is not
g-enabled at M , and since no green tokens are moved during σ, t is not g-enabled
at M0 either. By (B), t is not enabled at all at M0. In particular, n ≥ 1.

If t does not occur in σ, then M [t〉¬ g
¬ r is impossible. To see this, consider any

input place s of t with Mgreen(s) > 0 and Mred(s) = 0. Such a place must exist be-
cause otherwise, t is not enabled or M r-enables t. At M0, we have M0,green(s) > 0
as well, since green tokens have not been moved. Hence M0,red(s) > 0, by (A).
But since the net is a marked graph and since t does not occur in σ, these red
tokens on s cannot have been moved in M0[σ〉M , contradicting Mred(s) = 0.

Hence, t occurs at least once in σ, and then we may decompose σ as follows:

M0 [ t1 . . . ti︸ ︷︷ ︸
no t occurs here

〉red Mi [ t︸︷︷︸
t=ti+1

〉red [ ti+2 . . . tn 〉red M [t〉¬ g
¬ r . (2)

Moreover, we have i ≥ 1 since M0 does not enable t.
We define structurally a set of transitions that must occur within {t1, . . . , ti},

as follows. Let ◦(t, M0) be the set of transitions, excluding t, that lie on a directed,
2 In the second case, it may be impossible to move the t1 that occurs in γ2 to the front

of γ2. Hence the border satisfies β1 ≡ β2, but possibly, β1 �= β2.
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red-token-empty (at M0), path leading into t. The set ◦(t, M0) is nonempty, since
t has at least one input place without any red tokens at M0, and this place must
have some input transition since otherwise, t would be dead at M0. Moreover,
◦(t, M0) is free of cycles since otherwise t would again be dead.

Intuitively, ◦(t, M0) is the set of transitions that must r-fire at least once, prior
to the first r-enabling of t. We now claim that

every transition in ◦(t, M0) occurs more often in σ than t.

First, note that the transitions in ◦(t, M0) occur at least as often as t even before
the last occurrence of t in σ. This is so, since otherwise there is some place on
some path from some transition in ◦(t, M0) to t which has negative red-token
balance,which is impossible.

Second, to see that every transition in ◦(t, M0) occurs at least once more in
σ, assume that, on the contrary, t′ ∈ ◦(t, M0) occurs exactly as often in σ as t.
Let s be the (unique) input place of t that lies on a directed path from t′ to t.
Since M0,red(s) = 0, we also have M̂red(s) = 0, where M̂ is the marking reached
after the last t in σ, and hence also Mred(s) = 0, since no t′ occurs later. By the
fact that M enables t, we have Mgreen(s) > 0, and hence also M0,green(s) > 0,
and then, by (A), M0,red(s) > 0. However, this contradicts the fact that, by the
definition of the set ◦(t, M0), M0,red(s) = 0.

Hence, every transition in ◦(t, M0) occurs more often than t in σ. By an appeal
to Lemma 3 (using the red tokens only), we find a permutation σ̃ of σ which has
a border (β1, β2) such that all transitions in ◦(t, M0), but no t, occur in β1 and
in β2; i.e., σ̃ = β1 κ β2 with

M0 [

all of ◦(t, M0) occur here
︷︸︸︷
β1

every t occurs here
︷︸︸︷
κ

all of ◦(t, M0) occur here
︷︸︸︷
β2︸ ︷︷ ︸

σ̃ (r-firing)

〉 M [t〉¬ g
¬ r .

Moreover, by Lemma 3, no transition occurs more than once in β1.
Up till now, no recolouring has taken place; all firings in σ̃ are still red.

However, we will now change the suffix β2 into β1 and let it green-fire instead of
red-fire:

M0 [

r-firing
︷︸︸︷
β1 〉 M̃ ′ [

r-firing
︷︸︸︷
κ 〉 M̃ ′′ [

g-firing
︷︸︸︷
β1

︸ ︷︷ ︸
σ′

〉 M̃ [t〉 g
¬ r . (3)

Then we have:

(i) β1 can indeed be g-fired at M̃ ′′, since β1 could be r-fired to start with,
property (B) holds, and the green tokens have not been moved during the
first β1 and κ. Since every transition occurs at most once in β1, there are
sufficiently many green tokens in M0 to fire β1 (even though M0 may contain
less green than red tokens).

(ii) The sequence σ′ = β1,red κred β1,green in (3) is indeed a rearrangement of σ,
since β1 is Parikh equivalent with β2, and σ′ is therefore a rearrangement of
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σ̃, which is a permutation of σ. Thus, the marking M̃ reached in (3) is the
same as the marking M reached in (2) in terms of black tokens; however,
the red and green tokens are differently distributed.

(iii) Finally, M̃ g-enables t. To see this, note that since green tokens have not
been moved between M0 and M̃ ′′, ◦(t, M0) equals ◦(t, M̃ ′′), if the latter set
is calculated using only the green tokens. Previously, in terms of the red
tokens, by firing every transition of ◦(t, M0) at least once, but not t, it was
possible to r-enable t (and keep it r-enabled until it occurs) from M0. But
the suffix β1 contains every transition in ◦(t, M0) at least once, and no t.
Hence g-firing β1 from M̃ ′′ g-enables t. 4

In the example discussed on Figure 2, the border is (β1, β2) = (t1t2, t1t2).

3.4 The General Case of Lemma 2

Lemma 5. Let t be a transition and let M0 [σ1〉red [σ2〉green M [t〉¬ g
¬ r.

Then there is a firable (at M0) rearrangement of σ1σ2, leading to M̃ , such
that M̃ g-enables t.

Note that M0[σ1〉red[σ2〉greenM describes the general case, since r-firings and
g-firings can be arbitrarily permuted.

Proof. Suppose that

M0 [σ1〉
︸ ︷︷ ︸
r-firing

M ′ [σ2〉
︸ ︷︷ ︸
g-firing

M [t〉 with σ1 = t1 . . . tn and σ2 = x1 . . . xm.

We wish to show that σ1σ2 can be rearranged in such a way that eventually,
t is g-enabled, and we prove this by induction on the number of pairs (i, j) ∈
{1, . . . , n} × {1, . . . , m} with ti = xj .

Base case: There are no such pairs.

Then we have {t1, . . . , tn} ∩ {x1, . . . , xm} = ∅ and

M0 [ t1 . . . tn 〉red M ′ [ x1 . . . xm 〉green M [t〉.

We show that
∀s ∈ •{x1, . . . , xm} : M ′

red(s) ≥ M ′
green(s).

This is so because the same property already holds at M0 by (A), since none
of the xj occurs amongst the {t1, . . . , tn} and because as a result (and by the
marked graph property), none of the ti can move any red token away from any
input place of any of the xj .

Hence, under the conditions of the base case, the sequence x1 . . . xm is not
only g-firable, but also r-firable from M ′:

M0 [ t1 . . . tn 〉red M ′ [ x1 . . . xm 〉red M̃ ′ [t〉,
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where M̃ ′ is the same as M , except for the distribution of red and green tokens.
The claim thus reduces to Lemma 4.

Inductive step: There is at least one such pair.

Then we choose some pair (i, j) ∈ {1, . . . , n} × {1, . . . , m} with minimal sum
i+j, that is, one of the ‘first’ such pairs. Let u = ti = xj . We then have:

M0 [ t1 . . . ti−1 〉 [ u 〉 [ ti+1 . . . tn 〉 M ′ [ x1 . . . xj−1 〉 [ u 〉 [ xj+1 . . . xm 〉 M [t〉,

such that {t1, . . . , ti−1} ∩ {x1, . . . , xj−1} = ∅ and u /∈ {t1, . . . , ti−1} and u /∈
{x1, . . . , xj−1}, by the minimality of the pair (i, j).

We claim that u is already enabled at M0. For suppose it isn’t. Then there is
some input place s ∈ •u such that M0(s) = 0. The token count on s turns from
= 0 at M0 to > 0 both after t1 . . . ti−1 and after x1 . . . xj−1. Hence the (unique,
by the marked graph property) input transition of s occurs both in t1 . . . ti−1
and in x1 . . . xj−1, contradicting {t1, . . . , ti−1} ∩ {x1, . . . , xj−1} = ∅.

Hence u is already enabled, and thus both r-enabled and g-enabled, at M0.
In fact, by (1), every input transition of u has at least k′ red tokens and at
least one green token at M0. Therefore, u can be left-moved once in the green
sequence and at least once, and up to k′ times, in the red sequence (provided
that it contains that many u-transitions). Let 
 be the number of occurrences of
u in t1 . . . tn.
Case 1: 
 ≥ k′.
Then we can permute as follows:

M0 [ u . . . u︸ ︷︷ ︸
k′ times

t′1 . . . t′q 〉red M ′ [ u x1 . . . xj−1 xj+1 . . . xm 〉green M [t〉,

and the first green u can be permuted further to the front to occur just after the
first k′ red u s. Now we can red-fire u k′ times and green-fire u once, in order to
obtain the following:

M0 [u . . . u︸ ︷︷ ︸
k′ times

〉red [ u 〉green M̃0 [ t′1 . . . t′q 〉red [ x1 . . . xj−1 xj+1 . . . xm 〉green M [t〉,

The marking M̃0 satisfies the same properties (in particular, a distribution of
colours as in (1)) as the marking M0, and the remaining r/g-sequence

t′1 . . . t′qx1 . . . xj−1xj+1 . . . xm

has at least one pair of common transitions less than the original one. The claim
follows from the induction hypothesis.
Case 2: 
 < k′.
Then there are, in M0, k′ − 
 > 0 excess red tokens on each input place of
u, which are not used during the red sequence, nor, of course, during the green



Separability in Conflict-Free Petri Nets 13

sequence. Hence we can insert k′ − 
 additional red-firings of u at the beginning
of the sequence, thus:

M0 [u . . . u︸ ︷︷ ︸
(k′−�)+�

〉red [ u 〉green M̃0
′
[ t′′1 . . . t′′p 〉red [ x1 . . . xj−1 xj+1 . . . xm 〉green M̂ [t〉.

The induction hypothesis can be applied to the sequence from M̃0
′

to M̂ and
yields a rearrangement σ̂ of t′′1 . . . t′′px1 . . . xj−1xj+1 . . . xm such that

M0 [u . . . u︸ ︷︷ ︸
(k′−�)+�

〉red [ u 〉green M̃0
′
[ σ̂ 〉 M̂ ′ [t〉green-enabled .

Since the tokens produced by the excess k′−
 initial red u transitions are nowhere
needed to fire subsequent transitions, the last k′−
 red u transitions can be taken
out of the sequence [ u . . . u︸ ︷︷ ︸

k′ times red

〉 [u〉green [σ̂〉, settling Case 2 as well. 5

4 Generalisations

The proof in section 3 uses the marked graph property several times. The marked
graph property prevents the appearance of conflict situations by imposing a
strong restriction on the structure of the net. It is natural to ask whether sepa-
rability is caused by the absence of conflicts alone, or by the structural property.
In this section we define a hierarchy of notions of conflict-freeness, and we show
that for live and bounded nets, and for a part of this hierarchy, the two prop-
erties (absence of conflicts and the marked graph property) coincide. We also
show that separability is not generally valid in free-choice nets, another net class
extending marked graphs.

Definition 5 (Liveness, boundedness). A Petri net is live if, for all reach-
able markings M and transitions t, there is a transition sequence σ that can occur
from M and contains t. A Petri net is bounded if the set of markings reachable
from its initial marking is finite.

Definition 6 (Some Petri net classes). A net N = (S, T, F, M0) is

– output-nonbranching (on) if all places s satisfy |s•| ≤ 1;
– conflict-free (cf) (see e.g. [9]) if all places s satisfy |s•| > 1 ⇒ s• ⊆ •s;
– behaviourally conflict-free (bcf) if, whenever a reachable marking M enables

two transitions t, t′ with t �= t′, then •t ∩ •t′ = ∅;
– persistent [7], if for all U ⊆ T and all reachable markings M , if M enables

every t ∈ U , then M enables U as a step;
– and free-choice [2] if transitions sharing pre-places share all their pre-places,

i.e., if for all transitions t and t′ and for all places s, F (s, t) �= 0 �= F (s, t′)
implies F (s, t) = F (s, t′).
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The first four notions can be viewed as different formalisations of the intuitive
notion of ‘freeness of conflicts’. We have the following hierarchies:

marked graph ⇒ on ⇒ cf ⇒ bcf ⇒ persistent
and marked graph ⇒ free-choice.

We show:

– The properties ‘on’ and ‘cf’ are, essentially, the same.
– In the presence of liveness and boundedness, every output-nonbranching net

is a marked graph.
– In the presence of liveness, and for k-markings with k ≥ 2, every behavioura-

lly conflict-free net is output-nonbranching.

Lemma 6 (Reducing cf-nets to on-nets). For every conflict-free Petri net
N with initial marking M0, there is an output-nonbranching net N ′ with initial
marking M ′

0 and isomorphic reachability graph.

Proof. Consider a place s in N for which |s•| > 1. By the conflict-freeness prop-
erty, s• ⊆ •s, which means that s is a side-condition of every output transition
of s (though it may still have some input transitions to which it is not a side-
condition).

We may split s into |s•| places, each connected only to one of the output transi-
tions of s by a side-condition loop, such that all transitions in •s\s• are still input
transitions of each of the new places, and the marking of s is, by definition, also
the marking of every one of the new places. Apparently, the reachability graph
of the new net is isomorphic to that of the original one, but the new net has one
place with two or more output transitions less than the original one.

We repeat this until all places s satisfy |s•| ≤ 1. The result is an on-net N ′

with initial marking M ′
0, whose reachability graph is isomorphic to the original

one. 6

An (unmarked) net (S, T, F ) is called structurally bounded if (S, T, F, M0) is
bounded for every marking M0.

Lemma 7 (Characterisation of structural boundedness). The following
are equivalent (where CT is the transposed of C):

(i) (S, T, F ) is structurally bounded.
(ii) There exists a vector x ∈ N

|S| with x > 0 and CT · x ≤ 0.
(iii) There exists no vector y ∈ N

|T | with C · y ≥ 0 and C · y �= 0.

Proof. (Sketch.) The equivalence between (ii) and (iii) is (a version of) Farkas’
lemma [8]. If some x as in (ii) exists, we have 0 ≤ xT·M ≤ xT·M0 whenever M is
reachable from M0, and hence M0 is bounded, for any M0. Conversely, if a vector
y as in (iii) exists, we may define a marking that has sufficiently many tokens
so that a transition sequence with Parikh vector y can repeatedly be executed,
leading to unboundedness. 7
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Lemma 8 (Reducing on-nets to marked graphs). Let N = (S, T, F, M0)
be a live, bounded, and output-nonbranching net. Then N is a marked graph.

Proof. Let N = (S, T, F, M0) be live, bounded, and output-nonbranching. By
liveness and boundedness, each connected component of N is strongly connected.
Since N is output-nonbranching, it is also free-choice. From the structure theory
of free-choice nets (cf. Theorem 5.6 in [2]), it follows that each connected compo-
nent of (S, T, F ) is structurally bounded, so that (S, T, F ) is structurally bounded
itself. Define y = 1, with index set T . Then, by the fact that N is output-
nonbranching and its connected components are strongly connected, C · y ≥ 0.
Assume now that N is not a marked graph. Then also C ·y �= 0, since we have at
least one place with more than one input transition. But this contradicts struc-
tural boundedness by Lemma 7. Hence N is indeed a marked graph. 8

Lemma 9 (Reducing bcf-nets to on-nets). Let N = (S, T, F, M0) be a live,
behaviourally conflict-free net and let M0 be a k-marking, for some k ≥ 2. Then
N is output-nonbranching.

Proof. We prove the claim of this lemma for k = 2. Let N be live and be-
haviourally conflict-free, and let the initial marking, M0, be a 2-marking. We
show that N is output-nonbranching.
Assume, on the contrary, that N is not output-nonbranching. Then there is some
structural conflict, i.e., there are a place s and two transitions t, t′ with t �= t′ such
that F (s, t) > 0 and F (s, t′) > 0. We plan to prove that this structural conflict
can actually be realised, that is, that there is some marking M (reachable from
M0) which activates both t and t′, contradicting behavioural conflict-freeness.

Because M0 is a 2-marking, the set of initial tokens can be divided into green
ones and red ones, such that every place initially either has no tokens, or at
least one green token and at least one red token (we may, e.g., distribute equally
many green and red tokens). We claim:

– when the red tokens are omitted from the net, transition t can be activated
in the resulting net, i.e., using only the green tokens;

– symmetrically, transition t′ can be activated using only the red tokens.

From this, it follows immediately that the structural s, t, t′ conflict can be re-
alised, since one can use the green tokens to activate t and, independently, the
red tokens to activate t′, leading to a marking in which both t and t′ are enabled.

What remains to be proven is that t can be activated using only the green
tokens. To show this, we consider a sequence of length n activating t, viz.,

M0 [t0t1 . . . tn−1〉M with M [t〉,

where we can assume, w.l.o.g., that t does not occur in t0t1 . . . tn−1. Such a
sequence exists by liveness. Our aim is to find, from this sequence, another one
which also activates t and consists of adjacent pairs of same transitions, thus:

M0 [u0u0 u1u1 . . . um−1um−1〉 M̂ with M̂ [t〉.
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In such a sequence, every second marking, i.e., every marking Mj reached af-
ter u0u0 . . . uj−1uj−1 (0 ≤ j ≤ m) is a 2-marking; this is true, in particular,
for M̂ . It follows that the sequence where every second transition is omitted,
i.e., u0u1 . . . um−1, is firable by moving green tokens only, and what is more,
also activates t, since M̂ is a 2-marking. (Note that this depends essentially on
plainness, i.e., all arc weights being no greater than 1.)

Now consider the sequence t0t1 . . . tn−1, which leads to an activation of t from
M0. Starting with t0, we will gradually transform this sequence into a sequence
u0u0u1u1 . . . um−1um−1 as desired.

Case 1: Suppose that t0 does not occur in {t1, . . . , tn−1} (and also, by assump-
tion, t0 �= t); that is, t0 occurs exactly once in the sequence t0 . . . tn−1. Because
M0 is a 2-marking, t0 can occur twice from M0 (again, we use plainness of the
net), and what is more, t0 cannot be in structural conflict with any of the tran-
sitions in {t1, . . . , tn−1, t} – because if it could, this would contravene structural
conflict-freeness. Therefore, if we enlarge the sequence by adding another t0 after
the first one:

t0t0 t1t2 . . . tn−1,

the extended sequence remains executable from M0 and still activates t in its
final marking. We can now chop t0t0 off the left-hand end of the sequence and
deal with the shorter sequence t1t2 . . . tn−1 – of length n−1 – in the same way
(note that the marking reached after t0t0 is again a 2-marking).

Case 2: Suppose that t0 occurs as one of the tj ’s (1 ≤ j ≤ n−1), but still, by
assumption, t0 �= t. Then the sequence t0t1 . . . tn−1 is of the following form:

t0σ1t0σ2,

where we may, w.l.o.g., assume that σ1 does not contain another occurrence of
t0 (though σ2 may). By the same argument as before, t0 cannot be in structural
conflict with any of the transitions occurring in σ1. Hence the second occur-
rence of t0 can be permuted back through σ1 to a place adjacent to the first
occurrence:

t0t0 σ1σ2.

The inductive step now proceeds as above, except that the remaining sequence,
σ1σ2, is of length n−2.

No other cases remain. This shows that a sequence u0u0u1u1 . . . um−1um−1
activating t from M0 can be found, as was claimed, finishing the proof for k = 2
altogether.

The proof is similar for k > 2, the general principle being that we create
blocks of k adjacent same transitions.

9

Theorem 2. Let N = (S, T, F, M0) be a live, bounded, and behaviourally conf-
lict-free net, let M0[τ〉M , and let M0, M be k-markings. Then there exists a
separation τ1, . . . , τk of τ .
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Proof. If k = 1, then there is nothing to prove (we may take τ1 = τ). If k ≥ 2,
then N is output-nonbranching by Lemma 9, a marked graph by Lemma 8, and
the result follows from Theorem 1. 2

Figure 3 proves that the result cannot be generalised to free-choice nets, even
if liveness and boundedness is assumed. The net shown in this figure is live,
bounded, and free-choice. Moreover, the initial marking is a 2-marking, and the
transition sequence τ = t3t1t2t5t4t5 is repetitive (i.e., leads back to the initial
marking). But it is not separable (for k = 2): t2 needs a prior t1 which, in turn,
needs a prior t3; t4 needs a prior t3 or t2; but since t2 and t3 occur only once,
all occurrences of t1, t2, t3, t4 (and consequently also the two occurrences of t5)
must occur in the same subsequence.

The question of separability remains open if liveness and/or boundedness are
dropped in Theorem 2. Intriguingly, it also remains open for persistent nets,
even if liveness and boundedness are assumed.

t1

t2t3

t4

t5

Fig. 3. A live and bounded free-choice net with a non-separable transition sequence

5 Outlook

In future, we aim at finding out whether the separability property can be proved
for persistent nets, and at investigating separability in terms of concurrent,
rather than interleaving, behaviour. Other research directions will be to check
the usefulness of separability in applications where synchronic distances [5] play
an important role, and to implement the separation property in model-checking
systems that exploit the marking equation (e.g., [3]).
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In 1969 the Second All-Soviet Programming Conference took place here, in
Akademgorodok. One of the hot issues discussed at that conference was the
problem of crisis of programming, which was proposed by Andrei Ershov. In-
deed, programs were becoming bulky and complicated, and were swarming with
errors; the programmer’s labor efficiency was thus low, and the development
process hardly manageable. The laundry list of troubles can be continued. One
can recall the dramatic story of developing the OS 360, which Brooks told in his
“The Mythical Man Month”. The world has changed drastically over the past
years, much due to the advances in computer science. Even the mighty OS 360
is, by today’s standards, an all-average program. But have all those troubles and
problems been solved? No — and they’ve kept accumulating.

One of the essential reasons for this situation is the different rates of progress
in the two opposing sectors of computer science: research versus development,
software industry versus academic community. It’s high time we spoke not of the
crisis of programming in general, but of crisis in research. It’s exactly how we can
view the numerous works on the so called Grand Challenges, developed by such
organizations as the British Computer Society, Computer Research Association,
President’s Information Technology Advisory Committee, etc.

I intend to touch upon only the few of the serious problems which system
programming is facing.
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Spec# is research programming system that aims to provide programmers with
a higher degree of rigor than in common languages today. The Spec# language
extends the object-oriented .NET language C#, adding features like non-null
types, pre- and postconditions, and object invariants. The language has been
designed to support an incremental path to using more specifications. Some of
the new features of Spec# are checked by a static type checker, some give rise
to compiler-emitted run-time checks, and all can be subjected to the Spec#
static program verifier. The program verifier generates verification conditions
from Spec# programs and then uses an automatic theorem prover to analyze
these.

In this talk, I will give an overview of Spec#, including a demo. I will then
discuss in more detail some aspects of its design and our experience so far.

Joint work with Mike Barnett, Bor-Yuh Evan Chang, Robert DeLine, Bart Ja-
cobs, Manuel Fähndrich, Francesco Logozzo, Peter Müller, David A. Naumann,
Wolfram Schulte, and Herman Venter.
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Verification of requirement specifications is an important stage of the software
development process. Detection of inconsistency and incompleteness of require-
ment specifications, as well as discovering of wrong decisions at early stages of
the design process decreases the cost of software quality. An approach to require-
ment verification has been considered in the papers [5–8]. The language of basic
protocols is used there for specification of distributed concurrent systems and
formalizing requirements for them.

Basic protocols combine well known Hoare triples with the model of interac-
tion of agents and environments [1–4]. Each basic protocol is an expression of
the type ∀x(α(x) →< u(x) > β(x)), where x is a (typed) list of parameters,
α(x) and β(x) are a precondition and a postcondition, respectively, and u(x)
is a finite process expression. Preconditions and postconditions are formulas of
some logic language (usually first order one) called the basic language. This lan-
guage is used to describe the properties of the states of a system represented
as composition of an environment and agents inserted into this environment.
The process u(x) describes the behavior of the environment with inserted agents
in the states that satisfy the precondition. A basic protocols specification (BP
specification) of a system is defined by means of a set of basic protocols and an
environment description, which determines the signature and interpretation of
the basic language, the syntax of actions of the environment and agents, and the
properties of possible initial states. The specified system is assumed to be an
attributed labeled transition system, that is a transition system with transitions
labeled by actions and states labeled by attribute labels. For a concrete model
they are the interpretations of distinguished predicate and functional symbols
of the signature of the basic language called attributes (propositional variables
in model checking). For an abstract model the attribute labels are formulas of
the basic language. In both cases the validity relation s |= α is defined, which
means that the formula α is valid on the label of the state s.

The meaning of basic protocols can be defined in terms of temporal logics.
Each basic protocol can be considered as a temporal logic formula which ex-
presses the fact that the process u(x) may be initiated only if (for appropriate
values of parameters x) its precondition α(x) is valid on a system state, and if
the protocol starts then after its successful termination the labeling satisfies the
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postcondition β(x). A system that satisfies this requirement is called an imple-
mentation of the system of basic protocols. The set of possible interpretations
can be restricted by introducing additional requirements depending on a subject
domain.

Requirement specifications of distributed systems from real engineering prac-
tice, such as telecommunications, embedded and other kinds of distributed soft-
ware systems, usually have the form very close to basic protocols and, as our
experience shows, can be easily formalized in this form. Basic protocols also per-
mit different levels of abstraction from concrete models with a given number of
agents inserted into an environment and explicit attributes changing their val-
ues during evolving of the system states to abstract (symbolic) models with the
states of the environment represented by the properties of the attributes.

Two abstract implementations SP and SP of BP specification defined by a set
P of basic protocols and an environment description are considered. Both use
two restrictions on transitions and the labeling of the specified system. The first
restriction is expressed in terms of a predicate transformer – a transformation
defined over formulas of the basic language. It transforms the condition γ, which
characterizes the state labeling prior to applying a protocol, and the respective
postcondition β into a new labeling pt(γ, β) (the transformed postcondition). A
predicate transformer must satisfy the condition pt(γ, β) → β and therefore it
strengthens the postcondition w.r.t. the strengthened precondition.

The second restriction relates to possible interpretations of actions. It is de-
fined in terms of permutability relation on the set of actions and is formulated
as follows. The environment of the implementation controls all running proto-
cols and a new protocol can be initiated only if its first action is permutable
with all actions that can be performed by all running protocols. Moreover, an
action performed by a protocol must be permutable with all actions that can be
performed by all protocols initiated before it.

The restriction defined by permutability can be expressed in terms of composi-
tion of processes called partially sequential composition. In case of permutability
of all actions of two basic protocols, their composition degenerates into a parallel
composition, and if no actions are permutable — into a sequential composition
of processes. Partially sequential composition generalizes the notion of weak
sequential composition introduced by Renier [11] for the definition of formal
semantics of MSC diagrams.

The states of abstract implementations are formulas of the basic language,
and the behavior Sγ of a system in a state γ is defined by the equation:

Sγ =
∑

p∈P (γ)

proc(p) ∗ (T(γ, p) : Δ) ∗ ST(γ,p).

The following notations are assumed in this formula. Let

p = ∀x(α(x) →< u(x) > β(x))

be a basic protocol. Its parameters x = (x1, x2, . . .) may have types and have
particular value domains. Substitution of symbolic constants or values from the



Basic Protocols: Specification Language for Distributed Systems 23

respective domains for parameters into the body α(x) →< u(x) > β(x) of
the basic protocol is called its instantiation. For an instantiated basic protocol
q = ∀x(α(t) →< u(t) > β(t)) let us denote: pre(q) = α(t), post(q) = β(t),
proc(q) = u(t). Let Pinst be a set of instantiated basic protocols. Then

P (γ) = {p ∈ Pinst | γ → pre(p)}

for the system SP and

P (γ) = {p ∈ Pinst | ¬ |= ¬(γ ∧ pre(p))}

for the system SP , T(γ, p) = pt(γ,post(p)), ∗ denotes a partially sequential
composition, Δ is a successfully terminated process, and α : s denotes a state
or behavior s labeled by a condition α. Some additional constructions can be
added to distinguish the states of successful termination.

The systems SP and SP are abstractions of concrete implementations and if
basic protocols are formalization of requirement specifications, they precede the
concrete implementation that must appear later. The question of how abstract
implementations are connected with concrete ones was considered in [8]. To
answer this question, the notion of abstraction relation was defined on the class
of attributed systems. This notion generalizes some specific abstractions used in
symbolic model checking [9,10] and is defined as follows.

Let S and S′ be two attributed (not necessarily different) transition systems
with common states and attribute labels and BL be the basic language. Define
the abstraction relation Abs ⊆ S × S′ on the set of states as follows:

(s, s′) ∈ Abs ⇔ ∀(α ∈ BL)((s |= α) ⇒ (s′ |= α)).

We say that the system S is an abstraction (or an abstract model) of the sys-
tem S′ and the system S′ is a concretization (or a concrete model) of the system
S if a relation ϕ ⊆ Abs−1 exists, which is a relation of modeling (simulation).
In other words, for any action a the following statement holds:

∀(s ∈ S, s′ ∈ S′)((s′, s) ∈ ϕ ∧ s
a−→ t ⇒ ∃(t′ ∈ S′)(s′ a−→ t′ ∧ (t′, t) ∈ ϕ)).

For systems with the set of initial and final states, the requirement of pre-
serving the initial and final states is added.

This notion of abstraction means that each transition of an abstract model is
forced by some transition of its concretization. It is also interesting to consider
abstract models with the inverse property: each transition of a concrete model
is forced by the respective transition of the abstract model. In other words, the
relation ϕ ⊆ Abs−1 has the following property:

∀(s ∈ S, s′ ∈ S′)((s′, s) ∈ ϕ ∧ s′ a−→ t′ ⇒ ∃(t ∈ S)(s a−→ t ∧ (t′, t) ∈ ϕ)).

In this case we say about an inverse abstract model S of the system S′.
Both kinds of abstract models are useful for this purpose. For a direct model

it is true that if some property is reachable in its concretization then it is also
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reachable in the model. And if some property is reachable in the concretization,
it is also reachable in the inverse model. Therefore direct models can be used for
verification of a system and inverse models for test generation.

In [8], for some specific signature and BP specification P , there was defined
a class K(P ) of concrete models of P and the main result was proved: a system
SP is a direct abstraction of all systems from the class K(P ) and SP is an
inverse abstraction of all concrete systems from this class.

The abstract models of basic protocols are implemented in the VRS system
developed for Motorola [5–8] and have been successfully applied for verification of
requirement specifications of real engineering projects. The tools of VRS include
the following:

– checking consistency and completeness of preconditions of BP specifications.
In the strongest case consistency means that preconditions of different pro-
tocols with the same starting actions in the process cannot intersect (never
valid at the same time) and completeness means that the disjunction of
preconditions for protocols with the same starting actions is always valid.
Consistency provides determinism and completeness checks such properties
as the absence of deadlocks.

– proving safety conditions on abstract models. Proving is fulfilled by induc-
tion using the deductive system of VRS or by modeling of direct or inverse
abstractions.

– proving reachability of properties. Symbolic and concrete modeling is used.

The languages MSC, SDL, and UML with annotations are used for description
of processes. Deductive tools include the proving procedure for first order typed
predicate calculus integrated with linear inequalities for integers (Pressburger)
and reals.
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Formal methods traditionally aim at verifying and proving correctness (a typical 
academic activity), while testing can only show the presence of errors (that is what 
practitioners do). Recently, there is an increasing interest in the use of formal models 
and methods in testing. In this talk, we first present a traditional framework of model–
based testing, considering a variety of state-oriented (automata) models, such as Finite 
State Machines (FSM), Communicating FSM, Extended FSM, where input and output 
are coupled for each transition; and input/output automata (a.k.a. transition systems), 
where inputs are outputs are decoupled. We provide an overview of existing test 
derivation techniques based on automata models, while paying a special attention to 
the underlying testing assumptions and fault detection capability of the resulting tests.  

We distinguish two testing scenarios, where an implementation under test is treated 
as a black-box and either a formal specification of the expected behavior or a set of 
desired properties is given, respectively, model-based and property-based testing. A 
property-based testing framework for distributed systems is also presented in the talk. 
The processes in a system are instrumented to generate events, such as send and 
receive of messages, local events and others. The collected events constitute a 
partially ordered event trace and some user-defined properties can be checked on the 
trace offline. We present an approach to property-based testing, where a trace of a 
distributed system is converted into a collection of communicating automata that 
serves as an input to a model checker that tests whether given properties are violated 
in the trace. We discuss possibilities of merging both scenarios and conclude by 
pointing to open problems. 
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Abstract. The Universal Resolving Algorithm was originally formu-
lated for inverse computation of tail-recursive programs. We present an
extension to general recursion that improves the efficiency and termina-
tion of inverse computation because partially produced output is used to
reduce the search space. In addition, we present a transformation using a
new unification-based equality operator. Examples demonstrate the ad-
vantages of the new technique. We found that these extensions can also
improve inverse computation in the context of functional-logic languages.

1 Introduction

Many problems in computation can be specified in terms of computing the in-
verse of an easily constructed function. Inverse computation is the calculation
of the possible input of a program for a given output. The Universal Resolving
Algorithm (URA) [2,3] is an algorithm for inverse computation in a first-order
functional language. The algorithm is sound and complete with respect to the
solutions defined by a given program. Termination and efficiency depends di-
rectly on the search space traversed when performing inverse computation. The
original algorithm relied only on perfect driving [6] to reduce the search space
and was restricted to a tail-recursive programming language.

In this paper we present an extension of the original algorithm to general
recursion. This allows us to reduce the search space drastically when partially
defined output becomes available. We show how termination and efficiency of in-
verse computation can be improved by intersection and unification-based equal-
ity. We demonstrate the gains of our method with several examples. This paper
concerns the question on how to make inverse computation faster and more
terminating. Another proposal [17] which approximates functional programs by
grammars is complete, but sacrifices soundness for termination. It is well-known
� Supported by the Russian Foundation for Basic Research grant No. 06-01-00574.
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that an algorithm for inverse computation cannot be sound, complete and always
terminating. URA is sound and complete, so we try to improve termination.

To summarize the contributions: We present an extension of the original
URA [2,3] to general recursion and show two novel solutions that can drastically
improve the efficiency and termination of the algorithm: (1) A new technique for
cutting and backpropagation based on intersection of classes during perfect driv-
ing. (2) A novel unification-based equality operator that provides a surprisingly
simple solution by an equivalence transformation of a given request for inverse
computation into the source language. Our techniques aim at reducing the search
space during inverse computation and can sometimes turn an infinite into a finite
search. This is of interest beyond URA. We found that inverse computation in
modern functional-logic languages can be improved by these techniques.

After reviewing the principles of inverse computation (Sect. 2), we explain the
reduction of the search space (Sect. 3) and the semantics of unification-based
equality (Sect. 4). Then we define a straightforward equivalence transformation
(Sect. 5) and demonstrate the technique with several examples (Sect. 6). We
conclude with related work (Sect. 7) and future work (Sect. 8).

2 Background: An Approach to Inverse Computation

This section summarizes the concepts behind the Universal Resolving Algo-
rithm [2,3]. For a given program p written in programming language L and
output dout , inverse computation is the determination of an input ds in such
that [[p]]L ds in = dout . Here, ds in is a list of values [d1, . . . , dn] and dout is a sin-
gle value. When additional information about the input domain is available, we
may want to restrict the search space of the input for a given output. Conversely,
we may want to specify a set of output values, instead of fixing a particular value
dout . We do so by specifying the input and output domains using an input-output
class (io-class) cls io . A class is a finite representation of a possibly infinite set of
values. Let �cls io� be the set of input-output values represented by cls io , then
the correct solution Inv(L, p, cls io) to an inversion problem is specified by

Inv(L, p, cls io)={ (ds in , dout ) | (ds in , dout)∈�cls io�, [[p]]L ds in =dout } (1)

where L is a programming language, p is an L-program, and cls io is an input-
output class. The universal solution Inv(L, p, cls io) is the largest subset of �cls io�
such that [[p]]L ds in = dout for all elements (ds in , dout ) of this subset.

In general, inverse computation using a program invint for inverse computa-
tion for a language L takes the form

[[invint]] [p, cls io ] = ans (2)

where p is an L-program and cls io is an io-class. We say, cls io is a request for
inverse computation of L-program p and ans is the answer. When designing an
algorithm for inverse computation, we need to choose a concrete representation
for cls io and ans . We use S-expressions known from Lisp as the value domain
and represent the classes by expressions with variables and restrictions [2,3,16].
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The Universal Resolving Algorithm (URA) [3,2] is an algorithm for inverse
computation in a first-order functional language. The algorithm produces a uni-
versal solution, hence the first word of its name. The answer ans = {(θ1, r̂1), . . .}
produced by URA is a set of substitution-restriction pairs that represents set
Inv(L, p, cls io). The correctness of URA is given by

⋃

i

�(cls io/θi)/r̂i� = Inv(L, p, cls io) (3)

where (cls io/θi)/r̂i narrows the set of input-output values represented by io-class
cls io by applying substitution θi to it and then adding restriction r̂i.

As an example, consider inverse computation of a program a2b (Sect. 4).
Program a2b replaces each ’A by ’B in a list of symbols, leaving all other symbols
unchanged. For example, [[a2b]] [[’A, ’B, ’A]] = [’B, ’B, ’B]. Suppose that we have
the list [’B] as output and want to find all inputs that can produce this output.
For inverse computation of a2b, we specify the io-class

cls io = 〈( [Xe1]
︸ ︷︷ ︸

d̂s in

, [’B]
︸︷︷︸

d̂out

), ∅
︸︷︷︸

r̂io

〉 (4)

where d̂s in specifies the input, d̂out the output, and r̂io = ∅ is an empty re-
striction (no constraints on the domains of c-variables). Placeholders like Xe1
are called configuration variables (c-variables); they range over the set of S-
expressions. A restriction r̂io is a finite set of inequalities that constrains the
domain of c-variables (e.g., we might specify {Xe1 �= ’A,Xe1 �= Xe2} as a restric-
tion). A rewrite system can be used to normalize such kinds of constraints [16].
We distinguish between a value, d , and an expression, d̂ , that represents a sets
of values. Inverse computation with URA then takes the form:

[[ura]] [a2b, cls io ] = ans . (5)

In our example, the answer contains two substitution-restriction pairs each with
a substitution for Xe1 and an empty restriction: ans = { ([Xe1 	→ [’A]], ∅),
([Xe1 	→ [’B]], ∅) }. This tells us that [’B] is produced by input [’A] and [’B].

URA is based on the notion of a perfect process tree [6] that represents the
computation of a program with partially specified input by a tree of all possible
computation traces. The algorithm constructs, breadth-first and lazily, a perfect
process tree for a given program p and input class cls in = 〈d̂s in , r̂io 〉 taken
from the given request cls io , and extracts the answer ans from the finite traces
and leaves in the tree. The construction of a process tree is similar to unfolding
in partial evaluation where a computation is traced under partially specified
input [5]. It is important that each fork in a perfect tree partitions the input class
cls in into disjoint and exhaustive subclasses. URA is sound and complete [3],
but does not always terminate because the process tree is not always finite. The
algorithm is based on the idea of driving known from supercompilation [19]. We
present now an important extension of the algorithm to general recursion that
can improve termination and produce answers faster.
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3 Reducing the Search Space

In this section we establish the idea of using an mgu-based intersection and the
constructor skeleton of an expression as an approximation of the output. The
following two examples show that intersection can drastically reduce the search
space of URA by cutting infeasible branches and backpropagating bindings.

Tracing a program with partially specified input may confront us with condi-
tionals that depend on unspecified values, and we have to consider the possibility
that either branch of the conditional is entered with some input. For instance,
if the program tests whether the value of a program variable is a pair, but the
variable is bound to Xe1, then we have two possibilities (perfect split): it is a
pair Xe2:Xe3 or an atom. This leads to two new branches in the perfect process
tree. Repeating these driving steps can lead to an infinite tree.

Cutting branches. Consider that we trace a2b along the following configura-
tions. Recall that we are looking for input that produces the output [’B].

c1 = 〈(call a2b [Xe1]), ∅〉 ↓ θ1 = [Xe1 �→ Xe2 : Xe3], θ2 = [Xe2 �→ ’A]
c7 = 〈’B:(call a2b [Xe3]), ∅〉 ↓ θ5 = [Xe3 �→ Xe6 : Xe7], θ6 = [Xe6 �→ ’A]
c9 = 〈’B: ’B:(call a2b [Xe7]), ∅〉 ↓ ...

Clearly, the last configuration c9 and its descendents can never lead to an answer
because their output will always be a list with a length greater than one, ’B: ’B: •,
where • stands for the unknown output of (call a2b [Xe7]), while we are looking
for a list of length one as output: ’B: [ ]. Instead of blindly continuing an infinite
search, we examine whether the partially computed output at c9 can possibly lead
to the desired output and, if not, stop tracing. Intuitively, the current io-class
at c9 and the given io-class (4) do not ‘unify’: their intersection is empty. Thus,
we can stop tracing at c9 without loosing an answer. Cutting such unproductive
branches improves efficiency and, in our example, the process tree becomes finite.
Intersection � of the current io-class cls ′io and the initial io-class cls io is empty
(operation � will be defined below). The term [’A: ’A:Xe7] in cls ′io is obtained
by applying θ1, θ2, θ5, θ6 to [Xe1] of cls io . We compute the intersection:

〈([’A: ’A:Xe7], ’B: ’B:•), ∅〉
︸ ︷︷ ︸

current cls ′io

� 〈([Xe1], ’B: [ ]), ∅〉
︸ ︷︷ ︸

given cls io

= ∅ . (6)

Backpropagation. The second example adds a function f that is defined by

(define f [x] ([x, (call a2b [x])])) .

Function f is simple: it takes a list x as input and returns as output a list
containing two elements: the original list x and the result of applying function
a2b to x. We specify the output domain as d̂out = [[Xe0,Xe0,Xe0], [’B, ’B, ’B]].
For instance, it includes the value [[’C, ’C, ’C], [’B, ’B, ’B]]. The three identical
c-variables Xe0 stand for three identical values. Also, we specify that the input
must be a list of length three: d̂s in = [Xe1,Xe2,Xe3]. There are no restrictions
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c9 c10 c11 c12 c13 c14 c15 c16

c5

� �
θ3 = [Xe3 �→ ’A] ¬θ3

c6

� �
θ3 ¬θ3

c7

� �
θ3 ¬θ3

c8

� �
θ3 ¬θ3

c3

� �
θ2 = [Xe2 �→ ’A] ¬θ2

c4

� �
θ2 ¬θ2

c2

� �
θ1 = [Xe1 �→ ’A] ¬θ1

c1

�

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
c1 = 〈(call f [Xe1,Xe2,Xe3]), ∅〉
c2 = 〈[[Xe1,Xe2,Xe3], (call a2b [Xe1,Xe2,Xe3])], ∅〉
c3 = 〈[[’A,Xe2,Xe3], ’B:(call a2b [Xe2,Xe3])], ∅〉
c4 = 〈[[Xe1,Xe2,Xe3], Xe1:(call a2b [Xe2,Xe3])], {Xe1 �= ’A}〉
c5 = 〈[[’A, ’A, Xe3], ’B:’B:(call a2b [Xe3])], ∅〉
c6 = 〈[[’A,Xe2,Xe3], ’B:Xe2:(call a2b [Xe3])], {Xe2 �= ’A}〉
c7 = 〈[[Xe1, ’A,Xe3], Xe1:’B:(call a2b [Xe3])], {Xe1 �= ’A}〉
c8 = 〈[[Xe1,Xe2,Xe3], Xe1:Xe2:(call a2b [Xe3])], {Xe1 �= ’A,Xe2 �= ’A}〉
c9 = 〈[[’A, ’A, ’A], [’B, ’B, ’B]], ∅〉

⇒ Answer: ([Xe0 �→ ’A,Xe1 �→ ’A,Xe2 �→ ’A,Xe3 �→ ’A], ∅)
c10 = 〈[[’A, ’A, Xe3], [’B, ’B,Xe3]], {Xe3 �= ’A}〉 ⇒ No answers
c11 = 〈[[’A,Xe2, ’A], [’B,Xe2, ’B]], {Xe2 �= ’A}〉 ⇒ No answers
c12 = 〈[[’A,Xe2,Xe3], [’B,Xe2,Xe3]], {Xe2 �= ’A,Xe3 �= ’A}〉 ⇒ No answers
c13 = 〈[[Xe1, ’A, ’A], [Xe1, ’B, ’B]], {Xe1 �= ’A}〉 ⇒ No answers
c14 = 〈[[Xe1, ’A,Xe3], [Xe1, ’B,Xe3]], {Xe1 �= ’A,Xe3 �= ’A}〉 ⇒ No answers
c15 = 〈[[Xe1,Xe2, ’A], [Xe1,Xe2, ’B]], {Xe1 �= ’A,Xe2 �= ’A}〉 ⇒ No answers
c16 = 〈[[Xe1,Xe2,Xe3], [Xe1,Xe2,Xe3]], {Xe1 �= ’A, Xe2 �= ’A,Xe3 �= ’A}〉

⇒ Answer: ([Xe0 �→ ’B,Xe1 �→ ’B, Xe2 �→ ’B,Xe3 �→ ’B], ∅)

Fig. 1. Perfect process tree without backpropagation

on the c-variables, so r̂io is empty. Thus, we have the initial io-class:

cls io = 〈( [[Xe1,Xe2,Xe3]]
︸ ︷︷ ︸

d̂s in

, [[Xe0,Xe0,Xe0], [’B, ’B, ’B]]
︸ ︷︷ ︸

d̂out

), ∅
︸︷︷︸

r̂io

〉 . (7)

The process tree is finite because the length of the input list is fixed when we
trace f with cls io in (7), but the construction time is exponential in the length of
the d̂s in since tracing explores all possibilities for the three elements of the list.
For example, trace the computation along the configuration sequence (Fig. 1):

c1 = 〈(call f [Xe1,Xe2,Xe3]), ∅〉 ↓ unfold
c2 = 〈[[Xe1,Xe2,Xe3], (call a2b [Xe1,Xe2,Xe3])], ∅〉 ↓ θ1 = [Xe1 �→ ’A]
c3 = 〈[[’A,Xe2,Xe3], ’B:(call a2b [Xe2,Xe3])], ∅〉 ↓ ¬θ2 = {Xe2 �= ’A}
c6 = 〈[[’A,Xe2,Xe3], ’B:Xe2:(call a2b [Xe3])], {Xe2 �= ’A}〉 ↓ ...
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c5 c6

c3

�
∗

c4

�
∗

c′
2

� �
θ1 = [Xe0 �→ ’A] ¬θ1

c2·····�θ′ = [Xe1 �→ Xe0, Xe2 �→ Xe0, Xe3 �→ Xe0]

c1

�

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
c1 = 〈(call f [Xe1, Xe2,Xe3]), ∅〉
c2 = 〈 ŝ2, ∅〉 = 〈[[Xe1,Xe2, Xe3], (call a2b [Xe1, Xe2,Xe3])], ∅〉

partially computed output has form d̂ ′
out = skel(ŝ2) = [[Xe1,Xe2,Xe3], Xe�],

necessary condition to meet desired output is given by substitution θ′

(computed by mgu)
c′
2 = 〈[[Xe0,Xe0,Xe0], (call a2b [Xe0,Xe0,Xe0])], ∅〉

c3 = 〈[[’A, ’A, ’A], ’B:(call a2b [’A, ’A])], ∅〉
c4 = 〈[[Xe0,Xe0,Xe0], Xe0:(call a2b [Xe0,Xe0])], {Xe0 �= ’A}〉
c5 = 〈[[’A, ’A, ’A], [’B, ’B, ’B]], ∅〉

⇒ Answer: ([Xe0 �→ ’A,Xe1 �→ ’A,Xe2 �→ ’A,Xe3 �→ ’A], ∅)
c6 = 〈[[Xe4,Xe4,Xe4], [Xe4,Xe4,Xe4]], {Xe0 �= ’A}〉

⇒ Answer: ([Xe0 �→ ’B,Xe1 �→ ’B, Xe2 �→ ’B,Xe3 �→ ’B], ∅)

Fig. 2. Perfect process tree with backpropagation

None of the descendents of c6 can ever lead to an answer because they all violate
the requirement in d̂out that its first component is a list containing three identical
elements (restriction Xe2 �= ’A requires that the second element Xe2 is different
from the first ’A). Instead of tracing the program using only information from
the input class, we also backpropagate information from the output class to the
input class. Let us intersect the current io-class at c2 with the given io-class (7):

〈([[Xe1,Xe2,Xe3]], [[Xe1,Xe2,Xe3], •]), ∅〉
� 〈([[Xe1,Xe2,Xe3]], [[Xe0,Xe0,Xe0], [’B, ’B, ’B]]), ∅〉 = {(θ, ∅)} (8)

where substitution θ = [Xe1 	→ Xe0, Xe2 	→ Xe0, Xe3 	→ Xe0, • 	→ [’B, ’B, ’B]].
The intersection is not empty and the result is a substitution-restriction pair
(θ, ∅) that, when applied to any of the two io-classes, gives a new io-class that
represents the domain of the intersection. We use (θ, ∅) to narrow configuration
c2 to c′2 = 〈[[Xe0,Xe0,Xe0], (call a2b [Xe0,Xe0,Xe0])], ∅〉. Because the input of
a2b is now limited to lists containing three identical elements, backpropagating
the result of the intersection into c2 leads to a dramatic speed-up: the search
time becomes linear in the length of the input list.

Method. The method to reduce the search space of URA is shown in Fig. 3.
The central operation is the intersection ( � ) of the approximated io-class cls ′io
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Given a request with initial io-class cls io = 〈(d̂s in , d̂out ), r̂io 〉 and program p:

Current process tree:

. . .

�
cprev clsprev

	. . . 
. . .

�
κ

c cls

Current node:
c = 〈 ŝ, r̂ 〉 current configuration,
cls = 〈d̂s, r̂ 〉 current input class.

Approximate the current io-class cls ′
io of configu-

ration c by cls ′
io = 〈(d̂s , skel(ŝ)), r̂ 〉 where skel(ŝ) is

the known constructor skeleton of the output.

(1) Cutting:

. . .

�
cprev clsprev

	. . . 
. . .

if cls ′
io � cls io = ∅ (intersection of io-classes)

then

1. Cut node c
2. Continue driving other branches.

(2) Backpropagation:

. . .

�
cprev clsprev

	. . . 
. . .

�
κ

c cls
·····�(θ′, r̂ ′)

cnew clsnew

else let cls ′
io � cls io = {(θ, r̂)}

1. Define (θ′, r̂ ′) by removing from (θ, r̂) all bind-
ings and restrictions on c-variables that do not
occur in the current input class cls.

2. Perform contractions on c and cls :
cnew = c/θ′/r̂ ′,
clsnew = cls/θ′/r̂ ′.

3. Add a new branch labeled (θ′, r̂ ′) and a new node
with configuration cnew and input class clsnew .

4. Continue driving.

Fig. 3. Reduction of search space by cutting and backpropagation

with the given io-class cls io . If the intersection is empty, then the current con-
figuration can never lead to a valid answer; otherwise, the intersection returns a
contraction (θ, r̂ ) containing a substitution θ and restriction r̂ which may further
constrain the current configuration. The process tree cannot become larger by
performing the operations in Fig. 3, but it may have less edges. This can make
URA faster and more terminating. We now describe the main operations:

1. Intersection ( � ) of two io-classes is based on the most general unifier
(mgu). The mgu examines the entire constructor skeletons in d̂d1 and d̂d2 of the
two classes. If the mgu succeeds, it is necessary to check that the substitution
θ = mgu(...) does not lead to a contradiction when applied to the restrictions
(r̂1+ r̂2) [3].1 Thus, there are three cases: (i) the mgu fails, (ii) the mgu succeeds,
but θ leads to a contradiction in the restrictions, and (iii) the mgu succeeds and
θ is consistent with the restrictions and the intersection is not empty.

1 Ex.: applying θ = [Xe1 �→ ’A] to r̂ = {Xe1 �= ’A} leads to a contradiction: {’A �= ’A}.
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Definition 1 (intersection of io-classes). Let cls1, cls2 be two io-classes,
cls1 = 〈d̂d1, r̂1 〉 and cls2 = 〈d̂d 2, r̂2 〉 such that var(cls1) ∩ var(cls2) = ∅, and let
mgu(d̂d1, d̂d2) denote the most general unifier of d̂d1 and d̂d2, if it exists, then
define io-class intersection ( � ) by

cls1 � cls2
def=

⎧
⎪⎨

⎪⎩

∅ if mgu(d̂d1, d̂d2) fails
∅ if (r̂1 + r̂2)/θ = {contra} where θ = mgu(d̂d1, d̂d2)
{(θ, r̂)} otherwise, where θ = mgu(d̂d1, d̂d2), r̂ = (r̂1 + r̂2)/θ .

2. Constructor skeleton ( skel ). The output of the current configuration can be
approximated by taking the constructor skeleton skel(ŝ) of the current state ŝ ,
that is, by replacing all function calls in ŝ with fresh c-variables. For example,
if ŝ = ’B:’B:(call a2b ...) then skel(ŝ) = ’B: ’B:Xe� where Xe� is a fresh c-var-
iable. The io-class cls ′io of the current configuration c can then be approximated
by combining the current input class cls and the approximated output skel(ŝ).
The operation skel is a pure syntactic approximation of the output and does not
use any semantic information about the functions defined in a program.

Both operations, intersection and constructor skeleton, are important for our
method. If we do not use the intersection operation, but approximate it or only
check whether the intersection of the two classes is empty, we might miss a
chance to reduce the search space by not backpropagating enough information
into the current configuration. If we delay the intersection operation or do not
examine all of the known constructor skeleton at the current configuration, we
might miss a chance to cut a node that never leads to an answer.

4 Dealing with MGU-Based Equality

We introduced an improvement for inverse computation by URA in the previous
section and showed that intersection is a powerful operation to test during trac-
ing whether two io-classes represent sets of values that share values. We used
intersection to predict whether the current configuration may lead to an answer
that lies in the given output domain or not. If the intersection is empty then the
current configuration can never lead to a valid answer. This observation leads us
to the second idea, namely, to the introduction of a new mgu-based equality in
the source language which is different from the usual matching-based operations
found in most functional-logic languages and lazy functional languages.

(define f [x]
([x, (call a2b [x])]))

(define a2b [x]
(if (cons? x h t )

(if (equ? h ’A)
(’B:(call a2b [t]))
( h :(call a2b [t])))

[ ]))

We use the first-order, lazy functional language
Nested Typed S-Graph (NTSG) that extends the
original language S-Graph [6] with nested function
calls and a new non-atomic equality. The body
of a function is an expression e which is either a
function call, a conditional, a cons-pair (e : e),
an atom ’z or a program variable x (Fig. 4). The
semantics of NTSG is similar to the semantics of
TSG that was given elsewhere [2,3]. Values can be
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p ::= q+ Program
q ::= (define f x∗ e) Definition
e ::= (call f e∗) | (if k e e) | (e : e) | ’z | x Expression
k ::= (equ? e e) | (cons? e xe xe xa) Condition
x ::= xe | xa Typed variable

Fig. 4. Abstract syntax of NTSG

Condition Equ?

e = e′ passive(e) passive(e′)
	if (equ? e e′) e1 e2 ⇒ e1

mgu(skel(e), skel(e′)) fails
	if (equ? e e′) e1 e2 ⇒ e2

Transition for Conditional

redex(s) = (s ′, [• �→ (if k e1 e2)]) 	if k e1 e2 ⇒ e

	Γ s → s ′/[• �→ e]

Fig. 5. Excerpt of operational semantics: the equality test

tested and/or decomposed in two ways. Condition equ? checks the equality of
two S-expressions and condition (cons? e xe′ xe′′ xa) works in the following way:
if e has the form (e′ : e′′), then variable xe′ is bound to head e′ and variable xe′′

to tail e′′; if e is an atom, then variable xa is bound to this atom. For simplicity,
we write ‘ ’ when a variable is not used (e.g., in the first condition of function
a2b where the else-branch returns an empty list). The original URA [2,3] allowed
only an atomic equality test eqa?, while our extension uses equ? instead. We
will now discuss the equality test in the context of a lazy language.

Operational semantics. The semantics of the equality test (equ? e e′) is
straightforward (Fig. 5; other rules omitted due to limited space): The true-
branch (e1) is chosen if e and e′ are passive and identical (strict equality). An
expression e is passive iff it contains no function calls and no if-subexpressions.2

The false-branch (e2) is chosen if mgu(skel(e), skel(e′)) fails, that is, when the
constructor skeletons of e′ and e′′ disagree in some position (non-strict non-
equality). The operator skel replaces every function call and if-subexpression in
an expression by a fresh c-variable. If the mgu fails then e and e′ can never
become equal even if all redexes in the two expressions are evaluated. This can
speedup evaluation by detecting a failure early. When the mgu does not fail
and at least one of the two expressions is not passive, neither strict equality nor
2 In the operational semantics, when both operands are ground and passive, mgu

reduces to pattern matching; only during driving, the mechanism is fully used.
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Condition Equ?

θ = mgu(ê, ê′) passive(ê) passive(ê′)
		if (equ? ê ê′) ê1 ê2 ⇒ (ê1, θ)

θ = mgu(skel(ê), skel(ê′)) ¬(passive(ê) ∧ passive(ê′))
		if (equ? ê ê′) ê1 ê2 ⇒ ((if (equ? ê ê′) ê1 ê2), θ)

mgu(skel(ê), skel(ê′)) fails
		if (equ? ê ê′) ê1 ê2 ⇒ (ê2, ∅)

θ = mgu(skel(ê), skel(ê′))
		if (equ? ê ê′) ê1 ê2 ⇒ (ê2, ¬θ)

Transition for Conditional

redex(ŝ) = (ŝ ′, [• �→ (if k ê1 ê2)]) 		if k ê1 ê2 ⇒ (ê, κ) r̂/κ �= { contra }
		Γ 〈 ŝ, r̂ 〉 → 〈 ŝ ′/[• �→ ê], r̂ 〉/κ

Fig. 6. Excerpt of trace semantics for perfect process trees: the equality test

non-strict non-equality can be established (the expression that is not passive
has to be evaluated further until it becomes passive or mgu fails). While strict
equality is common in functional-logic languages, the use of mgu to detect a
failure fast by examining the available constructor skeleton, and in an evalua-
tion order independent way, is not (even in modern functional-logic languages
like Curry [9] or Babel [11]). The function redex in the transition rule for condi-
tionals (other transition rules omitted) picks the conditional according to some
evaluation strategy and splits the current state s into a context s ′ containing a
hole • and a substitution that binds the redex.

Perfect driving. URA traces the computation of a program with partially spec-
ified input and builds a perfect process tree representing all possible computation
traces, as outlined in Sects. 2 and 3. In contrast to the operational semantics,
the input to a program may contain c-variables (non-ground input) and there
may not be enough information to decide which branch to choose when tracing
conditionals. In this case, tracing has to follow both branches. The assumptions
that lead us to choose a branch are returned as additional information from the
rules for conditionals. The rules for equality return a pair (ê, κ) where ê is an
expression and κ a contraction. A contraction κ is either a substitution θ or its
negated form ¬θ. The transition rule for the conditional if checks whether there
is a contradiction between the new contraction and the current restriction. This
is done be applying the new contraction κ to restriction r̂ and checking that
there is no contradiction: r̂/κ �= { contra }. If there is a contradiction, then the
branch is infeasible. We now describe the tracing semantics for equ? (Fig. 6).

The rule for selecting the false-branch (3rd rule) is identical to the one in the
operational semantics: if some constructors in the constructor skeletons disagree,
the false-branch must be selected (and no other rule applies). Because we are
dealing with non-ground expressions that may contain c-variables, mgu may
succeed and return a substitution θ. Then there are two possibilities and in
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For all NTSG-programs p and for all input-output classes cls in :

Inv(NTSG, p, cls io) = Inv(NTSG, p′, cls ′
io) (9)

where

cls io = 〈([d̂1, ..., d̂n], d̂out), r̂ 〉
cls ′

io = 〈([d̂1, ..., d̂n, d̂out ], ’True), r̂ 〉
p′ = [ (define main [in1, ..., inn, out]

(call test [(call mainfct(p) [in1, ..., inn]), out])),
(define test [res, out]

(if (equ? res out) ’True ’False)) ] ++ p

Fig. 7. Answer equality of a transformed request

either case two rules apply at the same time. This leads to a branching in the
perfect process tree. First, both expressions ê and ê′ are passive: the 1st and 4th
rule apply and substitution θ and its negated version ¬θ are propagated into
the then- and else-branch, respectively. Second, at least one of the expressions,
ê or ê′, is not passive: the 2nd and 4th rule apply and substitution θ and its
negated version ¬θ are propagated. Because at least one of the expressions is
not passive, we cannot yet enter the then-branch (as in the 1st rule). We need
to drive a non-passive expression and again check the result.

5 Equivalence Transformation of Requests

Now we show another, surprisingly simple, solution based on the mgu-based
equality test that we introduced in the previous section. Instead of implementing
the method in Fig. 3 in URA, we perform an equivalence transformation of the
given request for inverse computation into the source language of URA.

There is an implementation of URA for NTSG according to [3] for the given
source language. Instead of modifying URA to implement the method described
in Sect. 3, we perform an equivalence transformation of the given request. The
transformation is shown in Fig. 7. Given a program p and input-output class
cls in , we transform them into a new program p′ and a new input-output class
cls ′in . The new program p′ is constructed by adding two new functions to the
original program.3 The new main function is defined as a p’s main function call
nested to call of function test. Function test compares the result computed by p
with the desired output out, and returns the corresponding Boolean value.

The new input-output class cls ′in is a reformatted version of cls in where the
desired output is fixed to ’True and the user desired output is now the last
argument for the new main function of p′. The restriction r̂ remains unchanged.

Theorem 1 (answer equivalence of transformed request). Given lan-
guage NTSG, for all programs p and for all io-classes cls io , equation (9) holds.
3 If the new functions (“main”, “test”) occur already in p then they are renamed.
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This transformation achieves the effects described above. Instead of extending
URA, we encode the inversion problem in the source language taking advantage
of the equality test (Fig. 7). This is possible because the semantics of the equality
test coincides with the desired mgu-based method in Fig. 3.

Why does it work? The transformation of the original request to the new
request makes test equ? the root of the perfect process tree. This has two ef-
fects. First, the test demands the calculation of the components of p’s output
until a mismatch with the desired output out is found, which establishes ’False.
This will stop any further development in the corresponding branch of the per-
fect process tree. This is the cutting operation. Second, any new contractions
on c-variables obtained by equ? are applied to the current configuration. This
achieves backpropagation. Another advantage is that the driving of p is guided
by the equality test. This avoids the unnecessary computations which do not
contribute to the goal of establishing an answer to the inversion problem. The
effectiveness of this approach will be demonstrated in the next section.

6 Demonstration

We demonstrate the improved efficiency of inverse computation using the equiv-
alence transformation in Fig. 7. The examples include inverse computation of a
tree traversal function [12] and experiments comparing inverse computation in
URA with equivalent requests in Curry [9], a modern functional-logic language.4

1. A breadth-first labeling of a tree with respect to a given list of values is
a labeling of nodes in the tree with values in the list in breadth-first order. We
implemented a program in NTSG which, given a binary tree, collects the values
of the nodes by a breadth-first traversal. Inverse computation of the program
then performs the desired breadth-first labeling. We performed two experiments:
URA before and after the equivalence transformation of the request. Given a list
with 13 values, the time to find the 132 trees labeled in breadth-first order is
216.05 secs; the search does not terminate. After the equivalence transformation
of the request, the time to find the 132 trees is 6.90 secs (that is 31.3 times
faster); after 15.43 secs the search terminates!

2. Modern functional-logic programming languages like Curry [9] and Ba-
bel [11] allow programs to be written in a functional programming style while
their narrowing-based semantics can evaluate programs with non-ground input.
Requests for inverse computation can be formulated in these languages using the
equality operator available in these language (e.g., Curry’s =:=), much like the
transformation in Fig. 7, and setting ‘true’ as desired output of ‘test’. However,
since narrowing in Curry and Babel is not based on perfect splitting of io-classes
(they can overlap, duplicating search space) and the equality operators are not
mgu-based (e.g., in Curry, Babel), they do miss important chances for cutting
4 All running times on CPU AMD Athlon 64 3500+ (2.2GHz), RAM 2GB, OS De-

bian Linux, The Glorious Glasgow Haskell Compilation System, version 6.4 (with
-H1536m run-time option, e.g. 1.5 GB heap size). Compiler: Curry into Prolog from
Portland Aachen Kiel Curry System (PACKS) 1.6.1-5 and SICStus Prolog 3.12.3.
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and backpropagation. (Example omitted.) As a result, inverse computation can
be less efficient and less work terminating than with URA. It will be an interest-
ing task to add perfect driving and mgu-based equality to a language like Curry
which is also meant as a platform for experiments in functional-logic languages.

7 Related Work

The Universal Resolving Algorithm presented in this paper is derived from per-
fect driving [6] and is combined with a mechanical extraction of the answers
(cf. [1,14]) giving the algorithm the power comparable to SLD-resolution, but
for a first-order functional language with tail-recursion (see [7]). The complete
algorithm is given in [3]. The constraint system for perfect driving can be normal-
ized by a rewrite system [16]. The idea for the algorithm was originally conceived
in the context of the programming language Refal [18]. Logic programming in-
herently supports inverse computation. The use of an appropriate inference pro-
cedure permits the determination of any computable answer. Recently, work in
this direction has been done regarding the integration of the functional and logic
programming paradigm using narrowing, a unification-based goal-solving mech-
anism [8]; for a survey see [4]. The relation to functional-logic languages was
already discussed in Sect. 6.

8 Conclusion and Future Work

We presented an extension of URA based on intersection that improves efficiency
and termination of inverse computation and introduce a new mgu-based equality
that allows us to achieve the same effect by mapping requests into the source
language. By doing so, we found that such an equality operator might consid-
erably improve inverse computation also in functional-logic languages. With the
mgu-based equality we established a solution for dealing with equality under
perfect driving. Our techniques work best for functions that produce some part
of the output in each recursion because partially known results can be examined
during the construction of the process tree and infeasible branches can be cut
or additional information can be propagated back into the tree. This can drasti-
cally reduce the size of the tree and even turn an infinite into a finite tree. Our
method might be viewed as a form of ‘reverse’ URA because output information
is exploited to guide the construction of the perfect process tree. Some methods
follow the traces in reverse order [13,14].

Further work is desirable in several directions. First, we plan to establish
more empirical results of the algorithm presented in this paper. The algorithm
is fully implemented in Haskell which serves our experimental purposes quite
well. Second, recent works [10] on term rewrite systems define the notion of fully-
collapsed jungles on graphs. We want to investigate the use of these techniques in
the context of process tree construction as in [15]. Third, it would be interesting
to examine the benefits of mgu-based equality by implementing it in a functional-
logic system together with a constraint system that leads to perfect process trees.
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Abstract. In the equivalent transformation (ET) computation model,
a specification provides background knowledge in a problem domain, a
program is a set of prioritized rewriting rules, and computation con-
sists in successive reduction of problems by rule application. As long
as meaning-preserving rewriting rules, called ET rules, with respect to
given background knowledge are used, correct computation results are
guaranteed. In this paper, a general framework for program synthesis in
the ET model is described. The framework comprises two main phases:
(1) equivalent transformation of specifications, and (2) generation of a
program from an obtained specification. A method for program gener-
ation in the second phase, called the squeeze method, is presented. It
constructs a program by accumulation of ET rules one by one on de-
mand, with the goal of producing a correct, efficient, and non-redundant
program.

1 Introduction

Equivalent transformation (ET) is one of the most fundamental principles of
computation, and it provides a simple and general basis for verification of com-
putation correctness. Computation by ET was initially implemented in experi-
mental natural language understanding systems at Hokkaido University in the
early 90’s, and the idea was further developed into a new computation model,
called the ET model [1,4]. A program in this model is a set of prioritized rewriting
rules for meaning-preserving transformation of problems, and a problem solving
process consists in successive rule application. Besides extensive use in the do-
main of first-order terms, the model has been applied in several data domains,
including RDF and XML (e.g. in [7] and [16], respectively).

Advantages of the ET model are best seen from the viewpoint of program syn-
thesis, where the possibility and effectiveness of generating correct and efficient
programs from specifications are of central importance. Programs are clearly
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1) pal(X) ← rv(X,X)
2) rv([ ], [ ]) ←
3) rv([A|X], Y ) ← rv(X, R), ap(R, [A], Y )
4) ap([ ], X, X) ←
5) ap([A|X], Y, [A|Z]) ← ap(X, Y, Z)

Fig. 1. Definite clauses defining the predicates pal, rv, and ap

separated from specifications in this model. A specification provides background
knowledge for associating declarative meanings with problems and specifies a
set of problems of interest—no procedural semantics is associated with specifica-
tions. From a specification, a program consisting of procedural rewriting rules is
constructed. The separation between programs and specifications greatly widens
the possibility of program synthesis—several kinds of rewriting rules with vary-
ing procedural expressive power can be generated from a specification. This is
in sharp contrast to program synthesis in declarative computation paradigms
such as logic programming [11] and functional programming [8], where specifica-
tions are regarded as programs by assuming a certain predetermined procedural
semantics and, consequently, program improvement can only be achieved by
transformation of specifications (i.e., program transformation [13,14,15]).

The primary objective of this paper is to develop a basic method for program
construction in the ET model. A general program synthesis framework in this
model is presented. It consists of two phases: (1) equivalent transformation of
specifications, and (2) generation of a set of prioritized rewriting rules from a
specification. Methods and techniques from the wealth of literature on program
transformation and partial deduction (e.g. [9,12,13,14,15]) readily lend them-
selves as tools for the first phase. For the second phase, a heuristic program
generation method, called the squeeze method, is introduced.

The squeeze method generates a program by demand-driven accumulation of
meaning-preserving rewriting rules, called ET rules. It capitalizes on several ad-
vantages of the fundamental structure of the ET model; e.g., the correctness and
efficiency of an ET rule can be checked individually, and execution of a partial
program always yields problem reduction that provides a meaningful clue to gen-
eration of new ET rules towards completing the program. These characteristic
features facilitate componentwise program generation [6]—generating a correct
and efficient program by creating individually correct and efficient program com-
ponents (ET rules) one by one on demand—which appears to be an effective and
indispensable approach to program synthesis. Based on the squeeze method, a
program synthesis system has been implemented and used for constructing many
nontrivial programs.

To begin with, computation by transformation of problems in the ET model is
reviewed in Section 2. The general program synthesis framework and the squeeze
method are presented in Sections 3 and 4, respectively. Although the ET model
can deal with data structures of various kinds, the paper is deliberately confined
to the domain of first-order terms for reasons of simplicity.
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rpal: pal(∗x) ⇒ rv(∗x, ∗x).

rrv1 : rv([∗a|∗x], ∗y) ⇒ rv(∗x, ∗v), ap(∗v, [∗a], ∗y).

rrv2 : rv(∗x, ∗y), rv(∗x, ∗z) ⇒ {=(∗y, ∗z)}, rv(∗x, ∗y).

rap1 : ap(∗x, ∗y, [∗a|∗z]) ⇒ {=(∗x, [ ]), =(∗y, [∗a|∗z])};
⇒ {=(∗x, [∗a|∗v])}, ap(∗v, ∗y, ∗z).

rrv3 : rv(∗x, [∗a|∗y]) ⇒ {=(∗x, [∗u|∗v])}, rv(∗v, ∗w), ap(∗w, [∗u], [∗a|∗y]).

rap2 : ap(∗x, [∗a], [∗b, ∗c|∗y]) ⇒ {=(∗x, [∗b|∗v])}, ap(∗v, [∗a], [∗c|∗y]).

rap3 : ap(∗x, [∗a], [∗b]) ⇒ {=(∗x, [ ]), =(∗a, ∗b)}.
rrv4 : rv([ ], ∗x) ⇒ {=(∗x, [ ])}.

Fig. 2. Examples of rewriting rules

2 Computation in the ET Model

2.1 An Introductory Example

Assume as background knowledge a set consisting of the five definite clauses in
Fig. 1, where pal, rv, and ap stand for “palindrome”, “reverse”, and “append”,
respectively. Consider the problem “find all ground terms t such that [1|t] and
[2|t] are palindromes”. This problem is represented in the ET model as a set
consisting of a single definite clause

ans(X) ← pal([1|X ]), pal([2|X ]),

where ans stands for “answer”, and this definite clause is intended to mean “X
is an answer if both [1|X ] and [2|X ] satisfy the definition of pal”. The rewriting
rules in Fig. 2 are devised for solving this problem. A detailed description of
their syntax and semantics is deferred until Subsection 2.3. Table 1 illustrates
a sequence of problem transformation steps by successive application of these
rules, where atoms to which the rules are applied are underlined and the rule
applied in each step is given in the last column. The transformation sequence
changes the initial problem (i.e., prb0) into the singleton set {ans([ ]) ←}, which
means “the empty list is an answer (unconditionally) to the problem and there
exists no other answer”. The correctness of this computation can be verified by
proving that each rule in Fig. 2 is a meaning-preserving rule with respect to the
predicate definitions in Fig. 1.

The rule rrv2 in Fig. 2 makes replacement of two atoms simultaneously (see,
e.g., its application to prb4 in Table 1), and is called a multi-head rule. Every
other rule in the figure replaces a single atom at a time, and is called a single-
head rule. Each single-head rule in the figure operates as an unfolding rule using
the definition of the predicate appearing in its left-hand side, and is called an
unfolding-based rule. The rule rpal is applicable to any pal-atom containing any
arbitrary term, and is called a general rule. All other rules in the figure are
applicable to atoms having certain specific patterns, and are called specialized
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Table 1. Transformation of problems

RuleProblem Problem representation applied
prb0 {ans(X) ← pal([1|X]), pal([2|X])} rpal

prb1 {ans(X) ← rv([1|X], [1|X]), pal([2|X])} rpal

prb2 {ans(X) ← rv([1|X], [1|X]), rv([2|X], [2|X])} rrv1

prb3 {ans(X) ← rv(X,A1), ap(A1, [1], [1|X]), rv([2|X], [2|X])} rrv1

prb4 {ans(X) ← rv(X,A1), ap(A1, [1], [1|X]), rv(X, A2), ap(A2, [2], [2|X])} rrv2

prb5 {ans(X) ← rv(X,A1), ap(A1, [1], [1|X]), ap(A1, [2], [2|X])} rap1

prb6 {ans([ ]) ← rv([ ], [ ]), ap([ ], [2], [2]), rrv3

ans(X) ← rv(X, [1|A3]), ap(A3, [1], X), ap([1|A3], [2], [2|X])}
prb7 {ans([ ]) ← rv([ ], [ ]), ap([ ], [2], [2]), rap2

ans([A4|A5]) ← rv(A5,A6), ap(A6, [A4], [1|A3]), ap(A3, [1], [A4|A5]),
ap([1|A3], [2], [2, A4|A5])}

prb8 {ans([ ]) ← rv([ ], [ ]), ap([ ], [2], [2])} rap3

prb9 {ans([ ]) ← rv([ ], [ ])} rrv4

prb10 {ans([ ]) ←} –

rules. Employment of specialized rules allows content-based control of computa-
tion [4]—an appropriate reduction step can be decided based on the run-time
contents of clauses occurring in a computation state.

2.2 Comparison with Computation in Logic Programming

When computation by SLD resolution is viewed in the ET framework, expansion
of a node (generation of its children) in a search tree for finding SLD-refutations
corresponds to an unfolding transformation step. Accordingly, computation in
logic programming can be seen as computation using only one specific class of
rewriting rules, i.e., single-head general unfolding-based rules. By employment
of such a restricted class of rules alone, it is often difficult to achieve effective
computation control, in particular, for preventing infinite computation or for
improving computation efficiency.

As an example, consider the query illustrated in the preceding subsection,
which is represented in logic programming as the goal clause ← pal([1|X ]),
pal([2|X ]). It was shown in [4] that when executing this query, any logic program
for checking palindromes enters infinite computation after giving X = [ ], and
thus fails to infer that the empty list is the “only” ground instance of X that
satisfies the query. This difficulty is overcome in the ET model by content-based
control of computation and the possibility of employing several types of rewriting
rules, including specialized rules and multi-head rules. Consider, for example,
the role of the multi-head rule rrv2 in successful termination of the reduction
sequence in Table 1. The application of this rule creates an additional information
connection, i.e., via the common variable A1, between descendants of pal([1|X ])
(i.e., the rv-atom and the first ap-atom in prb5) and a descendant of pal([2|X ])
(i.e., the second ap-atom in prb5). Through this connection, the constraint on a
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term possibly substituted for X imposed by the first pal-atom and that imposed
by the second pal-atom can be exchanged as a finite information pattern; i.e.,
if X �= [ ], then by the rv-atom in prb5, A1 �= [ ], and then by the first and
the second ap-atoms in prb5, A1 = [1|t] and A1 = [2|t′], respectively, for some
terms t and t′. Consequently, the contradiction occurring when X �= [ ] can
be found in finite reduction steps. Such an additional information connection
cannot be created by single-head rules.1 Note that the multi-head rule rrv2 is
devised based on the functionality of the “reverse” relation, and its operation is
completely different from unfolding.

Problem transformation in the ET model and program transformation in logic
programming [13,15] have different objectives. The former is a method for prob-
lem solving; it aims to reduce a problem into a simplified form. The latter is a
method for program improvement; it aims to derive a more efficient logic program
from an initially given one. Since computation using a logic program always cor-
responds to computation using only single-head general unfolding-based rules,
any palindrome-checking logic program obtained from program transformation
still fails to terminate when executing the query considered above.

2.3 Syntax and Operational Semantics of Rewriting Rules

The class of rewriting rules used in this paper will now be described. Usual
atoms are used in a rule to denote atom patterns in a definite clause. In addi-
tion, atoms of a special kind, called executable atoms , are used to denote built-
in operations; e.g. an executable atom =(t, t′) denotes the operation “find the
most general unifier of terms t and t′” (‘=’ denotes the unification operation).2

An executable atom is evaluated by some predetermined evaluator, and if the
evaluation succeeds, it yields a substitution as the result; e.g. the evaluation of
=([1|X ], [Y, 2, Z]) yields {X/[2, Z], Y/1}.

A rewriting rule r in this paper takes the form

Hs ⇒ {Es1},Bs1;
. . .
⇒ {Esn},Bsn,

where n ≥ 1, Hs is a nonempty sequence of (usual) atoms, the Esi are sequences
of executable atoms, and the Bsi are sequences of (usual) atoms. For each i
(1 ≤ i ≤ n), the pair 〈{Esi},Bsi〉 is called a body of r, and {Esi} and Bsi are
called an execution part and a replacement part, respectively. An execution part
is optional. When Hs contains more than one atom, r is called a multi-head rule.
It is called a single-head rule otherwise. Variables used in rewriting rules and
1 Detailed analysis of the role of the multi-head rule rrv2 in successful termination of

the reduction sequence in Table 1 can be found in [4]. It is also shown in [4] that
no finite successful reduction sequence for the above query can be obtained by using
single-head rules alone.

2 Arbitrary built-in deterministic operations, e.g. arithmetic functions, can be used as
executable atoms. In this paper, only the unification operation is used.
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those used in definite clauses are of different types. The former variables are
used for representing patterns of terms, and, for the sake of syntactically clear
distinction, they always have an asterisk prefixed to their names.

Given a definite clause C containing atoms b1, . . . , bm, where m ≥ 1, in its
body, the rule r is applicable to C at b1, . . . , bm iff Hs matches these atoms by
a substitution θ (i.e., Hsθ is the sequence b1, . . . , bm). To apply r to the clause
C, the pattern-matching substitution θ is additionally required to instantiate all
variables that occur in r but not in Hs into distinct usual variables that do not
occur in C. The application then replaces C with the clauses that are obtained
as follows: for each i (1 ≤ i ≤ n), if the evaluation of Esiθ succeeds and yields
a substitution σ, then a clause obtained from Cσ by replacing b1σ, . . . , bmσ
with Bsiθσ is constructed. The reader is referred to [3,4] for more elaborate
operational semantics and a larger class of rewriting rules.

3 Program Synthesis in the ET Model

3.1 Specifications, Programs, and Program Correctness

Specifications. A specification in the ET model is a pair 〈D, Q〉, where D is
a set of definite clauses, representing background knowledge, and Q is a set of
problems of interest. Each problem in Q is also a set of definite clauses. It is
required that for each problem prb ∈ Q, the predicates occurring in the heads of
clauses in prb occur neither in D nor in the bodies of clauses in prb. Given a set
A of definite clauses, the meaning of A, denoted by M(A), is the set

⋃∞
n=1 T n

A(∅),
where TA is the usual one-step consequence operator determined by A (see, e.g.,
[11]). The answer set of a problem prb with respect to a specification 〈D, Q〉 is
defined as

M(D ∪ prb) − M(D),

i.e., the set of all ground atoms in M(D ∪ prb) whose predicates occur in the
heads of clauses in prb.

Programs. A program in the ET model is a set of prioritized rewriting rules.
A rewriting rule r is said to be applicable to a problem prb iff r is applicable to
some definite clause in prb, and is said to transform prb into a problem prb′ in
one step iff prb′ is obtained from prb by applying r to a clause in prb one time.3

A program P is said to be applicable to a problem prb iff some rewriting rule in
P is applicable to prb, and is said to transform prb into a problem prb′ in one
step iff there exists a rewriting rule r ∈ P such that

1. r is applicable to prb and r transforms prb into prb′ in one step,
2. for any rewriting rule r′ ∈ P , if r′ takes priority over r, then r′ is not

applicable to prb.

3 Application of a rewriting rule to a definite clause is described in Subsection 2.3.
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Computation. A computation of a program P on a problem prb is a finite or
infinite sequence com = [prb0, prb1, prb2, . . .] of problems such that prb0 = prb
and the following two conditions are satisfied:

1. For any two successive problems prbi and prbi+1 in com, P transforms prbi

into prbi+1 in one step.
2. If com is finite, then P is not applicable to last(com) (i.e., the last problem

in com).

If com is finite and last(com) consists only of unit clauses, then the answer set
obtained from com is the set

{g | ((a ←) ∈ last(com)) & (g is a ground instance of a)},

otherwise the answer set obtained from com is undefined.

Program Correctness. A program P is correct with respect to a specification
〈D, Q〉 iff for any problem prb ∈ Q and computation com of P on prb, the
answer set obtained from com is defined and is equal to the answer set of prb
with respect to 〈D, Q〉.

3.2 Program Synthesis Problems and a Sufficient Condition for
Program Correctness

Program Synthesis Problems. A program synthesis problem in the ET model
is formulated as follows:

Given a specification 〈D, Q〉, construct a program P such that P is cor-
rect with respect to 〈D, Q〉 and P is sufficiently efficient.

ET Rules and a Sufficient Condition for Program Correctness. A
rewriting rule is an ET rule with respect to a set D of definite clauses iff for any
problems prb and prb′, if the rule transforms prb into prb′, then

M(D ∪ prb) = M(D ∪ prb′).

It is shown in [4] that a program P is correct with respect to a specification
〈D, Q〉 if the following conditions are all satisfied:4

(ETR) P consists only of ET rules with respect to D.
(APP) For any problem prb ∈ Q, if there exists a problem prb′ such that

– P transforms prb into prb′ (in a finite number of steps),
– prb′ contains some non-unit clause,

then P is applicable to prb′.
(TER) For any problem prb ∈ Q, every computation of P on prb is finite.

This sufficient condition for program correctness provides a basis for program
generation in the ET model.
4 (ETR), (APP), and (TER) are abbreviations for “ET rules only”, “applicability of

a program”, and “termination of computation”, respectively.
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Phase I: Equivalent transformation of specifications

〈D1, Q1〉 〈D2, Q2〉 〈Dn, Qn〉� � �· · ·

�

Phase II:
Program generation

Program

Fig. 3. A two-phase program synthesis framework

3.3 A Two-Phase Program Synthesis Framework

As outlined in Fig. 3, program synthesis in the ET model consists of two main
phases: (1) equivalent transformation of specifications, and (2) generation of a
program from an obtained specification. In the first phase, an initially given
specification is transformed into an equivalent specification that has a more
suitable form for generation of efficient rewriting rules. Transformation meth-
ods and strategies from research works on program transformation [13,14,15],
partial deduction [12], and conjunctive partial deduction [9], e.g. fold/unfold
transformation, goal replacement, tupling, etc., can be employed in this phase.
In many cases, only the background-knowledge part (i.e., Di) of a specification
is changed.5

The second phase is concerned with generation of a set of prioritized rewriting
rules (a program) from a specification. A program generation method called the
squeeze method is used. The squeeze method will be described in the next section.

Program synthesis in the logic programming model can be viewed as a special
case of this two-phase framework. As explained in Subsection 2.2, computation
in logic programming corresponds to ET-based computation using single-head
general unfolding-based rules alone. Since a set of definite clauses (a background
knowledge part) always determines a unique (up to variable renaming) set of
single-head general unfolding-based rules, the second phase in this special case
is very simple—program generation is restricted to only a fixed one-to-one corre-
spondence between specifications and programs. With this restriction, improve-
ment of programs can be achieved only by equivalent transformation of specifi-
cations in the first phase.6 From an obtained specification, no search for more
effective programs is made—the power of the second phase is not exploited.

5 By applying data structure extension techniques, e.g. safe extension of specialization
systems [2], the problems in Qi can also be changed in the first phase.

6 Since a set of definite clauses is regarded as a logic program, equivalent transfor-
mation of specifications corresponds to “program transformation” in the logic pro-
gramming context.
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repeat
1. run the current program under certain control of execution
2. if some obtained final clause is not a unit clause then

begin
2.1 select one or more atoms in the body of a non-unit final clause
2.2 determine a general pattern of the selected atoms
2.3 generate an ET rule for transforming atoms that conform

to the obtained pattern
2.4 assign a priority level to the obtained rule
2.5 add the obtained rule to the current program

end
until all obtained final clauses are unit clauses

Fig. 4. The squeeze method

4 Program Generation Using the Squeeze Method

4.1 The Squeeze Method

The squeeze method is shown in Fig. 4. It generates a program by accumulation
of rules one by one on demand, with the goal of producing a correct, efficient,
and non-redundant program.

Heuristic Parameters. Heuristics are used for suggesting a suitable rule to
be added in each iteration. They are given via the following parameters:

[RUN] Control of execution at Step 1.
[TAR] Guidelines on selection of target atoms at Step 2.1.
[PAT] Guidelines on determination of a general atom pattern at Step 2.2.

Rule Generation. The squeeze method is used both for the purpose of aiding
human programmers and for that of automated program construction. An ET
rule may be generated manually or automatically at Step 2.3. An algorithm
for automatic generation of ET rules, based on meta-computation, has been
developed in [10]—given a set D of definite clauses and an atom pattern as
inputs, the algorithm generates an ET rule with respect to D for transforming
atoms that conform to the input pattern.

Rule Prioritization. The number of rule bodies provides a basis for rule pri-
oritization. In order to obtain an efficient program, rules with fewer bodies are
preferable on the grounds that a problem reduction sequence is typically longer
as the number of clauses in a computation state increases. Rules are prioritized
accordingly at Step 2.4.

MinimizedRedundancy. By the “demand-driven” characteristic of themethod,
redundant rules in a resulting program can be minimized—a new rule is generated
only when a non-unit definite clause to which no existing rule is applicable is found,
under the control of execution in use (specified by the parameter [RUN]).
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Table 2. An example of program generation using the squeeze method

Iter- Final Rule Priority
ation problem Atom(s) selected Atom(s) pattern obtained assigned
1st prb0 pal([1|X]) pal(∗x) rpal PR-1
2nd prb2 rv([1|X], [1|X]) rv([∗a|∗x], ∗y) rrv1 PR-1
3nd prb4 rv(X, A1), rv(X,A2) rv(∗x, ∗y), rv(∗x, ∗z) rrv2 PR-1
4th prb5 ap(A1, [1], [1|X]) ap(∗x, ∗y, [∗a|∗z]) rap1 PR-2
5th prb6 rv(X, [1|A3]) rv(∗x, [∗a|∗y]) rrv3 PR-1
6th prb7 ap([1|A3], [2], [2, A4|A5]) ap(∗x, [∗a], [∗b, ∗c|∗y]) rap2 PR-1
7th prb8 ap([ ], [2], [2]) ap(∗x, [∗a], [∗b]) rap3 PR-1
8th prb9 rv([ ], [ ]) rv([ ], ∗x) rrv4 PR-1
9th prb10 – – – –

Based on the squeeze method, an experimental automatic program synthe-
sis system has been implemented and used for constructing many nontrivial
programs (including the program in Subsection 2.1), and computer-aided pro-
gramming tools for supporting human programmers have also been developed.

4.2 Example

Assuming the background knowledge in Fig. 1, generation of the program con-
sidered in Subsection 2.1 will now be illustrated. The following parameters are
used:

[RUN] Usual rule selection based on rule priority is employed under one con-
straint: employment of low-priority rules should be minimized.

[TAR] One or more atoms can be selected, using the following guidelines:
– Select an atom that has a specific structure; e.g. ap([1|X ], Y, Z) is

preferable to ap(X, Y, Z) since [1|X ] is more specific than X .
– Select atoms that have common variables; e.g. ap(X, Y, Z) and

ap(X, V, W ) with X as a common variable.
– A smaller number of selected atoms is preferable.

[PAT] A more general pattern is preferable as long as it does not lead to a
rule with a larger number of bodies.

As shown in Table 2, with these parameters the squeeze method produces
the rules in Fig. 2 within nine iterations. The construction process will now be
described in more detail (with reference to prb0–prb10 in Table 1).

The 1st iteration: The initial program contains no rule; running the program
makes no change to the problem prb0. Either pal([1|X ]) or pal([2|X ]) may
be selected, and the atom pattern pal(∗x) is determined. An ET rule for
this pattern is generated, and rpal is obtained. Since rpal has a single body,
assign a high priority level, say PR-1, to it.
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The 2nd iteration: The current program contains only rpal. Following the first
two problem reduction steps in Table 1, running this program yields prb2 as
the final problem. The two body atoms in prb2 have the same pattern, and
one of them is selected as the target atom. The atom pattern rv([∗a|∗x], ∗y)
is determined. An ET rule for this pattern is generated, and rrv1 is obtained.
Since rrv1 also has a single body, the priority level PR-1 is assigned to it.

The 3rd iteration: Following the first four reduction steps in Table 1, running
the current program results in the problem prb4. The two rv-atoms in this
problem are selected as the target atoms, and the pair of rv(∗x, ∗y) and
rv(∗x, ∗z) is set as the target pattern.7 The multi-head ET rule rrv2 is devised
based on the functionality of the “reverse” relation. Again, the priority level
PR-1 is assigned to it.

The 4th iteration: Following the first five reduction steps in Table 1, the current
program now yields prb5 as the final problem. The first ap-atom in this
problem is selected as the target atom, and ap(∗x, ∗y, [∗a|∗z]) is set as the
target atom pattern. An ET rule for this pattern is generated, and rap1 is
obtained. Since it has more than one body, a lower priority level, say PR-2,
is assigned to rap1 .

The 5th iteration: By the first six reduction steps of Table 1, the current pro-
gram transforms prb0 into prb6. By the constraint imposed by the parameter
[RUN], although prb6 can be transformed further using rap1 , this transforma-
tion step is not made. Instead, a new rule is constructed. The first rv-atom
in the second clause of prb6 is selected as the target atom, and the atom
pattern rv(∗x, [∗a| ∗ y]) is determined. The ET rule rrv3 is then generated,
and the priority level PR-1 is assigned to it.

The 6th iteration onwards: Following the squeeze method three more iterations,
the ET rules rap2 , rap3 , and rrv4 are generated and added to the program in
succession. The priority level PR-1 is given to each of them. When running
the resulting program with the input problem prb0, a problem consisting
only of unit clauses is obtained, and the squeeze method ends.

By adjustment of the parameters of the method, a more efficient program
can be generated. For example, if the parameter [RUN] is changed into “only
single-body rules are used”, then the two-body rule rap1 constructed in the 4th
iteration above will not be applied and a search for alternatively suitable target
atoms will be made. In this case, the parameter [TAR] recommends alternative
selection of the two atoms ap(A1, [1], [1|X ]) and ap(A1, [2], [2|X ]) in prb5 since
they have A1 and X as common variables. As shown in the full version of this
paper [5], this selection results in generation of a single-body rule (multi-head)
for ap-atoms, and the obtained program produces a shorter problem reduction
sequence (3 reduction steps less, compared with the sequence in Table 1).

7 According to [TAR], any of the two ap-atoms in prb4 is an alternative choice. How-
ever, selection of such an ap-atom would yield a two-body rule (see the 4th iteration).
By selecting the two rv-atoms, a single-body rule, which is preferable, is obtained.
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4.3 On the Correctness of the Squeeze Method

The correctness of the squeeze method can be analyzed based on the sufficient
condition for program correctness given in Subsection 3.2 (i.e., (ETR), (APP),
and (TER)). Using the squeeze method, a program is generated from a specifi-
cation 〈D, Q〉 by repeatedly

1. selecting a problem from Q, and
2. accumulatively generating rewriting rules for solving the selected problem

until sufficient representative samples of the problems in Q have been selected.
As long as only ET rules with respect to D are generated (at Step 2.3 of Fig. 4),
(ETR) is satisfied. While (ETR) can be checked by examination of each rewriting
rule individually, (APP) and (TER) are global properties—they involve analysis
of the interactions between obtained rules. Nonetheless, by its demand-driven
behavior, the squeeze method naturally directs a program generation process
towards satisfaction of (APP)—a new rule is generated whenever an intermedi-
ate problem to which a program is not applicable is found. By assuming some
well-founded ordering on atoms, (TER) can also be well controlled; e.g. only
rules that transform definite clauses into simpler ones with respect to the well-
founded ordering should be generated. Although it is difficult in general to assure
strict correctness with respect to (APP) and (TER) by stepwise rule accumu-
lation alone, the squeeze method works well in many cases and it provides a
good structure for developing additional techniques and strategies for controlling
(APP) and (TER), e.g. rule priority adjustment techniques and atom ordering
strategies.

4.4 How the ET Model Supports the Squeeze Method

From an abstract viewpoint, the squeeze method can be seen as a componentwise
program generation method that is applicable when its underlying computation
model satisfies the following requirements:

1. Correctness and efficiency of program components can be discussed.
2. The correctness (respectively, efficiency) of a component can be verified (re-

spectively, evaluated) independently of other components.
3. A correct (respectively, efficient) program can be constructed by accumula-

tion of individually correct (respectively, individually efficient) components.
4. A partial program suggests appropriate components to be added towards

completing the program.

In the ET model, rewriting rules are program components, and each ET rule
is regarded as a correct component. The quality of “being an ET rule” of one
rewriting rule does not depend on any other rewriting rule, and can be checked
individually. Since a set of unit clauses obtained from a sequence of problem
reduction steps using ET rules always yields a correct answer set, a correct pro-
gram can be constructed by accumulation of ET rules with some control strate-
gies for (APP) and (TER). An incomplete program in this model can always be
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executed; and when the execution terminates with a problem containing non-
unit definite clauses, the body atoms of the obtained clauses always provide a
clue to creation of new ET rules (e.g. the parameter [TAR] provides heuristics
for selection of appropriate body atoms). In regard to the efficiency aspect, a
rule with fewer bodies is considered as a more efficient component inasmuch
as it narrows down a search space. Obviously, the number of rule bodies is an
individual property of a rule. All the above requirements are thus satisfied.

In contrast, consider the logic programming model, where a set of definite
clauses is regarded as a program. Correctness of a definite clause can be defined
in such a way that it can be checked independently of other definite clauses.
However, the efficiency of a definite clause cannot be evaluated individually—
when a node in a partial SLD-tree is expanded using one predicate definition,
each clause in that definition possibly yields one child node, and, hence, the
number of all resulting child nodes is not known unless the predicate definition
is complete. Moreover, when a partial logic program fails to prove a given true
ground query, it is difficult to find an appropriate definite clause to be added—a
partial SLD-tree can be very large and there are various possible choices of nodes
and definite clauses from which a new branch should be created in the tree.

5 Concluding Remarks

A clear-cut separation between specifications and programs in the ET model
along with the generality of the ET principle for computation correctness opens
up the possibility of employing a very large class of rewriting rules—any rule
whose application always results in meaning-preserving transformation with re-
spect to given background knowledge can serve as an ET rule. As a conse-
quence, various classes of rewriting rules, with varying expressive power, can be
introduced. In the ETI system8 developed at Hokkaido University, for example,
rules with execution parts, rules with applicability conditions (possibly involving
extra-logical predicates), and multi-head rules are provided.

Program synthesis in the ET model consists of two main phases—(1) equiv-
alent transformation of specifications, and (2) generation of a set of prioritized
rewriting rules from a specification. The second phase makes program synthe-
sis in this model significantly different from that in declarative computation
paradigms, in which specifications are regarded as programs and program syn-
thesis is based solely on equivalent transformation of specifications. In conjunc-
tion with a large variety of possible rule classes, the second phase enhances
the possibility of program improvement and optimization. Program synthesis
in logic programming, for example, corresponds only to the first phase of the
framework. Through the second phase, some problems that cannot be solved by
logic programs can be dealt with in the ET model.

All methods and techniques of fold/unfold transformation, partial deduction,
and conjunctive partial deduction, e.g. [9,12,13,14,15], are applicable to the first
8 ETI is an interpreter system that supports ET-based problem solving. It is available

at http://assam.cims.hokudai.ac.jp/etpro.
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phase. An incremental program construction method for the second phase, called
the squeeze method, is described in this paper. How the structure of the ET
model supports componentwise program generation is discussed.
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Abstract. We present an approach to support the evolution of online,
distributed, reusable, and extendable ontologies based on the RDF data
model. The approach works on the basis of atomic changes, basically ad-
ditions or deletions of statements to or from an RDF graph. Such atomic
changes are aggregated to compound changes, resulting in a hierarchy
of changes, thus facilitating the human reviewing process on various lev-
els of detail. These derived compound changes may be annotated with
meta-information and classified as ontology evolution patterns. The in-
troduced ontology evolution patterns in conjunction with appropriate
data migration algorithms enable the automatic migration of instance
data in distributed environments.

1 Introduction

The goal of the envisaged next generation of the Web (called Semantic Web [2])
is to smoothly interconnect personal information management, enterprise appli-
cation integration, and the global sharing of commercial, scientific, and cultural
data1. In this vision, ontologies play an important role in defining and relat-
ing concepts that are used to describe data on the web [4]. In a distributed,
dynamic environment such as the Semantic Web, it is further crucial to keep
track of changes in its documents to ensure the consistency of data, to docu-
ment their evolution, and to enable concurrent changes. In areas such as soft-
ware engineering, databases, and web publishing versioning and revision control
mechanisms have already been developed and successfully applied. In software
engineering versioning is used to track and provide controls over changes to a
project’s source code. In database systems versioning is usually provided by a
database log, which is a history of actions executed by a database management
system. For web publishing the Web-based Distributed Authoring and Versioning
(WebDAV) standard was released as an extension to the Hyper Text Transfer
Protocol (HTTP) supporting versioning and with the intention of making the
World Wide Web a readable and writable medium.

For revision control of semantic-web data, unfortunately these developed tech-
nologies are insufficient. In software engineering and web publishing revision con-
trol is based on unique serializations, enabled by their data models. Such unique
1 http://www.w3.org/2001/sw/Activity

I. Virbitskaite and A. Voronkov (Eds.): PSI 2006, LNCS 4378, pp. 55–69, 2007.
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serializations are not available for Semantic Web knowledge bases, usually con-
sisting of unordered collections of statements. Database logs on the other hand
cope with a multitude of different interrelated objects of their data model (e.g.
databases, tables, rows, columns/cells) in contrast to just statements of the RDF
data model.

In this paper, we present an approach for the versioning of distributed knowl-
edge bases grounded on the RDF data model with support for ontology evolution.
Under ontology versioning we understand to keep track of different versions of
an ontology and possibly to allow branching and merging operations. Ontol-
ogy evolution additionally shall identify and formally represent the conceptual
changes leading to different versions and branches. On the basis of this infor-
mation, ontology evolution should support the migration of data adhering to a
certain ontology version.

This paper is structured as follows: Our approach works on the basis of atomic
changes which are determined by additions or deletions of certain groups of state-
ments to or from an RDF knowledge base (Section 2). Such atomic changes are
aggregated to more complex changes, resulting in a hierarchy of changes, thus
facilitating the human reviewing process on various levels of detail (Section 3).
The derived compound changes may be annotated with meta-information such
as the user executing the change or the time when the change occurred. We
present a simple OWL ontology capturing such information, thus enabling the
distribution of change sets (Section 5). Assuming that there will be no control of
evolution, it must be clarified which changes are compatible with a concurrent
branch of the same root ontology. We present a compatibility concept for ap-
plying a change to an ontology on the level of statements (Section 4). To enable
the evolution of ontologies with regard to higher conceptual levels than the one
of statements we introduce evolution patterns (Section 6) and give examples for
appropriate data migration algorithms (Section 7). We further give account of
the successful implementation of the approach in Powl, summarize related work
and give an outlook on planned directions for future work (Section 8).

2 Atomic Changes on RDF Graphs

To introduce our notion of atomic changes on RDF graphs we need recall some
preliminary definitions from [5]. Some of the main building blocks of the
semantic-web paradigm are Universal Resource Identifier (URI) and their RDF
counterparts URI References, whose quite technical definitions we omit here.

Definition 1 (Literal). A Literal is a string combined with either a language
identifier (plain literal) or a datatype (typed literal).

Definition 2 (Blank Node). Blank Nodes are identifiers local to a graph. The
set of Blank Nodes, the set of all URI references, and the set of all literals are
pairwise disjoint. Otherwise, the set of blank nodes is arbitrary.
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Definition 3 (Statement). A Statement is a triple (S, P, O), where

– S is either a URI reference or a blank node (Subject).
– P is a URI reference (Predicate).
– O is either a URI reference or a literal or a blank node (Object).

Definition 4 (Graph). A Graph is a set of statements.

The set of nodes of an graph is the set of subjects and objects of triples in the
graph. Consequently the blank nodes of a graph are the members of the subset
of the set of nodes of the graph which consists only of blank nodes.

Definition 5 (Graph Equivalence). Two RDF graphs G and G′ are equiva-
lent if there is a bijection M between the sets of nodes of the two graphs, such
that:

1. M maps blank nodes to blank nodes.
2. M(lit) = lit for all literals lit which are nodes of G.
3. M(uri) = uri for all URI references uri which are nodes of G.
4. The triple (s, p, o) is in G if and only if the triple (M(s), p, M(o)) is in G′.

Based on these definitions we want to discuss the possible changes on a graph.
RDF statements are in [7] identified to be the smallest manageable piece of
knowledge. This view is justified by the fact that there is no way to add, re-
move, or update a resource or literal without changing at least one statement,
whereas the opposite does not hold. We adopt this view but require the small-
est manageable pieces of knowledge to be somehow closed regarding the usage
of blank nodes. Moreover we want to be able to construct larger changes out
of smaller ones, and since the order of additions and deletions of statements
to a graph may matter, we distinguish between Positive and Negative Atomic
Changes.

Definition 6 (Atomic Graph). A graph is atomic if it may not be split into
two nonempty graphs whose blank nodes are disjoint.

Obviously, a graph without any blank node is atomic if it consists of exactly
one statement. Hence, any statement which does not contain a blank node as
subject or object is an atomic graph.

Definition 7 (Positive Atomic Change). An atomic graph CG is said to be
an Positive Atomic Change on a graph G if the sets of blank nodes occurring in
statements of G and CG are disjoint.

The rationale behind this definition is the aim of applying the positive atomic
change CG to the graph G. Hence, a positive atomic change on a graph G can
be applied to G to yield a new graph as a result. For this purpose we introduce
a (partial) function Apl+(X, Y ) whose arguments are graphs.
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Definition 8 (Application of a Positive Atomic Change). Let CG be a
positive atomic change on the graph G. Then the function Apl+ is defined for the
arguments G, CG and it holds Apl+(G, CG) = G ∪ CG = G′ which is symbolized
by G

CG→ G′. We say that CG is applied to the graph G with result G′.

Application of the positive atomic change CG to G yielding G′ is just identifying
the union of CG and G with G′. Of course a graph may not only be changed by
adding statements leading to the notion of a negative atomic change.

Definition 9 (Negative Atomic Change). A subgraph CG of G is said to be
a Negative Atomic Change on G if CG is atomic and contains all statements of
G whose blank nodes occur in the statements of CG.

Analogously to the case of positive changes we introduce a function Apl−(G, CG)
which pertains to negative atomic changes.

Definition 10 (Application of a Negative Atomic Change). Let CG be a
negative atomic change on the graph G. Then the function Apl− is defined for
the arguments G, CG and is determined by Apl−(G, CG) = G\CG = G′ which is
symbolized by G

CG→ G′. We say that CG is applied to G with result G′.

These definitions require changes involving blank nodes to be somehow inde-
pendent from the graph in the sense that blank nodes in the change and in the
(remaining) graph do not overlap. This is crucial for changes being exchangeable
between different RDF storage systems, since the concrete identifiers of the blank
nodes may differ. It may have the negative effect though that large subgraphs,
which are only interconnected by blank nodes, have to be deleted completely
and added - slightly modified - afterwards.

3 Change Hierarchies

The evolution of a knowledge base typically results in a multitude of sequentially
applied atomic changes. These are usually small, and may often contain only a
single statement. On the other hand, in many cases multiple atomic changes
form one larger ‘logical’ change. Consider for example the case where the arrival
of the information of ‘being of German nationality’ for a person, results not only
in adding this fact to the knowledge base, but also in using the right spelling
for the persons name using umlauts. As shown in Example 1 this could result
in three atomic changes. The information that those three changes somehow
belong together should not be lost, as we would like to enable human users to
observe the evolution of a knowledge base on various levels of detail. This could
be achieved by constructing hierarchies of changes on a graph.

To achieve this goal first of all Atomic Changes are called Changes of Level
0 and then changes of higher levels are defined inductively. Let At be the set of
atomic changes. General changes, which are simply called changes, are defined
as sequences over the set At. The set Changes(At) of changes over At is the
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C2

C4 C5

C1

C3

Fig. 1. Schematic visualisation of a change hierarchy. Black dots represent atomic
changes and gray triangles compound changes.

smallest set containing the empty sequence () and closed with respect to the
following condition: if {C1, . . . Ck} ⊆ Changes(At) ∪ At, then (C1, . . . , Ck) ∈
Changes(At). An annotated change is an expression of the form CA where
C ∈ Change(At), and A is an annotation object. No restriction is imposed
on the annotation object A which is attached to a change. In Section 5 we
present a simple ontology schema, which may be used for capturing such change
annotations.

The changes of level at least n, denoted by Ch(n), are defined inductively.
Every change has a level at least 0, i.e Ch(0) = Changes(At). If C1, . . . , Ck

are changes in Ch(n), then (C1, . . . , Ck) ∈ Ch(n + 1). A change C is of level
(exactly) n if C ∈ Ch(n)\Ch(n + 1), i.e. C has level at least n but not level at
least n+1. The application functions App+, App− may be extended to a function
App(G, C) whose first argument is a graph, and second argument is a change.
App is recursively defined on the level of the second argument C. Now we would
like to apply a change C of level > 0 to a graph. Since C is a sequence of changes
of smaller level, these changes – being components of C – can be consecutively
applied to intermediate graphs. This is demonstrated in the following for the
change from Example 1.

C1 is applied to some graph G containing information about people and results
in a new revision of G, namely G′:

G
C1→ G′

Since C1 consists of C2 and C3, C1 it may be resolved into:

G
C2→ G(1) C3→ G′

And finally since C3 = (C4, C5):

G
C2→ G(1) C4→ G(2) C5→ G′

C2, C4, and C5 are atomic changes and may be applied as proposed in Defini-
tions 8 and 10.

Example 1 (Change Hierarchy). Consider the following update of the de-
scription of a person:
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1 Resource changed (C1)
2 Resource classified (C2)
3 http://auer.cx/Soeren hasNationality German
4 Labels changed (C3)
5 Label removed (C4)
6 http://auer.cx/Soeren rdfs:label "Soeren Auer"
7 Label added (C5)
8 http://auer.cx/Soeren rdfs:label "Sören Auer"

C1 represents a compound change with C1 = (C2, C3) and C3 = (C4, C5);
C2, C4, and C5 here are atomic changes. It may be visualized as in Fig. 1.

We call a change of a level n > 1 a Compound Change. As visualized in Fig. 1
it may be viewed as a tree of changes with atomic changes on its leafs. This
enables the review of changes on various levels of detail (e.g. statement level,
ontology level, domain level) and thus facilitates the human reviewing process.

A further advantage in addition to improved change examination is, that on
their basis a knowledge transaction processing may be implemented. Assum-
ing that a Relational Database Management System supporting transactions is
used as a triple store for knowledge bases, every compound change may then be
encapsulated within a database transaction. Meanwhile the repository will be
blocked for other write accesses. Compound Changes thus should not be nested
arbitrarily deep but up to some compound change, which was for example trig-
gered by a user interaction. We call such a top-level compound change Upper
Compound Change. Multiple, possibly semantically related compound changes
can be collected in a Patch for easy distribution, for example in a Peer-to-Peer
environment.

4 Change Conflict Detection

Tracking additions and deletions of statements as described in the last section
enables the implementation of linear undo / redo functionality. In distributed or
web-based environments usually several people such as knowledge engineers and
domain experts contribute changes to a knowledge base. In such a setting it is
highly demandable to rollback only certain earlier changes. Of course, this will
not be possible for arbitrary changes.

Consider the case when some statements were added to a graph in the change
C1 and removed later in the change C2. The rollback of the change C1 should not
be possible any longer after C2 took place. In the opposite case when statements
are removed from the knowledge base first and added again later, the rollback of
the deletion should not be possible either. The following definitions clarify which
atomic changes are compatible with a distinct knowledge base in this sense.

Definition 11 (Compatibility of a Positive Atomic Change with a Graph).
A Positive Atomic Change CG is compatible with a graph G′, iff CG is not
equivalent to some subgraph of G′.
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Definition 12 (Compatibility of a Negative Atomic Change with a Graph).
A Negative Atomic Change CG is compatible with a graph G′, iff CG is equivalent
to some subgraph of G′.

If a positive (negative) atomic change CG is compatible with some graph G′

then it may be easily applied to G′ by simply adding (respectively removing)
the statements of CG to G′. Possibly blank node identifiers have to be renamed
in CG if the same occurs in G′.

The notion of compatibility may be easily generalized to compound changes.
Since the changes belonging to a compound change are ordered, every com-
pound change may be broken up into a corresponding sequence of atomic changes
(C1, . . . , Cn). If we consider the compound change from Example 1, the corre-
sponding sequence of atomic changes will be (C2, C4, C5).

Definition 13 (Compatibility of a Compound Change with a Graph).
A compound change CG′ is compatible with a graph G, iff

– the first atomic change in the corresponding sequence of atomic changes
(C1, ..., Cn) is compatible with G and results in G1

– every following atomic change Ci (1 < i ≤ n) from the sequence is compatible
with the intermediate graph Gi−1 and its application results in Gi.

The compatibility is especially interesting if G′ is some prior version of G, since
it supports the decision if the change may be rolled back. However, this com-
patibility concept only deals with possible conflicts on the level of statements.
In the remaining part of this section we point out directions how we can cope
with incompatibilities on higher conceptual levels than the one of statements.

In [6] the impact of distinct change patterns on instance data is studied.
Change patterns include all elementary operations on an OWL ontology such as
adding, deleting of classes, properties or instances. The effects on instances are
categorized into change patterns which result in information preserving, trans-
latable or information-loss changes. If a compound change contains an atomic
change matching a change pattern of one of the latter two categories, this can
be indicated to the user and possible solutions could be offered (cf. Section 6 for
details on ontology evolution patterns). If the graph represents some Web Ontol-
ogy Language (OWL) knowledge base, furthermore a description logic reasoner
may be used to check whether a model is consistent after a change is applied or
not. Ideally an evolution enabled knowledge base editor provides an interface to
dynamically plug-in functionality to check the applicability of a distinct change
with respect to a certain graph.

5 Represention of Changes

To distribute changes on a graph (e.g. in a client server or peer-to-peer set-
ting), a consistent representation of changes is needed. We propose to represent
changes as instances of a class log:Change. Statements to be added or deleted
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by atomic changes are represented as reified statements and referenced by the
properties log:added and log:removed from a change instance. The property
log:parentChange relates a change instance to a compound change instance of
higher level.

To achieve our goal of enhanced human change review, it should be possi-
ble to annotate changes with information, such as about the user making the
change, the date and time on which the change took place, a human-readable
documentation about why the change was made, and which effects it may have,
just to mention a few. Table 1 summarizes important properties attached to
log:Change. The complete OWL ontology schema for capturing the change in-
formation is provided at http:/powl.sf.net/logOnt.

Table 1. Properties for representing and annotating changes

Property Description Example
Action A string or URI identifying

predefined action classes.
”Resource changed”

User A string or URI identifying the
editing user.

http://auer.cx/Soeren

DateTime The timestamp in xsd:DateTime
format when the change took
place.

”20050320T16:32:11”

Documentation A string containing a human
readable description of the change.

Nationality added and
name typing corrected
correspondingly.

ParentChange Optional URI identifying a
compound change this change
belongs to.

6 Evolution Patterns

The versioning and change tracking strategy presented so far is applicable to
arbitrary RDF graphs but also enables the representation and annotation of
changes on higher conceptual levels than the one of pure RDF statements. In this
section we demonstrate how it may be used and extended to support consistent
OWL ontology and instance data evolution.

OWL ontologies consist of classes arranged in a class hierarchy, properties
attached to those classes, and instances of the classes filled with values for the
properties. Now we classify changes operating on OWL ontologies according
to specific patterns reflecting common change intentions. The positive atomic
change (hasAddress,rdf:type,owl:ObjectProperty) for example can be clas-
sified to be an object property addition, since the predicate of the statement in
the change is rdf:type and the object is owl:ObjectProperty). Complemen-
tary there is a category of object property deletions for negative atomic changes
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with that predicate and object. Such categories of changes can be described more
formally and generally by our notion of Evolution Patterns.

Definition 14 (Evolution Pattern). A positive (negative) evolution pattern
is a triple (X, G(X), A(X)), where X is a set of variables, G(X) is a graph
pattern characterizing a positive (resp. negative) change with the variables X
and A(X) being an appropriate data migration algorithm.

Graph patterns are essentially graphs where certain URI references are replaced
by placeholders (i.e. variables). The precise definition is omitted here but can
be found in [8]. As an example we consider the following positive atomic change
of adding a cardinality restriction to the property nationality attached to the
class Person:

1 Person owl:subClassOf :_1
2 :_1 rdf:type owl:Restriction
3 :_1 owl:onProperty nationality
4 :_1 owl:maxCardinality 2

The corresponding evolution pattern will be AddMaxCardinality =
(X, G(X), A(X)) with X = (class, property, maxCardinality), the graph
pattern G(X) will be:

1 ?class owl:subClassOf ?restriction
2 ?restriction rdf:type owl:Restriction
3 ?restriction owl:onProperty ?property
4 ?restriction owl:maxCardinality ?maxCardinality

Finally, the data migration algorithm A(class, property, maxCardinality)
will iterate through all instances of class and remove property values of
property exceeding maxCardinality.

Beside facilitating the review of changes on a knowledge base the classifica-
tion of changes into such evolution patterns enables the automatic migration
of instance data, even in settings where instance data is distributed. General
evolution patterns can be constructed out of sequences of positive and nega-
tive evolution patterns. The modification of a owl:maxCardinality restriction
can thus be made up by sequentially applying changes belonging to the nega-
tive evolution pattern DelMaxCardinality and the positive evolution pattern
AddMaxCardinality.

In [4] a taxonomy of change patterns for OWL ontologies and their possible
effects on instance data is given. However, from our point of view these change
patterns will not be sufficient to capture change intentions and to enable au-
tomatic instance data migration. Intentions of changes can be made explicit
by precisely describing effects on instance data, e.g. by providing instance data
migration algorithms. We illustrate possible intentions for class deletions and
re-classifications in the next two subsections.

Class Deletions. The deletion of some entity from an ontology corresponds
to the deletion of all statements from the graph where an URI referencing the
entity occurs as subject, predicate, or object. The deletion of a distinct class
thus will result in the following serious effects:
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– former instances of the class are less specifically typed,
– former direct subclasses become independent top level classes,
– properties having the class as domain become universally applicable,
– properties having the class as range will lose this restriction,

In most cases some or all of these effects are not desired to be that rigorous,
but have to be mitigated. Before actually deleting the class, we then have to
cope with the following aspects of the classes usage.

– What happens with instances of the class? If instances of a class C should
be preserved they may be reclassified to be instances of a superclass of C
(labeled IR). If C has no explicit direct superclass the instances may be
classified to be instances of the implicit superclass owl:Thing. Otherwise all
its instances may be deleted (ID).

– How to deal with subclasses? Subclasses may be deleted (SD), reassigned in
the class hierarchy (SR) or kept as independent top level classes (SK).

– How to adjust properties having the class as domain (or range)? The do-
main (or range) of properties having the class as domain (or range) may be
extended (i.e. changed to a superclass - PE) or restricted (i.e. changed to a
subclass - PR). A further possibility is to delete those properties (PD).

Some combinations of those evolution strategies obviously do not make sense
(i.e. (ID, SD, PR) - deleting all instances and subclasses and restricting the do-
main and range of directly attached properties) while others are heavily needed
(see also Fig. 2):

– (IR, SR, PE) - merge class with superclass
– (ID, SD, PE) - cut class off
– (ID, SD, PD) - delete complete subtree including instances and directly at-

tached properties

a) b) c)

Fig. 2. Different intentions for deleting a class: a) merge with superclass, b) cut class
off, c) delete subtree

As those different class deletions illustrate, different intentions to delete a class
result in different combinations of data migration strategies and finally in dif-
ferent evolution patterns. Some other example for a complex ontology evolution
pattern is the reclassification of a complete sub-class tree.

Reclassification. Often the distinction between abstract categories and con-
crete entities is not easy, resulting in different modeling possibilities, when it
is required to stay within OWL DL: representation as classes or instances. In
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a later modeling or usage stage the selected representation strategy (classes or
instances) may turn out to be suboptimal and reclassification is required.

If all classes in a whole class tree below a class C have no instances and
directly attached properties, then they may be converted into instances. This
can be done by defining a functional property P , which is used to preserve the
hierarchical structure formerly encoded in the subclass-superclass relationship.
Then for all classes Ci in the the subtree:

– add (Ci,rdf:type,C),
– if Ci is a direct subclass of C, then delete the statement

(Ci,rdfs:subClassOf,C), else delete all statements
(Ci,rdfs:subClassOf,Cj) and correspondingly add (Ci,P,Cj).

Conversely, assuming we have a class C and a functional property P with C
as domain and range, which does not reference instances in cycles. Then the
instances of C then may be converted into subclasses of C as follows:

– every statement (I1,P ,I2) is converted into (I1,rdfs:subClassOf,I2),
– if there is for I1 no triple (I1,P ,I2) add (I1,rdf:type,C).

Beside class deletions and reclassification there are other ontology evolution pat-
terns such as:

– Move a property A property P may be moved from a class C1 to a referenced
class C2 (labeled log:PropertyMove).

– ”Widden” a restriction For a property P we may increase the number of
allowed values or decrease the number of required values.

– ”Narrow” a restriction For a property P we may decrease the number of
allowed values or increase the number of required values.

– Split a class A class C may be split into two new classes C1 and C2 related
to each other by some property P (labeled log:ClassSplit).

– Join two classes Two classes C1 and C2 referencing each using a functional
property may be joined.

These examples show that the basic change patterns from [4] are not sufficient
to capture the intentions for ontology changes. To support independently, but
synchronously evolving schema and instance data, as visualized at the exam-
ple of splitting a class in Fig. 3, we propose to annotate compound (schema)
changes with their respective evolution patterns. Corresponding data migration
algorithms then can be used to migrate instance data agreeing to a former ver-
sion of the ontology. However, it is future work to provide a complete library of
ontology evolution patterns.

The annotation of compound changes with ontology evolution patterns can
be easily achieved within the framework showcased in Section 5. The move of a
property P1 from a class C1 to a class C2 referencing each other by a property
P2 could be represented for example as follows:
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Person
name
nationality
street
town
zip

Person
name
nationality
hasAddress

Address
street
town
zip

instance1
„Sören Auer“
german
„Wettiner-Str. 8“
„Leipzig“
„04105“

instance1
„Sören Auer“
german
instance2

instance2
„Wettiner-Str. 8“
„Leipzig“
„04105“

Properties moved

rdf:type

rdf:type

Schema-Ontology V.1
Schema-Ontology V.2

Data V.1 Data V.2rdf:type

Data-
migration

Schema-
evolution

Fig. 3. Ontology evolution and instance data migration at the example of splitting a
class

1 @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
2 @prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#
3 @prefix log: <http:/powl.sf.net/logOnt>
4
5 C1 rdf:type log:PropertyMove
6 C1 log:pmProperty P1
7 C1 log:pmFrom C1
8 C1 log:pmTo C2
9 C1 log:pmReference P2

10 C1 log:removed S1
11 C1 log:added S2
12
13 S1 rdf:type rdf:Statement
14 S1 rdf:subject P1
15 S1 rdf:predicate rdfs:domain
16 S1 rdf:object C1
17
18 S2 rdf:type rdf:Statement
19 S2 rdf:subject P1
20 S2 rdf:predicate rdfs:domain
21 S2 rdf:object C2

7 Data Migration Strategies

One of the main advantages of using ontologies in a distributed environment as
the World Wide Web is the reuse of structural information (schemata) encoded in
an ontology. If such an ontology representing structural information evolves, on-
tologies containing data bound to this structural information have to be adopted
as well. To automate this task as much as possible it is therefore desirable to
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have instance data migration algorithms for evolution patterns available. In the
following two subsections we give examples for data migration algorithms for the
common evolution patterns log:PropertyMove and log:ClassSplit.

Moving a Property. Assuming we have a change on a graph G belonging to
the evolution pattern log:PropertyMove moving a directly attached property
P1 from a class C1 to some other class C2 using a property P2 relating C1 to C2.
A data migration algorithm can be given as follows:

1 foreach triple (?i1,rdf:type,C1) in G
2 find triple (i1,P1,?v) in G
3 foreach triple (i1,P2,?i2) in G
4 add triple (i2,P1,v) to G
5 del triple (i1,P1,v) from G

It moves the P1 property values of instances of C1 to the related instances
of C2.

Splitting a Class. Since splitting a class requires to move properties, an ap-
propriate data migration algorithm for the log:ClassSplit evolution pattern
may make use of the log:PropertyMove data migration:

1 add triple (C1,rdf:type,owl:class) to G
2 foreach triple (?i1,rdf:type,C) in G
3 create new instance identifier i
4 add triple (i,rdf:type,C1) to G
5 add triple (i1,R,i) to G
6 foreach moved property P
7 PropertyMove(C,C1,P)

First a class C1 is created (line 1), thereafter for every instance of C a cor-
responding instance of C1 is created, whereas the relation between both is es-
tablished by the property R (lines 3-5) and finally the log:PropertyMove data
migration algorithm is used for every moved property (lines 6,7).

8 Related Work and Summary

The versioning strategy described in this paper was implemented in the web ap-
plication development framework Powl [1], which provides a comprehensive web
user interface for collaborative knowledge base authoring as well as an applica-
tion programming interface for PHP developers. To every change on the knowl-
edge base using Powl, an optional versioning comment can be attached describing
the change for review by humans. The user interface of Powl’s versioning module
then enables users to review changes chronologically, their compatibility with the
current version is indicated and distinct changes may be rolled back. Changes
may be filtered according to user, ontology, and date. Compound changes may be
expanded up to the atomic change level indicating added (respectively removed)
statements.
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Fig. 4. Reviewing changes with Powl

Other approaches targeting to support ontology evolution and versioning can
be roughly divided into two categories:

– Approaches which are aware of the trace of changes which result in a new
version and

– Approches which compare ontologies and compute differences or mappings
between them.

Ognyanov and Kiryakov in [7] (falling in the first category) define a formal
model for tracking changes in graph-based data models. Higher-level evaluation
or classification of the updates are beyond the scope of their work. Those are
studied and discussed in depth, for example, in [3]. Our contribution here is
a way to easily relate low-level changes on the statement level to higher-level
changes on the level of complex operations. In [6] (falling in the second category)
automatic techniques based on heuristic comparisons for finding similarities and
differences between versions are developed. [10] develop a merging method for
ontologies following a bottom-up approach which offers a structural description
of the merging process. These approaches are complementary to the presented
one, since they are applicable even if ontology editors or storage systems do
not support a finely grained change tracking. Ljiljana Stojanjovic’s work [9] on
ontology evolution gives an overview over current developments.

We presented a method for specifying complex changes by means of less com-
plex changes and finally atomic changes on a graph. This method is especially
suited to be implemented in ontology editors and storage systems. In a dynamic
distributed environment sets of changes may then independently spread out from
the originating ontologies. A user of some ontology may decide for every single
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change whether he accepts it or not. Assistance for this decision is provided
by the compatibility concept between an ontology and a change. Annotation
of changes on OWL ontologies with corresponding ontology evolution patterns
further enables automatic data migration of independently stored instance data
agreeing on the changed ontology. In this context the development of an ex-
haustive library of ontology evolution patterns with appropriate data migration
algorithms is planned.
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Abstract. Refactoring is a powerful technique to improve the quality of
software models including implementation code. The software developer
applies successively so-called refactoring rules on the current software
model and transforms it into a new model. Ideally, the application of
a refactoring rule preserves the semantics of the model, on which it is
applied. In this paper, we present a simple criterion and a proof tech-
nique for the semantic preservation of refactoring rules that are defined
for UML class diagrams and OCL constraints. Our approach is based
on a novel formalization of the OCL semantics in form of graph trans-
formation rules. We illustrate our approach using the refactoring rule
MoveAttribute.

Keywords: Refactoring, Semantic Preservation, UML, OCL.

1 Introduction

Modern software processes advocate the frequent application of so-called refac-
toring rules in order to improve the quality of software under development. A
refactoring step is typically a small change made in a schematic way. Many
approaches and tools have been developed for refactoring of implementation
code but refactoring of more abstract software models, such as UML class di-
agrams (e.g. [1,2]) became only recently a research topic. In our previous pa-
per [3] we have formalized refactoring rules for UML class diagrams and OCL
invariants (called UML/OCL models in the remainder of this paper) using a
graph-transformation based formalism. In this paper, we present a technique to
prove the correctness of our refactoring rules.

There are two important criteria for the correctness of refactoring rules.
Firstly, a rule should be syntactic preserving, i.e., whenever the rule is appli-
cable on a source model then the target model obtained by the application of
the rule is syntactically correct, i.e., the target model is an instance of the UM-
L/OCL metamodel and obeys all of the metamodel’s multiplicity constraints and
well-formedness rules. Secondly, a rule should be semantic preserving, i.e., the
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semantics of source and target model should coincide. The proof of both syntactic
and semantic preservation can be challenging (see [4]). This paper concentrates
on proving semantic preservation.

A proof for semantic preservation must rely on a formal semantics of source
and target models and a criterion for their semantic equivalence. For UML/OCL
models, a formal semantics based on set theory is given in [5] but this semantics
is clumsy when arguing on the semantic preservation of a graphically defined
refactoring rule. For this reason, we propose here a novel formalization of OCL’s
semantics in form of graph-transformation rules. Moreover, we give a simple
criterion for the semantic equivalence of two UML/OCL models and show how
this criterion is met by the refactoring rule MoveAttribute.

The rest of the paper is structured as follows. In Section 2, we give based
on an example a brief introduction to graph transformations. Section 3 applies
graph transformations for the formalization of the MoveAttribute refactoring
and defines a criterion for semantic preservation. The section closes with two,
more complicated versions of MoveAttribute whose formalization requires the
usage of semantic preconditions. Section 4 presents a graphical definition of
OCL’s semantics and applies this semantics for proving the semantic preservation
of MoveAttribute. Section 5 concludes the paper.

1.1 Related Work

In his seminal work [6], Opdyke gives a catalog of refactoring rules for C++
programs. Opdykes defines semantic preservation (also called behavioral preser-
vation if implementation code is refactored) as ”...if the program is called twice
(before and after a refactoring) with the same set of inputs, the resulting set of
output values will be the same”. In practice, it turned out that this simple crite-
rion is hard to prove. Thus, more fine grained criteria such as access preservation,
update preservation, and call preservation has been discussed in literature (an
overview is given by Mens et al. in [7]).

2 Graph Transformation Rules

A graph transformation rule defines how source models are transformed into
target models. A model is seen here as a typed graph, more precisely, as an
instance of the modeling language’s metamodel (see App. A for the relevant
part of the UML/OCL metamodel). We assume the reader to be familiar with
the technique of metamodeling (a good introduction is [8]).

A graph transformation rule consists of two patterns called left hand side
(LHS) and right hand side (RHS), which are denoted in a generalized form of
object diagrams over the metamodel for the transformed modeling language. A
graph transformation rule is applied on a given source model by (1) searching
a LHS-matching region and (2) substituting the matched region by RHS un-
der the same matching. If LHS matches with more than one region in the source
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model, one of the regions is non-deterministically chosen and rewritten by RHS.
The application of the rule is repeated until the current model does not contain
any LHS-matching region. A matching is a binding of all pattern variables to
concrete values. Pattern variables are used in LHS and RHS in order to identify
objects or as a representation of attribute values. The value of pattern variables
are possibly restricted by the when-clause of the rule.

Folder File

Item

readOnly:Boolean

parent

item

*

0..1

(a) FolderFile metamodel

ChangeAccess()

f:Folder

readOnly=X

fi:File

readOnly=Y

X<>Y

parent item

f:Folder

readOnly=X

fi:File

readOnly=X

parent item

{when}

(b) ChangeAccess transformation rule

Fig. 1. Metamodel and transformation rule

We illustrate the application of graph transformation rules on models written
in a simple FileFolder-language, whose metamodel is given in Fig. 1(a). Instances
of this metamodel are tree structures over folders and files. Each file or folder
has an attribute readOnly of type Boolean. Suppose, a transformation should
update for each file in the tree the value of its attribute readOnly with the
readOnly value of its parent folder (if such a folder exists). Such a transformation
is concisely formalized by the graph transformation rule ChangeAccess shown
in Fig. 1(b).

:File

readOnly=false

:Folder

readOnly=false

:Folder

readOnly=false

:File

readOnly=true

:File

readOnly=true

parent
itemitem

item item

parent

parent parent

:Folder

readOnly=false

:Folder

readOnly=false

:File

readOnly=true

:File

readOnly=false

parent
itemitem

item item

parent

parent parent

:Folder

readOnly=false

:Folder

readOnly=false

:File

readOnly=false

parent
itemitem

item item

parent

parent parent

:File

readOnly=false

:File

readOnly=false

:File

readOnly=false

Fig. 2. Sequence of transformations

The LHS of ChangeAccess matches in a given source model with each pair of
File-Folder instances that are connected by a parent-item link and whose val-
ues for attribute readOnly are different (see when-clause). Due to the RHS, the
LHS-matching structure is rewritten by the same pair of File-Folder instances
but the value for readOnly in the file has changed. The rule ChangeAccess is
applied iteratively as long as LHS-matching structures can be found. Note how
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termination of this process is ensured by the when-clause. Figure 2 shows an
application of ChangeAccess on a concrete source model.

3 Formalization of Semantic Preserving Refactoring
Rules for UML/OCL

Research on refactoring has focused so far on implementation code but many
refactoring rules for (object-oriented) implementation languages can be adapted
to UML class diagrams and OCL constraints [3]. Since refactoring rules for
UML/OCL models refer to the metamodel defining UML class diagrams and
OCL expressions, we have included – for the sake of understandability – the
relevant fragments of the metamodel in App. A.

Figure 3(a) shows the application of the refactoring rule MoveAttribute on
a concrete UML/OCL model. The attribute producer is moved over an associ-
ation with multiplicity 1 on both ends (called 1–1 association in the remainder
of the paper) from class Product to ProductDescription. The attached OCL
constraint has to be changed as well since the referred attribute producer is not
owned any longer by class Product.

context Product inv:
   self.pd.producer='Comp'

Product

id : Integer
price : Real
producer : String

Product

id : Integer
price : Real

ProductDescription

info : String
pd

11

ProductDescription

info: String
producer : String

pd

11

context Product inv:
   self.producer='Comp'

(a) Refactoring of UML/OCL model

p1 : Product

pd1 : ProductDescription

producer = 'Comp'

pd

p1 : Product

producer = 'Comp'

pd1 : ProductDescription

pd

(b) Refactoring of
object diagram

Fig. 3. Application of MoveAttribute on an example

In the rest of this section we present a graph-transformation based formaliza-
tion of the refactoring rule MoveAttribute and, as a new contribution of this
paper, give a correctness criterion for the semantic preservation of UML/OCL
refactoring rules. The section closes with a discussion on applying the correct-
ness criterion on more complicated variants of the MoveAttribute rule, in which
the attribute is moved over an 1–* or *–1 association.

3.1 Formalization of the Simple Form of MoveAttribute

In [3], we have already formalized a number of frequently used refactoring rules
for UML class diagrams and analyzed their influence on OCL constraints at-
tached to the refactored class diagram. The formalization of rule MoveAttribute
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MoveAttributeUML(a:Attribute, ae2:AssociationEnd)

a:Attribute

feature

dest:Classsrc:Class

as:Association

ae1:AssociationEnd

connection

{when}
dest.allConflictingNames()->excludes(a.name) and
ae1.multiplicity.is(1,1) and
ae2.multiplicity.is(1,1)

connection

association
participantparticipant

association

owner

association association

ae2:AssociationEnd

a:Attribute

feature

dest:Classsrc:Class

as:Association

ae1:AssociationEnd

connection connection

association
participantparticipant

association

owner

association association

ae2:AssociationEnd

 MoveAttributeOCL extends MoveAttributeUML(a:Attribute, ae2:AssociationEnd) 

ace:AttributeCallExp

a:Attribute

referredAttribute

source

appliedProperty

ace:AttributeCallExp

aece:AssociationEndCallExp

ae2:AssociationEnd
source referredAssociationEnd

appliedProperty

a:Attribute

referredAttribute

dest:Class

appliedProperty
source

type

oe:OclExpressionoe:OclExpression

Fig. 4. Influence of MoveAttribute on class diagrams and OCL constraints

is presented in Fig. 4. The refactoring is split into two graph transformation rules,
where the second one, which describes changes on OCL, extends the first rule,
which formalizes the changes on the UML class diagram. The two parameters
a and ae2 of the first rule determine the attribute to be moved together with
the association over which the attribute is moved (note that the parameter ae2
identifies both the association and the destination class). The when-clause of
the first rules prevents rule applications that would yield syntactically incorrect
target models (an attribute must not be moved if its name is already used in
the destination class). Furthermore, the when-clause explicates the assumption
of moving the attribute over an 1–1 association.

Since the second rule is an extension, it can refer to elements from the extended
rule, e.g. a:Attribute. Semantically, rule extension means that the second rule is
applied as many times as possible in parallel to each single application of the
first rule. For our example: Whenever attribute a is moved from class src to class
dest each attribute call expression of form oe.a1 is rewritten by oe.ae2.a.

3.2 A Correctness Criterion for Semantic Preservation

Semantic preservation, intuitively, means that source and target model express
’the same’. Established criteria for the refactoring of implementation code, where
’the same’ usually means that the observable behavior of original and refactored
1 Here, for the informal argumentation, the attribute call expression mentioned in
MoveAttributeOCL is rendered in OCL’s concrete syntax.
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 MoveAttributeObj extends MoveAttributeUML(a:Attribute, ae2:AssociationEnd) 

a:Attribute

al:AttributeLink

dv:DataValue

slot

ae1:AssociationEnd

le1:LinkEnd

l:Link

src:Class

srcO:Object

ae2:AssociationEnd

le2:LinkEnd

dest:Class

destO:Object
classifier

associationEnd

associationEnd classifier

linkEnd
connection

instance

a:Attribute

al:AttributeLink

dv:DataValue

slot

attribute

ae1:AssociationEnd

le1:LinkEnd

l:Link

src:Class

srcO:Object

ae2:AssociationEnd

le2:LinkEnd

dest:Class

destO:Object
classifier

associationEnd

associationEnd classifier

connection

instance

value
value

attribute

instance

connection

linkEnd

instance
linkEnd

connection

linkEnd

Fig. 5. Influence of MoveAttribute on object diagrams

program coincide, cannot be used for UML/OCL models, simply because the
refactored UML class diagram with annotated OCL constraints is a static model
of a system and does not describe behavior.

We propose to call a UML/OCL refactoring rule semantic preserving if the
conformance relationship between the refactored UML/OCL model and its in-
stantiations is preserved. An instantiation can be represented as an object dia-
gram whose objects, links and attribute slots obey all type declarations made in
the class diagram part of the UML/OCL model. An object diagram conforms to
a UML/OCL model if all OCL invariants evaluate to true and all multiplicity
constraints for associations of the class diagram are satisfied. A first – yet coarse
and not fully correct (see below) – characterization of conformance preservation
is that whenever an object diagram does/does not conform to the source model,
it also does/does not conform to the target model.

This criterion, however, is still too coarse since it ignores the structural chan-
ges of instances of source and target model, e.g., applying MoveAttribute chan
ges the owning class of the moved attribute (see Fig. 3(b) for illustration). In
order to solve this problem, one has to bridge these structural differences of the
model instances. This is realized by the transformation shown in Fig. 5.

Taking the structural differences between instances of source and target model
into account, the semantic preservation can now be formulated as:

Definition 1 (Semantic Preservation of UML/OCL Refactorings)
Let cdo be a class diagram, constro be any of the constraints attached to it, odo

be any instantiation of cdo, and cdr, constrr, odr be the refactored versions of
cdo, constro, odo, respectively. The refactoring is called semantic preserving if
and only if

eval(constro, odo) = eval(constrr, odr)

holds, where eval(constr, od) denotes the evaluation of the OCL constraint constr
in the object diagram od.
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3.3 Formalization of General Forms of MoveAttribute

The formalization of MoveAttribute covers so far a rather simple case: The
attribute a is moved from the source to the destination class and in all
attached OCL constraints, the attribute call expressions of form oe.a are rewrit-
ten to oe.ae2.a. Semantic preservation of the rule is rather intuitive because
for each object srcO of source class src there exists a unique, correspond-
ing object destO of destination class dest and the slot al for attribute a on
srcO is moved to destO (see rule MoveAttributeObj in Fig. 5). Before we
present in Section 4 a technique to prove semantic preservation, we want to
formalize now some versions of rule MoveAttribute for other cases than mov-
ing over an 1–1 association. As we will see shortly, the semantic preservation
of the more general forms of MoveAttribute can only be ensured if the condi-
tions for applying the rule (formalized by the when-clause) also refer to object
diagrams.

We discuss in the next Subsection 3.3.1 the case that the association keeps
multiplicity 1 at the end of the destination class but has an arbitrary multiplicity
at the opposite end of the source class. Subsection 3.3.2 discusses the opposite
case with multiplicity 1 at the source end and arbitrary multiplicity at the des-
tination end. The last case, arbitrary multiplicity at both ends, is not discussed
here explicitly since this case is covered by combining the mechanisms used in
the two other cases.

context Product inv:
   self.pd.producer='Comp'

Product

id : Integer
price : Real
producer : String

Product

id : Integer
price : Real

ProductDescription

info : String
pd

1*

ProductDescription

info: String
producer : String

pd

*

context Product inv:
   self.producer='Comp'
   

1
pd1 : ProductDescription

producer = 'Comp'

p1 : Product

producer = 'Comp'

pd1 : ProductDescription
pd

p1 : Product

pd

p2 : Product

producer = 'Comp'

pd

p2 : Product

pd

Fig. 6. Example refactoring if connecting association has multiplicities *–1

3.3.1 Multiplicities *–1
The UML and OCL part of the refactoring rule are basically the same as for
moving the attribute over an 1–1 association. The only change is a new semantic
precondition in order to ensure semantic preservation: All source objects (i.e.,
objects of the source class), which are connected to the same destination object
(in Fig. 6, the source objects p1, p2 are connected to the same object pd1 ),
must share the same value for the moved attribute. For this reason, the when-
clause of the UML part has changed compared to the previous version shown in
Fig. 4 to:
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 MoveAttributeObjManyOneMoveSlot extends MoveAttributeUML(a:Attribute, ae2:AssociationEnd) 

a:Attribute

al:AttributeLink

dv:DataValue

slot

ae1:AssociationEnd

le1:LinkEnd

l:Link

src:Class

srcO:Object

ae2:AssociationEnd

le2:LinkEnd

dest:Class

destO:Object
classifier

associationEnd

associationEnd classifier

linkEnd
connection

instance

a:Attribute

al:AttributeLink

dv:DataValue

slot

attribute
ae1:AssociationEnd

le1:LinkEnd

l:Link

src:Class

srcO:Object

ae2:AssociationEnd

le2:LinkEnd

dest:Class

destO:Object
classifier

associationEnd

associationEnd classifier

connection

instance

value
value

attribute

instance

connection

linkEnd

instance
linkEnd

connection

linkEnd

{when}

destO.slot.attribute->excludes(a)

 MoveAttributeObjManyOneDeleteSlot extends MoveAttributeUML(a:Attribute, ae2:AssociationEnd) 

a:Attribute

al:AttributeLink
slot

src:Class

srcO:Object

classifier attribute

 MoveAttributeObjManyOneCreateSlot extends MoveAttributeUML(a:Attribute, ae2:AssociationEnd) 

a:Attributedest:Class

destO:Object
classifier

a:Attribute

al2:AttributeLink
slot

attribute

dest:Class

destO:Object

classifier

{when}
destO.slot.attribute->excludes(a) and
destO.linkEnd.associationEnd->excludes(ae2)

dv:DataValue

value

{when}
dv.classifer.conformsTo(a.type)

srcO.linkEnd->select(le| le.associationEnd=ae1)
.link.connection.instance.slot
->select(s|s.attribute=a)->notEmply()

a:Attributesrc:Class

srcO:Object

classifier

{when}

Fig. 7. Object diagram part of refactoring rule if association has multiplicities *–1

dest . a l lCon f l i c t ingNames ()−> exc ludes ( a . name) and
ae2 . mu l t i p l i c i t y . i s ( 1 ,1 ) and
dest . in s tance−>f o rA l l ( do |

do . linkEnd−>s e l e c t ( l e | l e . a s soc ia t ionEnd=ae2 )
−>c o l l e c t ( ae | ae . oppositeLinkEnd . i n s t an c e )
−>f o rA l l ( so1 , so2 |

a . at t r ibuteL ink−>f o rA l l ( al1 , a l2 |
a l1 . i n s t an c e=so1 and a l2 . i n s t an c e=so2
imp l i e s
a l1 . value=al2 . value ) ) )

This semantic precondition seems, at a first glance, to be put at a wrong
place. Is a refactoring of UML/OCL models not by definition a refactoring of the
static structure of a system and done when developing the system? And at that
time, are system states, i.e. the instantiations of the class diagram, not unavail-
able? Yes, this is a common scenario in which all refactoring rules, whose when-
clause refers to object diagrams, are not applicable due to semantical problems a
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refactoring step might cause. But there are also other scenarios, e.g. where a class
diagram describes a database schema and an OCL constraint can be seen as a se-
lection criterion for database entries. Here, it would be possible to check whether
the content of the database satisfies all semantic preconditions when applying
the refactoring. If the refactoring rule is semantic preserving, one can deduce
that a refactored database entry satisfies a refactored selection criterion if and
only if the original selection criterion is satisfied by the original database entry.

The object diagram part of the refactoring shown in Fig. 7 reflects the fact
that slots cannot be moved any longer naively, because the destination object
would get in that case as many slots as it has links to source objects (but only
one slot is allowed). The first two rules formalize that only one slot is moved to
the destination object and all remaining slots at the linked source objects are
deleted. The last rule MoveAttributeObjManyOneCreateSlot covers the case
when a destination object is not linked to any source object. In this case, a slot
for the moved attribute is created at the destination object and initialized with
an arbitrary value (dv) of appropriate type.

context Product inv:
   self.pd->collect(x | 
     x.producer)->any(true)
    ='Comp'

Product

id : Integer
price : Real
producer : String

Product

id : Integer
price : Real

ProductDescription

info : String
pd

*1

ProductDescription

info: String
producer : String

pd

1

context Product inv:
   self.producer='Comp'
   

*

p : Product

pd

pd1 : ProductDescription

producer = 'Comp'

pd

pd2 : ProductDescription

producer = 'Comp'

p : Product

producer = 'Comp'

pd

pd1 : ProductDescription
pd

pd2 : ProductDescription

Fig. 8. Example refactoring if connecting association has multiplicities 1–*

3.3.2 Multiplicities 1–*
Compared with moving attribute over an 1–1 association, the refactoring has
changed in the OCL part and in the object diagram part; the UML part has
remained the same (except of a slight extension of the when-clause). In object
diagrams, the slot for the moved attribute at each source object is copied to
all the associated destination objects (see Fig. 8). Semantic preservation of the
rule can only be ensured if for each source object at least one destination object
exists, with which the source object is linked (otherwise, the information on the
attribute value for the source object would be lost). Thus, the when-clause of
the UML part has been rewritten as

dest . a l lCon f l i c t ingNames ()−> exc ludes ( a . name) and
ae1 . mu l t i p l i c i t y . i s ( 1 ,1 ) and
s r c . in s tance−>f o rA l l ( so |

so . linkEnd−>s e l e c t ( l e | l e . a s soc ia t ionEnd=ae1)−>notEmpty ( ) )
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The object diagram part of the refactoring rule is changed as shown by the
two upper rules in Fig. 9. The first rule copies the slot al for attribute a from
the source object srcO to each of the linked destination objects destO. After this
has been done, the second rule ensures deletion of slot al at the source object
srcO. Note that this rule is essentially the same as the rule for deletion of slots
in the previous subsection.

as:Association
associationassociation

as:Association

 MoveAttributeObjOneManyCopySlot extends MoveAttributeUML(a:Attribute, ae2:AssociationEnd) 

a:Attribute

al:AttributeLink

dv:DataValue

slot

ae1:AssociationEnd

le1:LinkEnd

l:Link

src:Class

srcO:Object

ae2:AssociationEnd

le2:LinkEnd

dest:Class

destO:Object
classifierassociationEnd

associationEnd classifier

linkEnd
connection

instance al2:AttributeLink

dv:DataValue

slot

attribute
ae1:AssociationEnd

le1:LinkEnd

l:Link

src:Class

srcO:Object

ae2:AssociationEnd

le2:LinkEnd

dest:Class

destO:Object
classifierassociationEnd

associationEnd classifier

connection

instance

value
value

attribute

instance

connection

linkEnd

instance
linkEnd

connection

linkEnd

{when}
destO.slot.attribute->excludes(a)

 MoveAttributeObjOneManyDeleteSlot extends MoveAttributeUML(a:Attribute, ae2:AssociationEnd) 

a:Attribute

al:AttributeLink
slot

src:Class

srcO:Object

classifier attribute

a:Attribute

al:AttributeLink
slot

attribute

{when}
srcO.linkEnd->select(le| le.associationEnd=ae1)
.link.connection.instance
->forAll(do| do.slot->select(s|s.attribute=a)->notEmply())

a:Attributesrc:Class

srcO:Object

classifier

 MoveAttributeOCLOneMany extends  MoveAttributeUML(a:Attribute, ae2:AssociationEnd) 

aece:AssociationEndCallExp

ae2:AssociationEnd
source referredAssociationEnd

appliedProperty

source

oe:OclExpression

le:BooleanLiteralExp

booleanSymbol=true

ie2:IteratorExp

name = 'any'

body

ace:AttributeCallExp

a:Attribute

referredAttribute

source

appliedProperty

oe:OclExpression

ace:AttributeCallExp

a:Attribute

referredAttribute

ve:VariableExp

ie1:IteratorExp

name = 'collect'

vd:VariableDeclaration

body

appliedProperty
source

source

referredVariable

when
al2.isShallowCopyOf(al)

Fig. 9. Object diagram and OCL part of refactoring rule if connecting association has
multiplicities 1–*

The third rule in Fig. 9 shows the OCL part of the refactoring rule. If the upper
limit of the multiplicity at the destination class is greater than 1, the rewriting of
oe.a to oe.ae2.a, as it was done in the previous versions of MoveAttributeOCL,
would cause a type error since the type of subterm oe.ae2 would be a collection
type. However, since oe.ae2 is part of the attribute call expression oe.ae2.a, an
object type would be expected.
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In order to resolve this problem, the expression oe.ae2 is wrapped by a
collect()-expression, which is, in turn, wrapped by an any()-expression. Please
note that, despite of the non-deterministic nature of any() in general, the rewrit-
ten OCL term oe.ae2−>collect(x|x.a)−>any() is always evaluated deterministi-
cally, because the subexpression oe.ae2−>collect(x|x.a) always evaluates in the
refactored object diagram to a singleton set.

4 MoveAttribute Is Semantic Preserving

For a proof of the semantic preservation of a UML/OCL refactoring rule it is
necessary to have a formal definition on how OCL constraints are evaluated. The
evaluation function eval is defined with mathematical rigor in the OCL language
specification [5]. The mathematical definition is, however, clumsy to apply in our
scenario since it does not match the graph-based definitions we used so far for
the formalization of our refactoring rules.

For this reason, we propose an alternative formalization of eval in form of
graph-transformation rules. Due to the lack of space, we present here only the
definition of eval for attribute call expressions and association end call expres-
sions (a more complete version of OCL’s semantics can be found in [9]). Fortu-
nately, these two definitions are sufficient for proving the semantic preservation
of MoveAttribute if the attribute is moved over an 1–1 association.

The formalization of eval given in Fig. 10 refers to a slightly extended ver-
sion of the OCL metamodel in which the metaclass OclExpression has a new
association to metaclass Instance (with multiplicity 0..1 and role eval). A link
of this association from an object oe:OclExpression to an object i:Instance in-
dicates that the expression oe is evaluated to i. If an expression does not have
such a link to Instance, then this expression is not evaluated yet.

The first rule EvalAttributeCallExp defines the evaluation of expressions of
form oe.a (where a denotes an attribute) in any object diagram that conforms to
the underlying class diagram. The rule can informally be read as follows: Within
the syntax tree of the OCL constraint to be evaluated, we search successively for
expressions of form oe.a which are not evaluated yet (when-clause) but whose
subexpression oe is already evaluated (to an object named o). Due to the type
rules of OCL we know that object o must have a slot for attribute a. The lower
part of the LHS shows the relevant part of the object diagram in which the
OCL constraint is evaluated. The value of the slot for attribute a at object o
is represented by variable dv. The RHS of rule EvalAttributeCallExp differs
from LHS just by an added link from object ac (what represents expression
oe.a) to dv. Informally speaking, the expression oe.a is now evaluated to dv. The
second rule EvalAssociationEndCallExp is defined analogously. Based on this
formalization we can state the following theorem:

Theorem 1 (Semantic Preservation of MoveAttribute). Let cdo, constro,
odo be a concrete class diagram, a concrete OCL invariant, and a concrete object
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EvalAttributeCallExp()

a:Attribute

al:AttributeLink dv:DataValue

attribute

o:Object
value

oe:OclExpression a:Attribute

source referredAttribute

a:Attribute

al:AttributeLink dv:DataValue
slot

attribute

o:Object
value

oe:OclExpression a:Attribute

referredAttribute

{and}
{and}

o:Object
o:Object

dv:DataValue

eval

eval

eval

ac:AttributeCallExp
ac:AttributeCallExp

{when}
ac.eval->isEmpty()

appliedProperty
source appliedProperty

slot

EvalAssociationEndCallExp()

ae2:AssociationEnd

le2:LinkEnd
l:Link

o2:Object

ae1:AssociationEnd

le1:LinkEnd

linkEnd

instance

referredAssociationEnd

o1:Object ae2:AssociationEnd

o1:Object

aec:AssociationEndCallExp

oe:OclExpression

{and}
connection

ae2:AssociationEnd

le2:LinkEnd

l:Link

o2:Object

ae1:AssociationEnd

le1:LinkEnd

linkEnd

instance

o1:Object ae2:AssociationEnd

o1:Object

aec:AssociationEndCallExp

oe:OclExpression

{and}

o2:Object

connection

{when}aec.eval->isEmpty()

appliedProperty
source

eval

connection

associationEnd associationEnd
linkEnd

instance

eval

appliedProperty
source

eval referredAssociationEnd

connection

associationEnd associationEnd
linkEnd

instance

Fig. 10. Evaluation of OCL expressions (attribute call, association navigation)

diagram, respectively, and cdr, constrr, odr their version after the refactoring of
moving attribute a from class src to dest has been applied. Then,

eval(constro, odo) = eval(constrr, odr)

Proof: By construction, constro and constrr differ only at places where constro

contains an expression form oe.a. The refactored constraint constrr has at the
same place the expression oe.ae2.a. By structural induction, we show that these
both expressions are evaluated to the same value. By induction hypothesis, we
can assume that oe is evaluated for both expressions to the same value srcO. In
object diagram odo, object srcO must have an attribute link for a, whose value is
represented by dv. According to EvalAttributeCallExp, oe.a is evaluated in odo

to dv. Furthermore, in both odo and odr the object srcO is linked to an object
destO of class dest. According to EvalAssociationEndCallExp, the expression
oe.ae2 is evaluated to destO in odr . Furthermore, we know by construction of odr

that destO has an attribute slot for a with value dv. Hence, oe.ae2.a is evaluated
to dv.

5 Conclusions and Future Work

While the MDA initiative of the OMG has triggered recently much research
on model transformations, there is still a lack of proof techniques for proving
the semantic preservation of transformation rules. In the MDA context, this
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question has been neglected also because many modeling languages do not have
an accessible formal semantics yet what seems to make it impossible to define
criteria for semantic preservation. However, as our example shows, the semantic
preservation of rules can also be proven if the semantics of source/target models
is given only partially. In case of MoveAttribute it is enough to agree on the
semantics of attribute call and association end call expressions.

In this paper, we define and motivate a criterion for the semantic preservation
of UML/OCL refactoring rules. Our criterion requires to extend a refactoring rule
by a mapping between the semantic domains (states) of source and target model.
We argue that our running example MoveAttribute preserves the semantics
according to our criterion. Our proof refers to the three graphical definitions
of the refactoring rule (class diagram, OCL, object diagram) and to a novel,
graphical formalization of the relevant parts of OCL’s semantics.

As future work, we plan to apply our approach also on pure OCL refactoring
rules, i.e., rules, which simplify the structure of complicated OCL expressions
but do not change anything in the underlying class diagram (see [10]).
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A Metamodels

This appendix contains the relevant parts of the metamodels for UML 1.5 (in-
cluding object diagrams) and OCL 2.0. For the sake of readability, the meta-
classes from the OCL metamodel are rendered with gray rectangles.

ModelElement

name : Name

Feature Classifier

StructuralFeature

Attribute

0..n

0..1

+owner

{ordered}
+feature

1+type

n

+typedFeature

Class Datatype

ModelElement

Classifier

AssociationEnd

multiplicity : Multiplicity

Association

1

n+association

+participant 1

+connection
{ordered}
2..*

+association

Fig. 11. UML - Core Backbone and Relationships
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Abstract. Graph transformations are one of the best known approaches
for defining transformations in model-based software development. They
are defined over the abstract syntax of source and target languages, de-
scribed by metamodels. Since graph transformations are defined on the
abstract syntax level, they can be hard to read and require an in-depth
knowledge of the source and target metamodels. In this paper we in-
vestigate how graph transformations can be made much more compact
and easier to read by using the concrete syntax of the source and tar-
get languages. We illustrate our approach by defining model refactorings.

Keywords: Metamodeling, Model Transformation, Refactoring, UML.

1 Motivation

One of the key activities of model-based software development [1] is transforma-
tion between models. Model transformations are defined in order to bridge two
different modeling languages (e.g., to transform UML sequence to UML commu-
nication diagrams) or to map between representations in the same language. A
well-known example of the latter case is refactorings, i.e., transformations that
aim at improving the structure of the source model [2,3].

Model transformations can be expressed in many formalisms (see [4] for an
overview) but graph transformation based approaches [5] are especially popular
due to their expressive power. Also the recently adopted OMG standard “Query,
Views, Transformations (QVT)” is based on this technique [6]. The problem
tackled in this paper is that model transformations written in a pure graph
transformation notation can easily become complex and hard to read.

A transformation written in QVT consists of a set of transformation rules.
Each rule has a left-hand-side (LHS) and right-hand-side (RHS) which define the
patterns for the transformation rule’s source and target models. A rule is applied
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on a given, concrete source model by matching a sub-model of the concrete model
with the LHS of the rule and replacing the matched sub-model with the RHS,
where any matchings are applied to the RHS before replacement. Additionally,
all conditions imposed by the optional when-clause of the rule must be satisfied.
The patterns defining the LHS and RHS are given in terms of the metamodels for
the source and target modeling language (note that nowadays all major modeling
languages, such as UML [7], are defined in the form of a metamodel). For the
sake of simplicity in this paper (but our approach is not restricted to that), we
will assume that the modeling languages for the source and target model coincide
and thus each transformation rule refers only to the metamodel of one language.

A disadvantage of the graph transformation approach in defining model trans-
formations is that the patterns LHS and RHS refer only to the abstract syntax
of the modeling language and the more readable concrete syntax is not used in
the transformation rule. Transformations written purely using abstract syntax
are not very readable and require the reader to be familiar with the metamodel
defining the abstract syntax. To overcome this problem, our approach is to write
the transformation rules directly in the concrete syntax of the modeling language
where possible. Unfortunately, this cannot be done directly since a number of
subtleties of patterns in transformation rules have to be taken into account. In
this paper, we make a distinction between the modeling language and the pat-
tern language used to formulate the LHS and RHS. More precisely, we describe
how the metamodel of the pattern language can be extracted from that of the
modeling language. The extracted metamodel for the pattern language is then
the basis to define a concrete syntax for patterns, that is similar to the concrete
syntax of the original modeling language.

The rest of the paper is organized as follows. Section 2 gives some back-
ground information on defining modeling languages and model transformation
techniques, with an emphasis on graph transformations. We show in Section 3
how to improve the readability of transformation rules by exploiting a concrete
syntax derived from the source and target modeling language. Section 4 illus-
trates the strengths and some limitations of the approach by applying it to UML
refactoring rules and Section 5 concludes the paper.

1.1 Related Work

The authors know of no other work in using concrete syntax for graph-based
model transformations. There is a good deal of research in applying graph trans-
formations to software engineering problems — see [8] for an introduction — such
as code generation, viewpoint merging and consistency analysis. However, in all
applications we have seen, the transformation rules are based on the abstract
syntax of the source and target modeling languages.

Approaches addressing issues related to concrete syntax and transformations
have been focused somewhat differently than our work. Papers on tool support
for model transformations, e.g. [9], have discussed the problem of synchronizing
a model and its visual representation after a transformation has been executed.
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One approach is to extend the metamodels of the modeling languages with a
metamodel for the visual representation of models (i.e., the concrete syntax)
and to formulate the transformation rules based on this extended metamodel.

2 Defining Model Transformations

2.1 Metamodeling

A modeling language has three parts: (1) the abstract syntax that identifies the
concepts of the language and their relationships, (2) the concrete syntax that
defines how the concepts are represented in a human-readable format, and (3)
the semantics of the concepts. This paper is only concerned with (1) and (2).

The abstract syntax of a modeling language is usually defined in the form
of a metamodel. A metamodel is usually described by a (simplified form of a)
UML class diagram [7] with OCL [10] invariants. The concepts of the language
are defined by classes in the metamodel (i.e., meta-classes). Concept features are
given as meta-attributes on meta-classes and relationships between concepts are
given by meta-associations.

ModelElement

name:String

Feature

visibility:String
Classifier

Class

DatatypeAttribute

Operation

*

1

owner

type

1*

feature

Fig. 1. Metamodel of simplified class diagrams, called CDSimp

Figure 1 shows the metamodel of a drastically simplified version of UML class
diagrams, called CDSimp. The language CDSimp will serve as a running ex-
ample in the remainder of this paper. The metamodel for CDSimp consists
of metaclasses that correspond directly to concrete model elements, namely
Attribute, Operation, Class and Datatype, as well as abstract metaclasses
that do not have a concrete syntax representation but are introduced for structur-
ing purposes: ModelElement, Feature, Classifier. For instance, the metaclass
ModelElement declares a metaattribute name of type String that is inherited
by all other metaclasses.

OCL invariants attached to the metamodel impose restrictions that every
well-formed model must obey (thus, the invariants are also called well-formedness
rules). Two invariants are relevant for the examples presented later in this paper.
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:Class

name='Person'

:Datatype

name='Integer'

:Attribute

name='age'
visibility='public'

:Operation

name='getAge'
visibility='private'

ownerowner
featurefeature

type

(a) Instantiation of metamodel

'Person'

+ 'age':'Integer'

- 'getAge'

«datatype»
'Integer'

«datatype»
'String'

(b) Graphical notation
using concrete syntax

Fig. 2. Two representations of the same class diagram

The first invariant says that the names of all features in a class or datatype are
pairwise different and the second invariant restricts the values for visibility:

context C l a s s i f i e r inv UniqueFeatureName :
s e l f . f ea tu re −>f o rA l l ( f1 , f 2 | f 1 . name=f2 . name imp l i e s f1=f2 )

context Feature inv Vis ib i l i t yDomain :
s e l f . v i s i b i l i t y = ’ pub l i c ’ or
s e l f . v i s i b i l i t y = ’ p r i v a t e ’ or
s e l f . v i s i b i l i t y = ’ p rot ec t ed ’

Considering only the abstract syntax of a modeling language, one can say that
a model written in this modeling language is just an instance of the language’s
metamodel that obeys the two given well-formedness rules (i.e. the two OCL in-
variants UniqueFeatureName and VisibilityDomain are evaluated in every model
to true). A model can be depicted as an object diagram (cf. Figure 2(a)) but this
is not very readable, because all concrete model concepts are reified as meta-
classes in the metamodel. More readable for humans is a graphical representation
of the same model that takes the concrete syntax of the language into account
(cf. Figure 2(b)). The concrete syntax for CDSimp resembles that of UML class
diagrams. The only difference is that string literals, such as the name of a class
or attribute, are given in quoted form (e.g. ’Person’ instead of Person). We will
need this convention later on.

2.2 Concrete Syntax Definition

The concrete syntax of a language can be defined as a mapping from all possi-
ble instances of the language’s metamodel into a representation format (in most
cases, a visual language [11]). Despite the recent progress that has been achieved
in formalizing diagrams (see, for example, OMG’s proposal for Diagram Inter-
change [12] as an attempt to standardize all graphical elements that can possibly
occur in diagrams), it is still current practice to define the concrete syntax of a
modeling language informally. For the sake of brevity, we also give an informal
definition here, but, as shown in [13], a conversion into a formal definition can be
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done straightforwardly. The language CDSimp has the following concrete syntax
definition:

– Classes and datatypes are represented by rectangles with three compart-
ments.

– The first compartment contains the name of the class/datatype. The name
of datatypes is stereotyped with <<datatype>>.

– The remaining compartments contain the representation of all owned fea-
tures (attributes are shown in the second, operations in the third compart-
ment). A feature is represented by a line of the form:
visiRepr ’ ’ name [’:’ type]
where visiRepr is a representation of the feature’s visibility (’+’ for ’public’,
’-’ for ’private’, ’#’ for ’protected’), name is the actual name of the feature,
and, in case of an attribute, type is the name of the attribute’s type. Note that
both visibility and name are mandatory parts of a feature representation.

Concrete syntax definitions are needed only for those concepts that are reified
in a concrete model. For example, the abstract metaclass Feature does not have
a concrete syntax definition.

2.3 Model Transformations

The exact format and semantics of model transformation rules is fully described
in [6]. In this paper, we consider only the format of the patterns LHS and RHS in
each transformation rule, and the relationship of LHS and RHS to the optional
when-clause of the rule.

A pattern can be defined as a more general form of object diagram in which all
objects are labeled by a unique variable with the same type as the object. Vari-
ables are also used in order to represent concrete values in objects for attributes.
Unlike usual object diagrams, objects of abstract classes (e.g. Classifier) can
occur in patterns.

 renameAttribute(oldName:String, newName:String) 

a:Attribute

name=oldName

{when}
c.feature->forAll(f| 
 f.name <> newName)

c:Classifier
owner

feature

a:Attribute

name=newName

c:Classifier
owner

feature

Fig. 3. QVT rule to rename an attribute within classifiers

Figure 3 shows an example transformation for renaming an attribute of a clas-
sifier. The pattern LHS specifies the subgraphs to be matched in the source model
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when the rule is applied. The LHS consists of two objects of type Classifier
and Attribute, respectively, labeled with variables c and a, which are connected
by a link instance of the owner-feature association. The value for metaattribute
name in object a is the same as the value of the rule parameter oldName of
type String. In addition, the when-clause requires object c to have no feature
with name newName. The pattern RHS is identical to LHS with the exception
that variable oldName is substituted by newName. Informally, the application
of renameAttribute on a concrete source model involves the following steps: (1)
find a classifier (i.e., since metaclass Classifier is abstract, a class or datatype)
in the source model that has an attribute with name oldName (matching the
LHS) but no feature with name newName (checking the when-clause) and then
(2) rename the matching attribute from oldName to newName and do not make
any other change in the model. These steps would be applied iteratively as
often as possible. Note that the when-clause implicitly imposes the constraint
that newName is different than oldName. This ensures termination of the rule
application. The when-clause also ensures syntactical correctness of the target
model. For example, it ensures that the well-formedness rule UniqueFeatureName
is satisfied in the target.

3 Patterns In Concrete Syntax (PICS)

Graph transformation rules, such as those given by QVT and described in Sec-
tion 2, are a very powerful mechanism to describe model transformations. Read-
ability, however, can become a serious problem if the patterns LHS and RHS are
given in object diagram syntax. The main idea of our approach is to alleviate
this problem by exploiting the concrete syntax of the language whose models
we want to transform. Unfortunately, we cannot apply the concrete syntax of
the modeling language directly for the rendering of patterns because some im-
portant information of the pattern would be lost. We will, thus, first analyze
the differences between a modeling language and the corresponding pattern lan-
guage used in transformation rules. Then, the pattern language is defined by its
own metamodel, which is, as shown in Section 3.2, a straightforward modifica-
tion of the original metamodel for the modeling language. Based on the modified
metamodel, we finally define a concrete syntax for the pattern language, which
is called PICS (patterns in concrete syntax). The term PICS metamodel refers
to the metamodel of the pattern language that has been derived from the meta-
model of the modeling language.

3.1 Differences Between Models and Patterns

For defining a concrete syntax for pattern diagrams the following list of differ-
ences between models (seen as instances of the modeling language’s metamodel)
and patterns used in transformation rules has to be taken into account:
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1. Objects in patterns must be labeled1 with a unique variable (e.g. the
label for c:Class is c).

2. A pattern usually represents an incomplete model whereas object
diagrams are assumed to be complete, i.e., all well-formedness rules and
multiplicities of the metamodel are obeyed. For example, the patterns LHS,
RHS in renameAttribute (Figure 3) show neither the attribute visibility
of object a:Attribute nor a link to its type (an object diagram could not
drop this link due to multiplicity 1 of the corresponding association end at
Datatype).

3. Patterns can have objects whose type is an abstract class whereas
the type of objects in object diagrams is always a non-abstract class.

4. Patterns can contain variables to represent attribute values in ob-
jects whereas in object diagrams such values are always literals or ground-
terms.

A pattern language is, due to these differences, more expressive than the
language of object diagrams since each object diagram is also a pattern but not
vice versa. Note, however, that the last difference is only a minor one. Variables
for attribute values could easily be integrated into object diagrams as well if the
value of attribute slots are always displayed according to some simple rules: (i)
literals of type String must be enclosed by quotes and (ii) literals of all other
types have to be pre-defined. If, under these conditions, a term occurs in an
attribute slot that is neither a composed term nor a literal of type String or
any other type, then this term would denote a variable.

3.2 Transforming the Original Metamodel to PICS Metamodel

The important differences between models and patterns (points (1) – (3) above)
can be formalized by defining a metamodel for pattern diagrams. Fortunately,
this metamodel can be automatically derived from the original metamodel by
applying the following changes:

– Add attribute label:String with standard multiplicity 1..1 to each meta-
class. This change captures the mandatory labels of objects in pattern dia-
grams (see difference (1) in above list of differences).

– Make all attributes in the metamodel optional (by giving them the attribute
multiplicity 0..1) and change all association multiplicities from y..x to 0..x.
Both changes reflect incompleteness of patterns (see difference (2)).

– Make all abstract classes non-abstract (see difference (3)).

Figure 4 shows the changes on the metamodel for CDSimp. The root class
ModelElement has a new attribute label that is inherited by all other classes.
The two other attributes name and visibility became optional by the attribute

1 In many graph transformation systems including QVT the label is optional. We
assume here the strict version since it will make it easier to rewrite a pattern using
the concrete syntax.
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ModelElement

name:String

Feature

visibility:String
Classifier

Class

DatatypeAttribute

Operation

*

1

owner

type

1*

feature ⇒

ModelElement

label:String
name:String[0..1]

Feature

visibility:String [0..1]
Classifier

Class

DatatypeAttribute

Operation

0..1

owner

type

0..1*

*
feature

Fig. 4. Original language metamodel and derived PICS metamodel

 renameAttribute(oldName:String, newName:String) 

a:Attribute

label='a'
name=oldName

{when}
c.feature->forAll(f| 
 f.name <> newName)

c:Classifier

label:'c'

owner
feature

a:Attribute

label='a'
name=newName

c:Classifier

label:'c'

owner

feature

(a) Rule as instance of PICS metamodel

 renameAttribute(oldName:String, newName:String) 

{when}
c.feature->forAll(f| 
 f.name <> newName)

<<classifier>>
:c

:oldname::a

<<classifier>>
:c

:newname::a

(b) After applying PICS concrete syn-
tax

Fig. 5. Rule renameAttribute as instance of PICS metamodel and in concrete syntax

multiplicity 0..1. The abstract classes ModelElement, Feature, Classifier be-
came non-abstract and finally all multiplicities on association ends were changed
to the range 0..OrigMultiplicity (note that multiplicity * is not affected).

3.3 Defining Concrete Syntax for PICS Metamodel

After the pattern language has been formalized as the PICS metamodel, we can
represent eachpatternas an instance of thePICSmetamodel.Figure 5(a) shows the
transformation rule renameAttributeas an example. Please note that Figure 5(a)
is just another representationof the original definitiongiven inFigure 3andconveys
exactly the same information. Hence, each representation equivalent to Figure 5(a)
is also equivalent to the original definition of the transformation rule.

Defining an equivalent representation for the instances of a metamodel is
traditionally done by defining a concrete syntax for the metamodel. For our
running example, a concrete syntax for the PICS metamodel shown in Figure 4
could be defined by modifying the concrete syntax for CDSimp as follows:

– Instead of the name, the first compartment of classes/datatypes shows a line
of the form name ’:’ label where name denotes the value of the optional
attribute name and label the value of the mandatory attribute label. Since
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name appears only optionally, a delimiter ’:’ between name and label is
needed in order to ensure correct parsing. The delimiter must not occur in
name and label.

– An attribute/operation having an owning classifier is shown by a text line in
the second/third compartment of the owning classifier. The only difference
to the concrete syntax of CDSimp is the usage of delimiter ’:’ to separate
the line items (in order to handle optional occurrences) and that the label
of the attribute/operation is added at the end of the line.

In other words, the line has the form [visiRepr ] ’:’ [name] [’:’ type] ’:’ label
If an attribute/operation does not have an owning classifier (note the mul-
tiplicity 0..1 for the association between Feature and Classifier in the
PICS metamodel) then the text line is shown outside any other classifier in
a box.

– Instances of Classifier are rendered the same as classes/datatypes except
that they have a stereotype <<classifier>> in the first compartment.

– Features (instances of Feature) are rendered the same way as attributes/ op-
erations but, in order to distinguish them, they have to be marked as features.
This could be done, for example, by preceding the text line with ’f:’.

– Instances of ModelElement are rendered by a one-compartment rectangle
labeled with name ’:’ label.

The first two items explain how to adapt the renderings of metaclasses that are
non-abstract both in the original metamodel of the modeling language CDSimp
and in the PICS metamodel. The rendering in PICS is very similar to that in
CDSimp. Merely the label of the object had to be added and a delimiter was
introduced to identify the position of an element in a text line. The remaining
items explain the rendering of metaclasses that were abstract in the original
metamodel but became non-abstract in PICS. Since no rendering of these classes
was defined for CDSimp, the new renderings for the PICS metamodel had to be
invented. An application of the PICS concrete syntax is shown in Figure 5(b)
for renameAttribute.

To summarize so far, we have defined the abstract syntax (using a metamodel)
of the pattern language for defining patterns in the LHS and RHS of a graph
transformation rule. Furthermore, we have shown on an example how to define
concrete syntax for this pattern language based on the syntax of the associated
modeling language.

3.4 Finding a Good Concrete Syntax for the Pattern Language

Although it is always possible to define a concrete syntax for the PICS meta-
model (note that showing the instance of the metamodel just as an object dia-
gram – see Figure 5(a) for an example – would be a trivial version of a concrete
syntax) it is usually a challenge to find a non-ambiguous concrete syntax that
is still similar to the concrete syntax of the modeling language whose models



On the Usage of Concrete Syntax in Model Transformation Rules 93

are being transformed. The definition of a good concrete syntax is of primary
importance for the readability and understandability of the transformation rules
written in PICS syntax.

There are basically two problems to tackle: (1) Handling of optional occur-
rences of attribute and links and (2) rendering of classes that were abstract in
the metamodel of the modeling language.

The first problem was tackled in the above CDSimp example by using delim-
iters that allow to infer for a rendered object which of its attributes are rendered
and which not. This technique, however, needs the assumption that the symbol
used as delimiter (here ’:’) is not used otherwise in order to avoid ambiguity
of the representation. Some initial tool support for detecting ambiguities in a
concrete syntax definition is described in [14].

In order to solve the second problem, new icons/symbols have to be invented
which raises the issue of similarity between the original modeling language and
the pattern language. For some classes, e.g. Feature and Classifier, a suitable
rendering can be defined as a straightforward generalization of the renderings
of the subclasses. For other classes, e.g. ModelElement, this heuristic does not
work just because the renderings of the subclasses are too diverse.

As future work, we plan to investigate pattern languages that allow mixing of
abstract and concrete syntax. This could be done by leaving the concrete syntax
definition for the pattern language incomplete. This would mean that some parts
of patterns do not have a rendering in the concrete syntax, and would be done
when there exists no rendering that is similar to the modeling language. For ex-
ample, if a rule needs to refer to an abstract metaclass that has no rendering, we
would allow this abstract metaclass to be referenced in the pattern definition. In
essence, this allows patterns to mix concrete and abstract syntax. A mechanism
would be required to control whether an element is concrete or abstract but this
could be done, for example, in a similar way to the quote/anti-quote mechanism
in LISP.

4 Case Study: UML Refactoring Rules in PICS Notation

In [15], a number of refactoring rules for UML class diagrams using the ab-
stract syntax of class diagrams has been defined. We present, in the following, a
rewriting of these refactoring rules2 using our PICS approach.

The refactoring rules are written with respect to the metamodel for UML
1.5 (see [15] for the relevant part of the metamodel). The refactoring rules are
designed to preserve an important well-formedness rule of the UML 1.5 meta-
model, namely that names for attributes, opposite association ends and owned
elements are unique within each classifier and all its parents along the general-
ization hierarchy. In order to ensure this well-formedness rule, most refactoring
rules have a when-clause that uses the following additional operation:

2 More precisely, some improved variants of the rules given in [15] are taken here as a
starting point.
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context C l a s s i f i e r def : a l lCon f l i c t ingNames ( ) : Bag ( S t r ing )=
s e l f . a l lPa r en t s ()−> i n c l ud in g ( s e l f )

−>union ( s e l f . a l lCh i l d r en ( ) )
−> i t e r a t e ( c ; acc : Bag( S t r ing )=Bag {} |

acc−>union ( c . oppos i t eAssoc ia t ionEnds ( ) . name)
−>union ( c . a t t r i b u t e s ( ) . name)
−>union ( c . ownedElement . name ) )

4.1 PullUpAttribute

The rule PullUpAttribute moves an attribute from a child class to a parent class.
It can be rewritten straightforwardly using the same PICS syntax that has been
used for CDSimp. Please note that we do not rewrite the when-clause. We show
below the PullUpAttribute both in its original form and the rewritten version
(all the examples will be presented in a similar fashion).

 PullUpAttributeUML(a:Attribute, father:Class)

g:Generalization

father:Class a:Attribute

son:Class
child

g:Generalization

father:Class

a:Attribute
son:Class

parent
specialization

generalization

feature
owner

owner
feature

parent
specialization

generalization
child

father.allConflictingNames()->count(a.name)=1
{when}

⇓
PullUpAttribute(a:Attribute, father:Class)

:son

:::a

:father :father

:::a

:son
{when}

father.allConflictingNames()
     ->count(a.name)=1

4.2 MoveAttribute

The refactoring MoveAttribute moves an attribute from a class on one end of
an association to a class on the other end of the association. In the rewritten
version, the when-clause is modified. The part of the when-clause stipulating the
connecting association to be of multiplicity 1-1 is in the rewritten version ren-
dered by an annotation 1 on the association ends, which is a standard technique
in UML. More complicated forms of OCL constraints could be represented in a
visual form. We do not discuss this topic here in-depth but refer the interested
reader to [16] where graphical notations are defined as abbreviations for complex
OCL expressions.
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MoveAttribute(a:Attribute, ae2:AssociationEnd)

a:Attribute

feature

dest:Classsrc:Class

as:Association

ae1:AssociationEnd

connection

{when}
dest.allConflictingNames()->excludes(a.name) and
ae1.multiplicity.is(1,1) and
ae2.multiplicity.is(1,1)

connection

association
participantparticipant

association

owner

association association

ae2:AssociationEnd

a:Attribute

feature

dest:Classsrc:Class

as:Association

ae1:AssociationEnd

connection connection

association
participantparticipant

association

owner

association association

ae2:AssociationEnd

⇓
 MoveAttribute(a:Attribute, ae2:AssociationEnd) 

:src

:::a

:dest

dest.allConflictingNames()
            ->excludes(a.name)

1

1:ae2

:src

:dest

:::a

1

1:ae2

{when}

4.3 ExtractClass

The refactoring ExtractClass creates for a given class src a new class and connects
it with src by an association with multiplicity 1-1. Furthermore, the created class
and association should be placed in the same namespace as class src. Please note
that the metaclass Namespace is abstract in the UML 1.5 metamodel. For this
reason, a new rendering for Namespace has to be invented for the PICS syntax.
Here, a package icon stereotyped with <<namespace>> has been chosen.

ExtractClass(src:Class, newCN:String, role1:String, role2:String)

as:Association

ae1:AssociationEnd

name=role1

ae2:AssociationEnd

name=role2

extracted:Class

name=newCN

participant

association

{when}
if (nsp.isKindOf(Classifier)) 
then nsp.allConflictingNames()->excludes(newCN)
else  -- nsp must be Package
       nsp.ownedElement.name->excludes(newCN)
endif and
src.allConflictingNames()->excludes(role1)

namespace

ownedElement

namespace
ownedElement

namespace

ownedElement

ownedElement

participant

association

src:Class

src:Class

association

association

connection

connection

nsp:Namespace

nsp:Namespace
namespace

m1:Multiplicity

m2:Multiplicity

mr1:MultiplicityRange

lower=1
upper=1

mr2:MultiplicityRange

lower=1
upper=1

range

range

multiplicity

multiplicity
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⇓
 ExtractClass(src:Class, newCN:String, role1:String, role2:String) 

 <<namespace>>
:nsp

:src

 <<namespace>>
:nsp

:src

newCN:extracted

1

1

role1

role2

if (nsp.isKindOf(Classifier)) 
then nsp.allConflictingNames()->excludes(newCN)
else  -- nsp must be Package
       nsp.ownedElement.name->excludes(newCN)
endif and
src.allConflictingNames()->excludes(role1)

{when}

5 Conclusion and Future Work

This paper addressed how to define model transformation rules in a more read-
able way by using the concrete syntax of source and target modeling languages
when defining the LHS and RHS of the rules. The concrete syntax, however,
had to be adapted to the peculiarities of patterns, mainly mandatory labeling of
objects and optional occurrence of attributes and links. Another major problem
is that the PICS concrete syntax has to invent a new rendering for metaclasses
that were abstract in the original metamodel. An alternative, that has been
only sketched in this paper, is to show these metaclasses in the abstract syn-
tax notation, that is to allow mixing concrete and abstract syntax presentations
within transformation rules. If an intuitive concrete syntax for patterns is found,
then transformation rules can be presented in the same way as models of the
source/target languages.

We have not addressed in this paper how the when-clause of transformations
rules can be rendered in graphical form as well. There is a standard technique
in graph-transformation literature how negative constraints can be made visi-
ble (known as non-application conditions (NACs)). Our approach could also be
extended by the work of Stein, Hanenberg and Unland presented in [16] where
visualizations of OCL constraints for the domain of metamodel navigation is
discussed.

Acknowledgements. The authors would like to thank the anonymous reviewers
for their very helpful comments on the initial version of this paper.
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Abstract. TTCN-3 is a standardized language for specifying and exe-
cuting test suites that is particularly popular for testing embedded sys-
tems. Prior to testing embedded software in a target environment, the
software is usually tested in the host environment. Executing in the host
environment often affects the real-time behavior of the software and,
consequently, the results of real-time testing.

Here we provide a semantics for host-based testing with simulated time
and a a simulated-time solution for distributed testing with TTCN-3.

Keywords: TTCN-3, distributed testing, simulated time.

1 Introduction

The Testing and Test Control Notation Version 3 (TTCN-3) is a language for
specifying test suites and test control [17]. Its syntax and operational seman-
tics are standardized by ETSI [4,5]. Previous generations of the language were
mostly used for testing systems from the telecommunication domain. TTCN-3
is however a universal testing language applicable to a broad range of systems.
Standardized interfaces of TTCN-3 allow to define test suites and test control on
a level independent of a particular implementation or a platform [6,7], which sig-
nificantly increases the reuse of TTCN-3 test suites. TTCN-3 interfaces provide
support for distributed testing, which makes TTCN-3 particularly beneficial for
testing embedded systems. TTCN-3 has already been successfully applied to test
embedded systems not only in telecommunication but also in automotive and
railway domains [2,9].
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Modern embedded systems consist of many timed components working in
parallel, which complicates testing and debugging. Potential software errors can
be too expensive to test on a target environment where the system is supposed
to work. In practice, embedded software is tested in the host environment used
for developing the system. That allows to fix most errors prior to testing in the
target environment.

The host environment differs from the target environment. When being de-
veloped, the actual system does not exist until late stages of development. En-
vironment simulations are used to represent target environments. If the target
operating system is not available, emulating the target OS is used to provide
message communication, time, scheduling, synchronization and other services
necessary to execute embedded software. Monitoring and instrumentation are
used to observe the order and the external events of an SUT.

Ideally, using environment simulations, target operating system emulations,
monitoring or instrumentation should not affect the real-time behavior of an
SUT. In practice, developing simulators and emulators with high timing accu-
racy is often unfeasible due to high costs and time limitations imposed on the
whole testing process. Monitoring without affecting real time behavior of an SUT
is expensive and often requires a product-specific hardware-based implementa-
tion. In host-based testing, using simulators, emulating target OS, monitoring or
instrumentations usually affects the real-time behavior of the SUT. If the effects
significantly change timed behavior, real-time testing is not optimal and leads
to inadequate test results.

Here we propose host-based testing with simulated time where the system
clock is modelled as a logical clock and time progression is modelled by a tick-
action. The calculations and actions within the system are considered to be
instantaneous. The assumption about instantaneity of actions implies that time
progress can never take place if there is still an untimed action enabled, or in
other words, the time progress has the least priority in the system and may take
place only when the system is idle. We refer to the time progress action as tick
and to the period of time between two ticks as a time slice. We assume that
the concept of timers is used to express time-dependent behavior. Further, we
refer to this time semantics as simulated time.

In [2] we proposed host-based testing with simulated time for non-distributed
applications. There we implemented simulated time on the level of TTCN-3
specifications. Here we provide a framework for host-based testing of distributed
embedded systems with TTCN-3, where simulated time is implemented at the
level of test adapters. The framework allows to use the same test suites for host-
based testing with simulated time and for testing with real time in the target
environment.

The rest of the paper is organized as follows. Section 2 provides a brief survey
on the general structure of a distributed TTCN-3 test system. In Section 3
we provide the time semantics for host-based testing with simulated time. In
Section 5, we give an overview of two case studies where simulated time has
been used two test two systems: one from telecommunication and one from
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Fig. 1. General structure of a distributed TTCN-3 test system

transportation domain. In Sections 4, we present our testing framework. We
conclude in Section 6 with discussing the obtained results.

2 TTCN-3 Test Systems

TTCN-3 is a language for the specification of test suites [8]. The specifications
can be generated automatically or developed manually. A specification of a test
suite is a TTCN-3 module which possibly imports some other modules. Mod-
ules are the TTCN-3 building blocks which can be parsed and compiled au-
tonomously. A module consists of two parts: a definition part and a control part.
The first one specifies test cases. The second one defines the order in which these
test cases should be executed.

A test suite is executed by a TTCN-3 test system whose general structure
is defined in [6] and illustrated in Fig. 1. The TTCN-3 executable (TE) entity
actually executes or interprets a test suite. A call of a test case can be seen as
an invocation of an independent program. Starting a test case leads to creating
a configuration. A configuration consists of several test components running in
parallel and communicating with each other and with an SUT by message pass-
ing or by procedure calls. The first test component created at the starting point
of a test case execution is the main test component (MTC). For communication
purposes, a test component owns a set of ports. Each port has in and out di-
rections: infinite FIFO queues are used to represent in directions; out directions
are linked directly to the communication partners.

The concept of timers is used in TTCN-3 to express time-dependent behavior.
A timer can be either active or deactivated. An active timer keeps an information
about the time left until its expiration. When the time left until the expiration
becomes zero, the timer expires and becomes deactivated. The expiration of a
timer results in producing a timeout. The timeout is enqueued at the component
to which the timer belongs.
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The Platform Adapter (PA) implements timers and operations on them. The
SUT Adapter (SA) implements communication between a TTCN-3 test system
and an SUT. It adapts message- and procedure-based communication of the
TTCN-3 test system to the particular execution platform of the SUT. The run-
time interface (TRI) allows the TE entity to invoke operations implemented by
the PA and the SA.

A test system (TS) can be distributed over several test system instances TS1,
..., TSn each of which runs on a separate test device [14]. Each of the TSi has
an instance of the TE entity TEi equipped with an SAi, a test logging (TL)
entity TLi, a PAi and a coder/decoder CDi running on the node. One of TE’s
instances is identified to be the main one. It starts executing a TTCN-3 module
and calculates final testing results.

The Test Management (TM) entity controls the order of the invocation of
modules. Test Logging (TL) logs test events and presents them to the test sys-
tem user. The Coding and Decoding (CD) entity is responsible for the encoding
and decoding of TTCN-3 values into bitstrings suitable to be sent to the SUT.
The Component Handling (CH) is responsible for implementing distribution of
components, remote communication between them and synchronizing compo-
nents running on different instances of the test system. Instances of the TE
entity interact with the TM, the TLs, the CDs and the CH via the TTCN-3
Test Control Interface (TCI) [7].

3 Simulated Time in TTCN-3

Here we first define the time semantics for testing with simulated time and then
proceed with concretizing it for TTCN-3 test systems.

The first choice to be made is between dense and discrete time. It is normally
assumed that real-time systems operate in “real”, continuous time (though some
physicists contest against the statement that the changes of a system state may
occur at any real-numbered time point). However, a less expensive, discrete time
solution is for many systems as good as dense time in the modelling sense, and
better than the dense one when verification is concerned. Therefore we chose to
work with discreet time.

We consider a class of systems where (i) the snapshots are taken with a speed
that allows the system to see the important changes in the environment and
(ii) external delays are significantly larger compared to the duration of normal
computations within the system. If the system satisfies these requirements, the
duration of computations within the system is negligible compared to the external
delays and can be safely treated as instantaneous or zero-time.

The assumption about instantaneity of actions leads us to the conclusion that
time progress can never take place if there is still an untimed action enabled, or
in other words, the time-progress transition has the least priority in the system
and may take place only when the system is idle: there is no transition enabled
except for time progress and communication with the environment. It means
that some actions are urgent, as a process may block the progress of time and
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enforce the execution of actions before some delay. This property is usually called
minimal delay or maximal progress [13].

For testing purposes, we focus on closed systems (a test system together with
an SUT) consisting of multiple components communicating with each other. We
say that a component is idle if and only if it cannot proceed by performing com-
putations, receiving messages or consuming timeouts. We refer to the idleness of
a single component as local idleness. We say that a system is idle if and only if
all components of the system are idle and there are no messages or timeouts that
still can be received during the current time slice. We call such messages and
timeouts pending. We refer to the idleness of the whole system as global idleness.

Definition 1 (Global Idleness). We say that a closed system is globally idle
if and only if all components are locally idle and there are no messages and no
timeouts pending.

If the system is globally idle, the time progresses by the action tick that de-
creases time left until expiration of active timers by one. If the delay left until
the expiration of a timer reaches zero, the timer expires within the current time
slice. Timers ready to expire within the same time slice expire in an arbitrary
order. Further, we refer to this time semantics as simulated time.

The time semantics of TTCN-3 has been intentionally left open to enable the
use of TTCN-3 with different time semantics [5]. Nevertheless, the focus has
been on using TTCN-3 for real-time testing so not much attention has been
paid to implementing other time semantics for TTCN-3 [17]. Existing standard
interfaces TCI and TRI provide excellent support for real-time testing but lack
operations necessary for implementing simulated time [6,7].

Our goal is to provide a solution for implementing simulated time for a dis-
tributed TTCN-3 test system. Developing a test suite for host-based testing
costs time and efforts. Therefore, we want the test suites developed for host-
based testing with simulated time to be reusable for real-time testing in the
target environment. Therefore we provide a solution that can be implemented
on the level of adapters, not on the level of TTCN-3 code. In this way, the same
TTCN-3 test suites can be used both for host-based testing with simulated time
and for real-time testing in the target environment. Although providing such a
solution inevitably means extending the TRI and TCI interfaces, we try to keep
these extensions minimal.

According to the definition of global idleness, we need to detect situations
when all components of the system are locally idle and there are no messages
and no timeouts pending. We reformulate this definition in terms of necessary
and sufficient conditions for detecting global idleness of the closed system. For
the sake of simplicity, we take into account only messages-based communication.
Extending the conditions and the solution to procedure-based communication is
straightforward.

The closed system consists of a TTCN-3 test system and an SUT. A distributed
TTCN-3 test system (TS) consists of n test system instances running on different
test devices. Further we refer to the test instances i as TSi. Each of the TSi

consists of a TEi, SAi and PAi. Global idleness requires all the entities to be
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[∀i = 1..n : (TEi = idle) ∧ (PAi = idle) ∧ (SAi = idle)] ∧ SUT = idle (1)∑
i=1..n SAiSentSUT = EnqdSUT (2)

SentSUT =
∑

i=1..n EnqdSAi (3)∑
i=1..n TCISentTEi =

∑
i=1..n TCIEnqdTEi (4)

∀i = 1..n : TRISentTEi = TRIEnqdSAiPAi (5)
∀i = 1..n : TRISentSAiPAi = TRIEnqdTEi (6)

Fig. 2. Global Idleness Condition

in the idle state (see condition 1 in Fig. 2). Condition 1 is necessary but not
sufficient to decide on global idleness of the closed system. There still can be
some message or timeout pending which can activate one of the idle entities.

”No messages or timeouts pending” means that all sent messages and timeouts
are already enqueued at the input ports of the receiving components. When
testing with TTCN-3, we should ensure that

– There are no messages pending between the SUT and the TS, i.e. all messages
sent by the SA (SASentSUT) are enqueued by the SUT (EnqdSUT) and that
all messages sent by the SUT (SentSUT) are enqueued by the SA (EnqdSA)
(see conditions (2-3) in Fig. 2).

– There are no remote messages pending at the TCI interface, i.e. all messages
sent by all instances of the TE entity via the TCI interface (TCISentTE)
are enqueued at the instances of the TE entity (TCIEnqdTE) (see condition
(4) in Fig. 2).

– There are no messages pending at the TRI interface, i.e. the number of
messages sent by every TEi via the TRI (TRISentTE) should be equal to
the number (TRIEnqdSAPA) of messages enqueued by the corresponding
SAi and PAi, and the number of messages sent by every SAi and PAi is the
same as the number of messages enqueued by the corresponding TEi (see
conditions (5-6) in Fig. 2).

It is straightforward to show that the system is still active if one of the conditions
in Fig. 2 is not satisfied. If all conditions in Fig. 2 are satisfied then all entities of
the test system and the SUT are idle and there are no timeouts/messages that
still can be delivered and activate them, thus the closed system is globally idle.

Lemma 2. A closed system is globally idle if and only if the conditions (1-6)
in Fig. 2 are satisfied.

Thus to implement the simulated time for TTCN-3, we need to detect situations
where conditions (1-6) in Fig. 2 are satisfied and enforce time progression.

4 Distributed Idleness Detection and Time Progression
in TTCN-3

Detecting global idleness of a distributed system is similar to detecting its ter-
mination. Our algorithm for simulated time is an extension of the well-known
distributed termination detection algorithm of Dijkstra-Safra [3].
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In the closed system, each component has a status that is either active or
idle. Active components can send messages, idle components are waiting. An
idle component can become active only if it gets a message or a timeout. An
active component can always become idle.

In the Dijkstra-Safra’s algorithm, termination detection was built into the
functionality of components. We separate global idleness detection from nor-
mal functionality of a component by introducing an idleness handler for each
component of the closed system. Since TTCN-3 is mainly used in the context
of black-box testing where we can only observe external actions, we consider
the SUT as a single component implementing certain interfaces in order to be
tested with simulated time. In a distributed TTCN-3 test system, we consider
instances of the TS as single components. We require synchronous communica-
tion between a component and its idleness handler to guarantee the correctness
of the extension of the algorithm.

To decide on global idleness we introduce a time manager. The time manager
can be provided as a part of SUT or as a part of the test system. The time
manager and the idleness handlers are connected into a unidirectional ring.

Time Manager. The time manager initializes the global idleness detection,
decides on global idleness and progresses time by sending an idleness token along
the ring. The token consists of a global flag and a global message counter. The
flag can be ”IDLE” meaning that there are no active components in the closed
system, ”ACTIVE” meaning that maybe one of the components is still active,
”TICK” meaning time progression and “RESTART” meaning reactivating the
system in the next time slice. The counter keeps track of messages exchanged
between the components.

The time manager initiates idleness detection by sending an idleness token
with the counter equal to 0 and the flag equal to “IDLE” to the next idleness
handler along the ring. The time manager detects global idleness if it receives
back the idleness token with the counter equal to zero, meaning there are no
messages pending between instances of the TS and the SUT, and the flag equal
to ”IDLE” meaning that all instances of the TSs and the SUT are idle. Otherwise
it repeats idleness detection in the same time slice.

If the time manager detects global idleness, it progresses time by sending the
token with flag ”TICK” along the ring. After all instances of the TS and the
SUT are informed about time progress, the manager reactivates the components
of the system by sending the token with flag ”RESTART” along the ring. That
synchronizes all the TS’s instances and the SUT on time progression. After the
reactivation, the time manager restarts idleness detection in the new time slice.

Idleness handler for TSi. We first consider the idleness handlers for TSi. An
idleness handler for the SUT is a simplified version of the TSi idleness handler. A
fragment of the Java class IdlenessHandlerTS in Fig. 3 illustrates the behavior
of an idleness handler for an instance of the TSi. The class implements interface
Runnable [1]. The idleness handler communicates with the other handlers via
operation IdlenessTokenSend() that allows to receive an idleness token from
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public synchronized void PAIdle( int TRISentPA , int TRIEnqdPA)

{TRISentSAPA+=TRISentPA ; TRIEnqdSAPA+=TRIEnqdPA; idlePA=true ; notify ( ) ; }

public synchronized void SAIdle ( int TRISentSA , int TRIEnqdSA,

int SASentSUT, int SUTEnqdSA)

{TRISentSAPA+=TRISentSA ; TRIEnqdSAPA+=TRIEnqdSA;

SASUTcount+=SASentSUT−SUTEnqdSA ; flagSA=true ; idleSA=true ; notify ( ) ; }

public synchronized void TEIdle( int TCISentTE , int TCIEnqdTE,

int TRISentTE , int TRIEnqdTE)

{th i s . TRISentTE+=TRISentTE ; th i s .TRIEnqdTE+=TRIEnqdTE;

TCITEcount+=TCISentTE−TCIEnqdTE; flagTE=true ; idleTE=true ; notify ( ) ; }

public synchronized void PAActivate (){ idlePA=false ; }
public synchronized void SAActivate (){ idleSA=false ; }
public synchronized void TEActivate (){ idleTE=false ; }

public synchronized void run (){ IdlenessToken msg=null ;

for ( ; ; ) { i f ( idlePA & idleSA & idleTE &(TRISentTE==TRIEnqdSAPA)&

(TRIEnqdTE==TRISentSAPA)&(buffer!=null ) )

{msg=buffer ; buffer=null ;

i f (msg . tag==IdlenessToken . IDLE | msg . tag==IdlenessToken .ACTIVE)

{ i f (flagTE | flagSA){msg . tag=IdlenessToken .ACTIVE;}
i f (flagTE){msg . count+=TCITEcount ; TCITEcount=0; flagTE=false ;}
i f ( flagSA){msg . count+=SASUTcount; SASUTcount=0; flagSA=false ;}
}

i f (msg . tag==IdlenessToken .TICK)

{TRISentTE=0; TRIEnqdTE=0; TRISentSAPA=0; TRIEnqdSAPA=0;

SASUTcount=0; idlePA=false ; flagSA=true ; flagTE=true ; pa . Tick ( ) ; }
i f (msg . tag==IdlenessToken .RESTART){pa . Restart ( ) ; }
NextHandler . IdlenessTokenSend(msg ) ;

}
. . . . . wait ( ) ; }
}

Fig. 3. Idleness Handler for TSi

one neighbor and propagate it further to the next one. For this purpose the
idleness handler keeps the reference NextHandler to the next handler along the
ring. The idleness handler decides on local idleness of the TSi, propagates the
idleness token along the ring and triggers time progression at the PAi. The
TSi is locally idle iff the TEi, the SAi and the PAi are idle and there are no
messages/timeouts pending between the TEi, the SAi and the PAi.

Messages exchanged by the TEi, the SAi and the PAi via the TRI interface
are internal wrt. the TSi. Messages exchanged by the TEi via the TCI interface
and the messages exchanged by the SAi with the SUT are external wrt. the
TSi. To keep information about external and internal messages, idleness handler
maintains several local counters. TRISentTE and TRIEnqdTE keep the number
of messages sent and enqueued by the TEi via the TRI interface. TRISentSAPA
and TRIEnqdSAPA provide analogous information for the SAi and the PAi. These
four counters are necessary to detect local idleness of the TSi. TCITEcount and
SASUTcount keep the number of external messages exchanged by the TSi via the
TCI interface and with the SUT.

Two flags (for TEi and SAi) kept by the idleness handler show whether
TCITEcount or/and SASUTcount respectively contain the up-to-date informa-
tion that is not known to the idleness token. Since the PAi communicates neither
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with the SUT nor with the other instances of the TS, information on messages
exchanged by the PAi is only important to detect local idleness of the TSi.
Therefore, there is no need for a flag for the PAi. The idleness handler keeps
information on the status of the TEi, SAi and PAi in the variables idleTE,
idleSA and idlePA respectively.

Initially, the statuses are false meaning TSi is possibly active. The flags are
initiated to true, meaning the idleness token does not have the up-to-date infor-
mation about messages exchanged by the TSi via TCI and messages exchanged
by the TSi and the SUT. The counters are initially zero.

To detect global idleness, the TEi, the SAi and the PAi should support a num-
ber of interfaces. To detect idleness of a TEi, we use TCI-operation TEIdle( int
TCISentTE, int TCIEnqdTE, int TRISentTe, int TRIEnqdTE) called by a TEi

at the idleness handler when the TEi becomes idle. The first two parameters keep
track of external messages exchanged via the TCI and the last two parameters
capture the same information for internal messages. Calling this operation leads
to changing the value of idleTE to true, updating the local counters TRISentTE,
TRIEnqdTE and TCITEcount and setting flagTE to true.

To detect local idleness of the PAi, we use operation PAIdle(int TRISentPA,
int TRIEnqdPA) called by PA at the idleness handler when an active PAi be-
comes idle. Two parameters correspond to the number of messages sent and the
number of messages received by the PAi via the TRI respectively. Calling PAIdle
at the idleness handler leads to changing variable idlePA to true and updating
local counters TRISentSAPA and TRIEnqdSAPA.

To detect local idleness of an SAi we use operation SAIdle(int TRISentSA,
int TRIEnqdSA, int SASentSUT, int SUTEnqdSA) called by SA at the idleness
handler when an active SAi becomes idle. TRISentSA and TRIEnqdSA denote
the numbers of internal messages sent and enqueued by the SAi. Parameters
SASentSUT and SUTEnqdSA keep analogous information about external messages
exchanged between the SAi and the SUT. Calling SAIdle() leads to changing
the status of SAi to true, updating the local counters and changing the flag of
SAi to true.

The TSi can be activated by receiving an external message. To detect an acti-
vation, we use operations TEActivate() called by the CH at the idleness handler
when a remote message is being enqueued at the idle TEi, SAActicvate() called
by the SAi at the idleness handler when an idle SAi gets a message or a timeout,
and PAActivate() called by the PAi at the idleness handler when an idle PAi

is activated. Calling these operation leads to updating the idleness status of the
corresponding entity to false.

Checking local idleness of the TSi is implemented by the method run(). Local
idleness of the TSi is detected iff status variables idleSA, idlePA and idleTE are
true and all internal messages sent via the TRI interface have been enqueued. This
is expressed by local idleness condition at the first if-statement of method run().

If the local idleness conditions are satisfied and the idleness handler is in the
possession of the idleness token with flag ”IDLE” or ”ACTIVATE” , the han-
dler propagates up-to-date information about the external messages exchanged
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between instances of the TS and the external messages exchanged between the
TS and the SUT by updating the idleness token and sending it further along the
ring to the time manager.

If flagTE is true then the number of external messages exchanged by the TSi

via TCI has changed since the last detection round. Thus the idleness handler
adds TCIcount to the counter of the idleness token. If flagSA is true, the number
of messages exchanged with the SUT has change. Thus the idleness handler
updates the token’s counter by adding the number of messages sent by the SAi

to the SUT and subtracting the number of messages from the SUT enqueued by
the SAi. If at least one of the local flags is true the flag of the token changes to
“ACTIVATE”, meaning one of TS instances or the SUT may still be active.

If the idleness handler gets an idleness token with flag ”TICK”, it prepares for
detecting idleness in the next time slice by setting all the flags to true, setting
idlePA to false , calling operation Tick() at the PAi, and sending the token
to the next handler along the ring. Upon Tick(), the PAi look-ups the timers
ready to expire in the new time slice. If the idleness handler gets an idleness token
with flag ”RESTART”, it calls operation Restart() at the PAi and propagates
the token to the next idleness handler. Upon Restart(), the PAi expires the
ready timers. The status of TEi and of SAi remains idle until explicit activation
because both TEi and of SAi may remain idle during a time slice.

The solution proposed in this section strongly resembles the termination de-
tection algorithm of Dijkstra-Safra when detection of messages pending on the
level of TCI and communication with an SUT is concerned. The condition de-
tected by an idleness handler in order to decide on local idleness of an instance of
the TS, guarantees that all entities of the TSi are idle and no messages/timeouts
are pending on the level of TRI.

Corollary 3. The solution for simulated time proposed in Section 4 detects
global idleness iff the conditions (1-6) in Fig. 2 are satisfied.

5 Case Studies

In this section we consider two case studies: one from the telecommunication
domain and another one from the railway domain.

5.1 2G/3G Mobile Phone Application

Here we consider embedded software for a 2G/3G dual-mode mobile terminal
that supports both WCDMA and GSM. GSM (Global System for Mobile Com-
munication) [11] is a mobile network technology that has a global footprint in
providing the second generation (2G) mobile services like voice, circuit-switched
and packet-switched data and short message service (SMS). WCDMA (Wide-
band Code Division Multiple Access) [10] is one of the 3G mobile network tech-
nologies that meets the performance demands of mobile services like the Mobile
Internet, including Web access, audio and video streaming, video and IP calls.
WCDMA provides a cost efficient wireless technology for high data throughput.
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Fig. 4. Structure of embedded software for a 2G/3G dual-mode mobile terminal

Equipping the third generation mobile phones with both WCDMA and GSM
technologies enables seamless, practically worldwide mobile service for their end-
users [10,11].

The software for a dual-mode WCDMA/GSM phone implements an inter-
working mechanism for both technologies (see Fig. 4). In case a phone user first
establishes a voice call using WCDMA technology and then moves outside of
WCDMA coverage, the software is able to provide voice call service over GSM.
Handovers from WCDMA to GSM and vice versa are handled in such a way
that no noticeable disturbance happens.

In this case study, an implementation of the third layer have been tested. It
combines the functionality of the third layers of WCDMA and GSM respectively,
solves WCDMA to GSM (and vice versa) handover issues and a mobile terminal
application (see Fig.4). In order to access and to control the implementation of
the third layer, the actual system under test (SUT) also includes layers 1 and
2 and a mobile terminal application. The SUT is a timed system. For example
handover from WCDMA to GSM should be accomplished within certain time
bounds. Otherwise handover would become visible to an end-user.

We have tested the SUT on a workstation, so the air interface connecting the
mobile terminal to the network is simulated by an Ethernet connection. The
network is mimicked by a test system that interacts with the SUT through the
simulated interfaces. There are three points available to control and observe the
SUT: CTRL can be used to control the phone driver on the top of the SUT,
L1 GSM and L1 WCDMA are used to exchange messages between the SUT and
the test system.

To test the implementation of the third layer of a 2G/3G mobile terminal, we
mimic the GSM/WCDMA air interfaces by Ethernet connections, emulate ser-
vices of the target operating system and simulate the mobile terminal hardware.
The test system simulates behavior of layers 1-3 of the mobile network. The OS
services have been emulated. We used host based testing with simulated time to
check behavioral time-dependant features of the SUT.
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At the time of developing the test system for this case study the TCI had
not been defined yet, hence proprietary APIs of the TTCN-3 tool had to be
used to implement it. The operations at this API are however comparable to
the operations in the TCI relevant for message exchange and indicating idleness.
Despite these technical differences to the approach in this paper, it is possible
to achieve that the implementation of simulated time is not visible on the level
of TTCN-3 code.

Testing the SUT with the developed test system sufficiently increased the
possibilities for debugging the SUT. Throughout the test execution the test
system the SUT could be suspended and inspected with a debugger. These time
intervals could be arbitrarily long, but due to the usage of simulated time no
timer expired in such an interval and testing could be continued after such a
long interval.

5.2 Railway Interlockings

Railway control systems consist of three layers: infrastructure, logistic, and inter-
locking. The infrastructure represents a railway yard that basically consists of a
collection of linked railway tracks supplied with such features as signals, points,
and level crossings. The logistic layer is responsible for the interface with hu-
man experts, who give control instructions for the railway yard to guide trains.
The interlocking guarantees that the execution of these instructions does not
cause train collisions or derailments. Thus it is responsible for the safety of the
railway system. If the interlocking considers a command as unsafe, the execu-
tion of the command is postponed until the command can be safely executed or
discarded. Since the interlocking is the most safety-critical layer of the railway
control system, we further concentrate on this layer.

Here we consider interlocking systems based on Vital Processor Interlock-
ing (VPI) that is used nowadays in Australia, some Asian countries, Italy, the
Netherlands, Spain and the USA [12]. A VPI is implemented as a machine which
executes hardware checks and a program consisting of a large number of guarded
assignments. The assignments reflect dependencies between various objects of a
specific railway yard like points, signals, level crossings, and delays on electri-
cal devices and ensure the safety of the railway system. An example of a VPI
specification can be found in [16]. In the TTMedal project [15], we develop an
approach to testing VPI software with TTCN-3. This work is done in coopera-
tion with engineers of ProRail who take care of capacity, reliability and safety
on Dutch railways. They have formulated general safety requirements for VPIs.
We use these requirements to develop a TTCN-3 test system for VPIs.

The VPI program has several read-only input variables, auxiliary variables
used for computations and several writable variables that correspond to the
outputs of the program. The program specifies a control cycle that is repeated
with a fixed period by the hardware. The control cycle consists of two phases: an
active phase and an idle phase. The active phase starts with reading new values
for input variables. The infrastructure and the logistic layer determine the values
of the input variables. After the values are latched by the program, it uses them
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to compute new values for internal variables and finally decides on new outputs.
The values of the output variables are transmitted to the infrastructure and to
the logistic, where they are used to manage signals, points, level crossings and
trains. Here we assume that the infrastructure always follows the commands of
the interlocking. The rest of the control cycle the system stays idle.

The duration of the control cycle is fixed. Delays are used to ensure the safety
of the system. A lot of safety requirements to VPIs are timed. They describe
dependencies between infrastructure objects in a period of time. The objects
of the infrastructure are represented in the VPI program by input and output
variables. Thus the requirements defined in terms of infrastructure objects can be
easily reformulated in terms of input and output variables of the VPI program.
Hence VPIs are time-critical systems.

We have tested VPI software without access to the target VPI hardware. To
execute VPI program, we simulated the VPI hardware/software interfaces and
the VPI program itself. The duration of the control cycle of VPI program is fixed.
The VPI program sees only snapshots of the environment at the beginning of
each control cycle, meaning the program observes the environment as a discrete
system. Timing constraints in a VPI program are expressed by time delays that
are much longer than the duration of the control cycle. That leads us to the
conclusion that we may safely use simulated time to test VPI software.

Based on the concept of the simulated time we have developed a test sys-
tem for executing the test cases. The experiments showed that our approach
to host-based testing with simulated time allows to detect violations of safety
requirements in interlocking software.

6 Conclusion

In this paper we proposed a simulated-time framework for host-based testing of
distributed systems with TTCN-3. Simulated time has been successfully applied
to testing and verification of systems where delays are significantly larger than
the duration of normal events in the system (see e.g. [2]). Our framework con-
tributes to the repeatability of test results when testing embedded software and
also solves some time-related debugging problems typical for distributed embed-
ded systems. It allows to use the same test suites for simulated time and for real
time testing. We also provide two case studies where host-based testing with
simulated time has been applied to two systems: one from telecommunication
domain and one from transportation domain.
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Abstract. In this work, we present a semantic query optimization tech-
nique to improve the efficiency of the evaluation of a subset of SQL:1999
recursive queries.

Using datalog notation, we can state our main contribution as an al-
gorithm that builds a program P ′ equivalent to a given program P , when
both are applied over a database d satisfying a set of functional depen-
dencies. The input program P is a linear recursive datalog program. The
new program P ′ has less different variables and, sometimes, less atoms
in rules, thus it is cheaper to evaluate. Using coral, P ′ is empirically
shown to be more efficient than the original program.

Keywords: Recursive queries, Semantic Query Optimization.

1 Introduction

Although research in recursive queries has been carried out for the last three
decades, the appearance of the SQL:1999 reaffirmed the necessity of research in
this area, given that SQL:1999 includes queries with linear recursion. Previous
standards of SQL did not include recursion, thus research in recursive query
optimization might be able to provide the suitable algorithms, to be included
in the query optimizers of the database management systems to speed up the
execution of recursive queries.

Although our results are focused on the development of algorithms to be in-
cluded in commercial object-relational database management systems, we use
datalog syntax since it is easier to manipulate. The class of datalog programs con-
sidered in this paper can be translated into SQL:1999 queries straightforwardly.

Example 1. Let us suppose that we have a database with the following relations:
stretch(Number, From, To), meaning that a flight with code Number has a
stretch from the airport From to the airport To; assig(Number, Employee)
meaning that a certain Employee is assigned to the flight Number.

Let us consider the query that computes the relation conn(Number, From, To,
First Officer, Purser), meaning that flight Number connects the airport From
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with the airport To, possibly using several stopovers. In addition, conn has
the information of the First Officer and the Purser of the flight. conn is the
transitive closure of each flight code with some additional information about the
flight crew.
P : r0 : conn(N, F, T, O, P ) : −stretch(N, F, T ), assig(N, O), assig(N, P )

r1 : conn(N,F, T, O, P ) : −stretch(N, F, Z), assig(N, O), assig(N, P ), conn(N, Z, T, O, P ) ��
P is linear, which means it has only one recursive atom in the body of the
recursive rule. Linear programs include most real life recursive queries, then
much research effort has been devoted to this class of programs (see [17] for a
survey of optimization techniques for this class of programs).

In addition, P is a single recursive program (sirup). This implies that it has
only one recursive rule. Sirups is another class of programs considered by several
researchers (see [6,8,1] for example).

The combination of both features (like in our example), is called linear single
recursive programs (lsirup). These programs are the programs considered in this
work, and they were also studied by several works (see [18,10,8] for example).

An interesting approach to optimize a recursive query is to see if we can
transform the query, somehow, to make the recursion “smaller” and “cheaper” to
evaluate. One possibility to do that is the semantic query optimization that uses
integrity constraints associated with databases in order to improve the efficiency
of the query evaluation [5]. In our case, we use functional dependencies (fds) to
optimize linear recursive datalog programs.

In this paper we provide an algorithm to optimize single recursive datalog pro-
grams under fds. The chase of datalog programs (ChaseF (P )) is a modification
of an algorithm introduced by Lakshmanan and Hernández [8]. It obtains from
a linear single recursive program P a program P ′, equivalent to P when both
are evaluated over databases that satisfy a set of functional dependencies F .

The chase of a datalog program P obtains an equivalent program P ′, where
the recursive rule may has smaller number of different variables and, less number
of atoms. That is, it obtains a program where the variables (in the recursive rule)
are equated among them due to the effect of fds. Moreover, those equalizations
of variables, sometimes reveal that an unbounded datalog program P is in fact
(due to the fds) a bounded datalog program.

Example 2. Considering the program of Example 1, let us suppose that our
company decides that the first officer should act as purser as well. This imposes
a constraint specifying that one flight code only has one employee assigned, that
is assig : {1} → {2}. The set of functional dependencies F indicates that the
values of the first argument determine the values in the second position in the set
of facts over the predicate assig. For example, the atoms assiged(ib405, peter)
and assig(ib405, mary) violate the fd assig : {1} → {2}.

Using the algorithm of the chase of datalog programs shown in this paper, it
is possible to compute the new program ChaseF (P ) that we call, for short, P ′:

s0 : conn(N, F, T, O, O) : −stretch(N,F, T ), assig(N,O)
s1 : conn(N, F, T, O, O) : −stretch(N,F, Z), assig(N,O), conn(N, Z, T, O, O)
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There are two combined beneficial effects. First, there are 6 different variables
in r0, but only 5 in s0. Second, the number of predicates in the bodies of the rules
also decreases: 3 and 4 in r0 and r1, respectively, but only 2 and 3 respectively
in s0 and s1.

The reader can observe that in this case P ′ is very similar to the original
program, the only difference is that some variables have been equalized. This
equalization comes from the fact that the database fulfills the functional depen-
dency assig : {1} → {2}. Therefore, if during the evaluation of the query, an
atom, let say assig(N, O), is mapped to the ground fact assig(IB405, peter),
then another atom assig(N, P ) should be mapped to the same ground fact.
Observe that assig(N, O) and assig(N, P ) have the same variable in the first
position, thus by assig : {1} → {2}, O and P are necessarily mapped to the
same ground term. ��

2 Related Work

Several strategies have been proposed to tackle the process of recursive queries.
Bancilhon, Maier, Sagiv and Ullman [3] introduced a technique called magic-
sets for rewriting linear queries taking advantage of binds between nodes in rule
goal trees. There is a family of papers that try to reduce the work done by a
query execution by remembering previous executions of queries that can have
intermediate values useful for the current execution. These techniques are called
memoing (see [4] for a survey).

Since in practice the great majority of recursions are linear, this class of
queries has attracted much work. From a logic programming perspective, several
works deal with the placement of the recursive atom in the body of the rules.
“Right-linear” and “left-linear” give better performance in linear recursion than
magic-sets [11].

The chase as a tool to optimize queries in the framework of datalog is also
used by several researchers. Lakshmanan and Hernández [8] introduced an al-
gorithm called the chase of datalog programs which is based in the use of the
chase [9,2]. Recent data models have also adopted the chase to optimize queries.
In the semistructured model, it has been also used as a rewriting technique
for optimizing queries [7]. Popa et. al. [14] used it to optimize queries in the
framework of the object/relational model.

3 Definitions

3.1 Basic Concepts

We assume the notation and definitions of [16] and then we only define the non-
standard concepts. We use EDB(P ) to refer to the set of EDB predicate names
in a datalog program P . We denote variables in datalog programs by capital
letters, while we use lower case letters to denote predicate names. For simplicity,
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we do not allow constants in the programs. Let ai be a atom, ai[n] is the term
in the nth position of ai.

We say that a program P defines a predicate p, if p is the only IDB predicate
name in the program. A single recursive rule program (sirup) [6] is a program
that consists of exactly one recursive rule and several non-recursive rules and
the program defines a predicate p. A 2-sirup is a sirup that contains only one
non-recursive rule (and one recursive rule).

A rule is linear if there is at most one IDB atom in its body. A linear sirup
(lsirup) [18] is a sirup such that its rules are linear. A 2-lsirup [18] is a 2-sirup
such that its rules are linear. That is, a 2 − lsirup is a program defining a
predicate p with one non-recursive rule and one recursive rule, which has only
one IDB atom in its body.

Example 3. The program of Example 1 is a 2-lsirup. ��
For the sake of simplicity, many of the definitions will apply to 2 − lsirups
although the algorithm presented in this paper is valid for lsirups as well. In
addition, from now on, we denote with r0 the non-recursive rule in a 2 − lsirup,
and r1 to denote the recursive rule.

Let P be a program, let r be a rule and let d be a database. Then, P (d)
represents the output of P when its input is d and r(d) represents the output
of r when its input is d. Let F be a set of functional dependencies, SAT (F )
represents the set of databases that satisfies F .

Let P1 and P2 be programs. P1 ⊆SAT (F ) P2, if P1(d) ⊆ P2(d) for all EDBs d
in SAT (F ). P1 ≡SAT (F ) P2, if P1 ⊆SAT (F ) P2 and P2 ⊆SAT (F ) P1.

A substitution is a finite set of pairs of the form Xi/ti where Xi is a variable
and ti is a term, which is either a variable or a constant, and Xi and ti are
different. The result of applying a substitution, say θ, to an atom A, denoted
by θ(A), is the atom A with each occurrence of X replaced by t for every pair
X/t in θ. For example, consider θ = {X/a, Y/b} and the atom p(X, Y ), then
θ(p(X, Y )) is p(a, b). A substitution θ can be applied to a set of atoms, to a rule
or to a tree to get another set of atoms, rule or tree with each occurrence X
replaced by t for every X/t in θ.

4 Expansion Trees

An expansion tree is a description for the derivation of a set of (intensional)
facts by the application of one or more rules to an extensional database. First,
we start with the definition of a tree generated by only one rule. Let r be the
rule q :− q1, q2, . . . , qk. Then, a tree T can be built from r as follows: the node
at the root of T is q, and q has k children, qi, 1 ≤ i ≤ k. We denote this tree as
tree(r).

Example 4. Using the program of Example 1, Figure 1 shows tree(r1).

In order to be a complete expansion tree, that is, an expansion tree describing
the complete execution of a program, the tree should start with the application
of a non-recursive rule.
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conn(N, F, T, O, P )

�����������������������������������������������

��������������������������������

����������������

stretch(N, F, Z) assig(N, O) assig(N, P ) conn(N,Z, T, O, P )

Fig. 1. tree(r1) ��

Let S and T be two trees. Then, S and T are isomorphic, if there are two
substitutions θ and α such that S = θ(T ) and T = α(S).

The variables appearing in the root of a tree T are called the distinguished
variables of T . All other variables appearing in atoms of T that are different
from the distinguished variables of T are called non-distinguished variables of T .

Let S and T be two trees, where ht denotes the head (the node at the root)
of T . Assume that exactly one of the leaves of S is an IDB atom1, denoted
by ps. The expansion (composition) of S with T , denoted by S ◦ T is defined
if there is a substitution θ, from the variables in ht to those in ps, such that
θ(ht) = ps. Then, S ◦ T is obtained as follows: build a new tree, isomorphic to
T , say T ′, such that T ′ and T have the same distinguished variables, but all
the non-distinguished variables of T ′ are different from all of those in S. Then,
substitute the atom ps in the last level of S by the tree θ(T ′).

From now on, we use the expression tree(rj ◦ ri) to denote tree(rj) ◦ tree(ri)
and, tree(rk

j ) to denote the composition of tree(rj) with itself, k times. Given a
2−lsirup P = {r0, r1}, Ti denotes the tree tree(ri

1◦r0). Ti is a complete expansion
tree since it describes the derivation of a set of IDB facts from an extensional
database. Obviously, since P is a recursive program, we may construct infinitely
many trees considering successive applications of the recursive rule. We call
trees(P ) the infinite ordered collection of trees {T0, T1, T2, T3, . . .}.

Example 5. Using the program of Example 1, Figure 2 shows T2.

conn(N, F, T, O, P )

�����������������������������������������������

��������������������������������

����������������

stretch(N, F, Z) assig(N, O) assig(N, P ) conn(N, Z, T, O, P )

�����������������������������������������������

��������������������������������

����������������

stretch(N, F, Z′) assig(N, O) assig(N, P ) conn(N, Z′, T, O, P )

��������������������������������

����������������

stretch(N, Z′, T ) assig(N, O) assig(N, P )

Fig. 2. The tree T2 using the program of Example 1

1 That is, the case of the trees generated by lsirups, since in the recursive rule of such
programs, there is only one IDB predicate.
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From now on, we shall consider only complete expansion trees. For the sake
of simplicity we shall refer to expansion trees simply as trees.

Let T be a tree. The level of an atom in T is defined as follows: the root of T
is at level 0, the level of an atom n of T is one plus the level of its parent. Level
j of T is the set of atoms of T with level j. The last level of a tree Ti is the level
i + 1. We say that two levels i and k (in a tree Tj) are separated by w levels if
|i − k| = w and i ≤ j + 1 and k ≤ j + 1.

4.1 TopMost and Frontier of a Tree

TopMost and frontier of a tree are two rules that can be extracted from any
tree. Let T be a tree: the frontier of T (also known as resultant), denoted by
frontier(T ), is the rule h :− l1, . . . , ln, where h is the root of T and l1, . . . , ln
is the set of leaves of T ; the topMost of T , denoted by topMost(T ), returns the
rule h :− c1, . . . , cn, where h is the root of T and c1, . . . , cn is the set of atoms
that are the children of the root.

Example 6. Using the tree of Figure 2:
frontier(T2): conn(N,F, T, O, P ):- stretch(N, F, Z), assig(N, O), assig(N, P )

stretch(N, F, Z′), assig(N, O), assig(N, P ) stretch(N, Z′, T ), assig(N, O), assig(N, P )

topMost(T2) :conn(N, F, T, O, P ) :- stretch(N, F, Z), assig(N, O), assig(N, P ), conn(N, Z, T, O, P )
��

Observe that the frontier of a tree in trees(P ) is a non-recursive rule, while
the topMost may be a recursive one. Let P be a 2 − lsirup, d an extensional
database and T a tree in trees(P ). T (d) represents the result of applying the
rules used to build T to the input extensional database d in the order specified
by T . That is, T (d) can be seen or computed as frontier(T )(d)2. Let T and Q be
two trees, T ≡SAT (F ) Q means that T (d) = Q(d) for any extensional database
d in SAT (F ).

5 Chase of a Tree

The chase [9,2] is a general technique that is defined as a nondeterministic pro-
cedure based on the successive application of dependencies (or generalized de-
pendencies) to a set of tuples (that can be generalized to atoms).

Let us consider the following: Let F be a set of fds defined over EDB(P ), for
some program P . Let Ti be a tree in trees(P ). Let f = p : {n} → {m} be a fd in
F . Let q1 and q2 be two atoms in the leaves of Ti such that the predicate name
of q1 and q2 is p, q1[n] = q2[n] and q1[m] 	= q2[m]. Note that n can be a set of
positions. In addition, observe that q1[m] and q2[m] are variables since we are
assuming that programs do not contain constants. An application of the fd f to
Ti is the uniform replacement in Ti of q1[m] by q2[m] or vice versa. By uniform,
we mean that q1[m] is replaced by q2[m] (or vice versa) all along the tree.
2 Observe that if T is in trees(P ), the body of the frontier of a tree only contains EDB

atoms.
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5.1 Partial Chase of a Tree

The partial chase of T with respect to F , denoted by ChasePF (T ), is obtained
by applying every fd in F to the atoms that are the leaves of T except the atoms
in the last level, until no more changes can be made. Observe that although the
atoms which are taken into account for the computation of the chase do not
include the atoms in the last level, if a variable is renamed by the chase, such
change is applied all along the tree.

Example 7. Let F be e : {1} → {2}:
T ChasePF (T )

e(X, Y, Y ) e(X, Z, Z)

e(X, X, Z)

p(X, X, Z)

�����
����

p(X, Y, Z)

e(X, Y, Y ) e(X, Y, Y )

e(X, X, Y )

p(X, X, Y )

�����
����

p(X, Y, Y )

��

Lemma 1. Let P be a 2 − lsirup, let F be a set of fds over EDB(P ). There
is a tree Tk such that for any tree Tl with l > k, topMost(ChasePF (Tl)) is
isomorphic to topMost(ChasePF (Tk)).

Proof. Note that for all i, x such that i > x > 0, Ti includes all the atoms of Ti−x

that are considered by the partial chase, then any equalization in ChasePF (Ti−x)
is also included in ChasePF (Ti). Therefore, there is a limit in the equaliza-
tions produced in the topMost given that all trees in trees(P ) with more than
two levels have the same topMost, and this topMost has a finite number of
variables. ��
The inclusion of the last level of the tree introduces equalizations that are more
difficult to model. Lemma 1 would not be true is such a case. We explored this
possibility in [13].

Lemma 2. Let P be a 2-lsirup. Let Ti be a tree in trees(P ), and let F be a set
of fds over EDB(P ). Then, Ti ≡SAT (F ) ChasePF (Ti).

The proof can be done readily, we do not include it by lack of space.

6 The Chase of Datalog Programs

In [12], there is a method to find Tk, the tree such that for any tree Tl with
l > k, topMost(ChasePF (Tl)) is isomorphic to topMost(ChasePF (Tk)). The
basic idea is sketched below.

Let us consider a tree Ti in trees(P ) and two atoms qj,k and ql,m of Ti. qj,k

is in the kth position (numbering the atoms of its level from left to right) of
level j. Similarly, ql,m is in the mth position of level l. Now, let us suppose
that the variables qj,k[n] and ql,m[n] are equalized by the ChasePF (Ti). Then
in Ti+1, qj+1,k[n] is equalized to ql+1,m[n] during the ChasePF (Ti+1). When we
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find a tree, say Tp, that for any equalization during its partial chase, say qj,k[n]
equalized to ql,m[n], in ChasePF (Tp−r), where 1 ≤ r ≤ 2N , qj−r,k[n] is equalized
to ql−r,m[n], then we have found Tk. Now the question is to find N .

6.1 The Computation of N

To compute N we need to provide a previous tool.
Let P be a 2 − lsirup. Let ph and pb be the IDB atoms in the head and in

the body of r1, the recursive rule of P . The Expansion Graph of a program P is
generated with this algorithm.

1. If the arity of the IDB predicate in P is k, add k nodes named 1, . . . , k.
2. Add one arc from the node n to the node m, if a variable X is placed in the

position n of ph, and X is placed in the position m of pb.
3. Add one arc from the node n without target node, if a variable X is placed

in the position n of ph, and it does not appear in pb.
4. Add one arc without source node and target node m, if a variable X is placed

in the position m of pb and it does not appear in ph.

Example 8. Let P = {r0, r1} where r1 contains the following IDB atoms:

p(A,B, C, D, E,F, G, H, I, J, K, L, M) : − . . . p(B,A, E, C, D, F, W, G, G, X, J, L, L)
In Figure 3, we can see the expansion graph of P . ��

1 2 3
3

4

5

6

7 8

9

10 11

12

13

Fig. 3. Expansion Graph of P

Let G be the expansion graph of a lsirup P , then N is the least common multiple
of the number of nodes in each path in G.

Example 9. The graph in Figure 3 has N= 6 (6= least common multiplier of 2,
3, 1, 2, 2, 2).

6.2 The Algorithm

Assuming that we have found Tk, the chase of a 2 − lsirup P w.r.t. a set of fds
F is obtained with the algorithm shown in Figure 4.

Our algorithm is based in Lakshmanan and Hernández’ algorithm [8], but our
algorithm obtains better results. This improvement comes from the terminating
condition. Their algorithm stops when it finds two consecutive trees with the
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Chase (P: a 2 − lsirup, F: a set of functional dependencies over EDB(P))
For any tree Ti with i < k such that

topMost(ChasePF (Tk)) is not isomorphic to topMost(ChasePF (Ti))
Output frontier(ChasePF (Ti));

Output topMost(ChasePF (Tk));

Fig. 4. Chase of a datalog program

same topMost after the partial chase. However, it is clear that after two consec-
utive trees with the same topMost after the partial chase, there would be bigger
trees that may introduce more equalizations in the topMost after the partial
chase. Our algorithm stops in a tree Tk such that it is sure that any bigger tree
than Tk would not introduce any other equalization in the topMost after the
partial chase. Hence, our algorithm introduces more equalities in the recursive
rule of the new program.

Theorem 1. Let P be a 2 − lsirup, let F be a set of fds over EDB(P ). The
ChaseF (P ) is equivalent to P when both are evaluated over databases in SAT (F ).

Proof. In order to prove this theorem, we have to prove that P ′ ⊆SAT (F ) P
and P ⊆SAT (F ) P ′.

We start with the proof of P ′ ⊆SAT (F ) P . Let NR be the set of non-recursive
rules in P ′, and let R be the set of recursive rules in P ′. Let s be a rule in NR,
by the algorithm in Figure 4, s = frontier(ChasePF (Ti)) for some tree Ti in
trees(P ). Then, by Lemma 2, {s} ⊆SAT (F ) ri

1 ◦ r0, and thus {s} ⊆SAT (F ) P .
Let r be a rule in R. Therefore, r = θ(topMost(Tj)), where θ is the substitution
defined by ChasePF (Tj) and Tj is a tree in trees(P ). Since r is a recursive rule
and P only has one recursive rule, then j > 0 and topMost(Tj) = r1. Therefore,
by construction, using the algorithm of the Chase of datalog programs, r = θ(r1),
and hence r ⊆ r1. Thus, we have shown that for any rule r in P ′, {r} ⊆SAT (F ) P .

Now, we tackle the other direction of the proof; P ⊆SAT (F ) P ′. We are going
to prove that any fact q produced by P , when P is applied to an extensional
database d in SAT (F ), is also produced by P ′, when P ′ is applied to d.

Let us assume that q is in Ti(d), that is, q is obtained after the application to
d of r0 once, and i times r1. We are going to prove that q is in P ′(d). We prove
it by induction on the number of levels of the tree Ti (in trees(P )) that if q is
in Ti(d), then q is in P ′(d).

Basis i=0, q is in T0(d). Then q is in P ′(d). Observe that P ′ always contains
frontier(ChasePF (T0)), since the topMostF (ChasePF (T0)) cannot be isomor-
phic to the topMost of the partial chase of any other tree in trees(P ) since r0 is
the only non-recursive rule of P . Then, necessarily the algorithm always outputs
frontier(ChasePF (T0)). Therefore, by Lemma 2, if q is in T0(d) then q is in
ChasePF (T0)(d), and then q is in P ′.
Induction hypothesis (IH): Let assume that ∀q ∈ Ti(d), 1 ≤ i < k, q ∈ P ′(d).
Induction step: i=j=k. q is in Tj(d). Assume q is not in any Tm(d), 0 ≤ m < j,
otherwise the proof follows by the IH. Thus, there is a substitution θ such that
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q is θ(pj), where pj is the root of Tj and where θ(tl) ∈ d for all the leaves tl of
Tj. Therefore, q is also in {frontier(Tj)}(d).

We have two cases:

Case 1: frontier(ChasePF (Tj)) is one of the non-recursive rules of P ′. Then
by Lemma 2 q is in P ′(d).
Case 2: frontier(ChasePF (Tj)) is not one of the non-recursive rules of P ′.
Thus, by Lemma 2 q ∈ {ChasePF (Tj)}(d) (assuming that d ∈ SAT (F )). Let γ
be the substitution defined by the ChasePF (Tj).

Let Tsub be the subtree of Tj that is rooted in the node at the first level
of Tj that is, the recursive atom at that level. Tsub has one level less than Tj ,
therefore Tsub is isomorphic to Tj−1. Observe that this follows from the fact that
in P there is only one recursive rule and one non-recursive rule.

Let qsub be an atom in Tsub(d), since Tsub is isomorphic to Tj−1, then qsub is in
Tj−1(d). Hence, by IH qsub ∈ P ′(d). It is easy to see that q ∈ {topMost(ChasePF

(Tj))}(d
⋃

qsub), that is, q ∈ {γ(r1)}(d
⋃

qsub).
By construction of P ′, in P ′ there is a rule st = θ(r1), where θ is the substi-

tution defined by the partial chase of Tk. By Lemma 1 and construction of the
algorithm in Figure 4, γ ≡ θ, otherwise frontier(ChasePF (Tj)) would be one
of the non-recursive rules in P ′.

We have already shown that qsub is a fact in P ′(d). Therefore, since st(d∪qsub)
obtains q, thus we have proven that if q is in Tj(d) then q is also in P ′(d). ��

7 Empirical Results

We used coral [15], a deductive database, in order to compare the running time
of the original program versus the optimized one. We ran 20 different programs
over databases of different sizes. The datalog programs were synthetic queries
developed by us. coral is an experimental system, this is a limitation, since the
maximum database size is restricted, because coral loads all tuples in memory
and then, if the database has a certain size, an overflow arises.

The computation time needed to obtain the optimized datalog program, using
a program in C++ in a 200-MHz Pentium II with 48 Mbytes of RAM, takes on
average 0.17 seconds with a varianza of 0.019. This is a insignificant amount of
time when the database to which it is applied the query has a normal size.

The average running time of the optimized program is the 43.95% of that of
the original one with a varianza of 0.10. The confidence interval of this improve-
ment, with a confidence level of 95%, is [28.82%, 59.10%]. That is, the optimized
program is between 1.7 and 3.5 times faster than the original one.

8 Conclusions and Future Work

Given a lsirup P and a set of fds F , we provide an algorithm that obtains a new
program P ′ equivalent to P when both are applied over databases in SAT (F ). In
addition, we have shown that the algorithm is correct. The algorithm shown in
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this paper is based in the partial chase, that does not consider atoms in the last
level of the chased trees. As a future work, it would very interesting the inclusion
of the last level in the computation of the chase. In that case, the chase would
introduce more equalities in the alternative optimized program.
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Abstract. In the last years, new semistatic word-based byte-oriented
compressors, such as Plain and Tagged Huffman and the Dense Codes,
have been used to improve the efficiency of text retrieval systems, while
reducing the compressed collections to 30–35% of their original size.

In this paper, we present a new semistatic compressor, called Pair-
Based End-Tagged Dense Code (PETDC). PETDC compresses English
texts to 27–28%, overcoming the optimal 0-order prefix-free semistatic
compressor (Plain Huffman) in more than 3 percentage points. Moreover,
PETDC permits also random decompression, and direct searches using
fast Boyer-Moore algorithms.

PETDC builds a vocabulary with both words and pairs of words. The
basic idea in which PETDC is based is that, since each symbol in the
vocabulary is given a codeword, compression is improved by replacing
two words of the source text by a unique codeword.

1 Introduction

The grown in size and number of text databases during the last decade makes
compression even more attractive. Compression exploits the redundancies in the
text to represent it using less space [1]. It is well-known that cpu speed has been
growing faster than disk and network bandwidth during the last years. Therefore,
reducing the size of the text, even at the expense of some cpu time, is useful
because it reduces the I/O time needed to load it from disk or to transmit it
thought a network.

Joining compression and block addressing indexes [12] improves the efficiency
of that retrieval structures. Those indexes are smaller than standard inverted
indexes because their entries do not point to exact word positions. Instead of
that, entries point to those blocks where a word appears. This has a main draw-
back: some searches (i.e. phrase search) need traversing the text in the pointed
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blocks, what usually implies decompressing the block. However, if the text is
compressed with a technique that permits direct search in the compressed text,
scanning the compressed blocks is much faster.

A good compressor for text databases has to join two main properties: i)
to permit direct search into the compressed text by compressing the search
pattern and then looking for this compressed version, and ii) to allow local
decompression, which permits to decompress any portion of the compressed file
without the need of decompressing it from the beginning. From the two main
families of compressors (semistatic and adaptive compressors) only the semistatic
ones join those two properties. Adaptive compressors, such as those from the
well-known Ziv-Lempel family [15,16] learn the data distribution of the source
symbols as they compress the text and therefore, the mapping “source symbol
↔ codeword” is adapted as compression progresses. Albeit there exist methods
to search text compressed with adaptive compressors [14,8], they are not very
efficient. Decompression is usually needed during searches as the code given
to a source symbol may vary along the text. Semistatic compressors (such as
Huffman [10]) perform a first pass over the source text to obtain the distinct
source symbols and to count their number of occurrences. Then, they associate
each source symbol with a code that do not change during the second pass
(where each source symbol is replaced by the corresponding codeword). Since the
mapping source symbol ↔ codeword does not vary, direct searching is allowed.

Classic Huffman is a well-known technique. It is a character-based method
that generates an optimal prefix 1 coding. Unfortunately, it is not well-suited
for text databases because of its poor compression ratio (around 60%). In [11],
Moffat proposed using words instead of characters along with a Huffman coding
scheme. As a result, compression ratio was reduced to around 25–30%. Moreover,
using words instead of characters, gave the key to the integration of compression
and text retrieval systems, since words are also the atoms of those systems.

Based on Moffat’s idea, in [7] two word-based byte-oriented Huffman codes
were presented. The first one, named Plain Huffman (PH) is a Huffman-based
code that uses bytes instead of bits as target alphabet. By using bytes instead
of bits, decompression speed was improved at the expense of compression ratio,
which grew up to around 30–35%. The second compressor, named Tagged Huff-
man (TH), uses the first bit of each byte to mark the beginning of a codeword.
Therefore, only 7 bits of each byte can be used to create the codewords, and
a loss in compression of around 3 percentage points exists. However, since the
beginning of a codeword can be recognized, random decompression is allowed
and direct searches can be done by using a fast Boyer-Moore matching algorithm
[2].

In [5,4] we presented End-Tagged Dense Code (ETDC), a statistical semistatic
technique that maintains the good capabilities of Tagged Huffman for searches
while improving its compression ratio and using a simpler and faster coding
scheme.

1 In a prefix code, no codeword is a prefix of another, a property that ensures that the
compressed text can be decoded as it is processed, since a lookahead is not needed.
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In this paper, we present a modification over ETDC (see next section) that
we call Pair-Based End-Tagged Dense Code (PETDC), which improves its com-
pression ratio (around 28–30%) by exploiting the co-occurrence of words in the
source text. Moreover, PETDC permits direct searching the compressed text,
as well as fast random decompression. The paper is structured as follows: In
Section 2, ETDC is shown. Then PETDC is described in Section 3. In Section 4,
empirical results measuring the efficiency of PETDC in compression ratio, com-
pression and decompression speed are given. Finally, some conclusions end the
paper.

2 Related Work: End-Tagged Dense Code

End-Tagged Dense Code (ETDC) [5,4] is a semistatic compression technique,
which is the basis of the new PETDC presented in this paper.

Plain Huffman Code [7] is a word-based Huffman code that assigns a sequence
of bytes (rather than bits) to each word. In Tagged Huffman [7], the first bit of
each byte is reserved to flag whether the byte is the first of its codeword. Hence,
only 7 bits of each byte are used for the Huffman code. Note that the use of a
Huffman code over the remaining 7 bits is mandatory, as the flag bit is not useful
by itself to make the code a prefix code. The tag bit permits direct searching the
compressed text by just compressing the pattern and then running any classical
string matching algorithm like Boyer-Moore [13,9]. In Plain Huffman this does
not work, as the pattern could occur in the text not aligned to any codeword [7].

Instead of using a flag bit to signal the beginning of a codeword, ETDC signals
the end of the codeword. That is, the highest bit of any codeword byte is 0 except
for the last byte, where it is set to 1.

This change has surprising consequences. Now the flag bit is enough to ensure
that the code is a prefix code regardless of the contents of the other 7 bits of
each byte.

ETDC obtains a better compression ratio than Tagged Huffman while keeping
all its good searching and decompression capabilities. On the other hand, ETDC
is easier to build and faster in both compression and decompression.

In general, ETDC can be defined over symbols of b bits, although in this paper
we focus on the byte-oriented version where b = 8.

Definition 1. Given source symbols with decreasing probabilities {pi}0≤i<n the
corresponding codeword using the End-Tagged Dense Code is formed by a se-
quence of symbols of b bits, all of them representing digits in base 2b−1 (that
is, from 0 to 2b−1 − 1), except the last one which has a value between 2b−1 and
2b − 1, and the assignment is done in a sequential fashion.

That is, the first word is encoded as 1
¯
0000000, the second as 1

¯
0000001, until

the 128th as 1
¯
1111111. The 129th word is coded as 0

¯
0000000:1

¯
0000000, 130th as

0
¯
0000000:1

¯
0000001 and so on until the (1282 + 128)th word 0

¯
1111111:1

¯
1111111.

Note that the code depends on the rank of the words, not on their actual fre-
quency. As a result, only the sorted vocabulary must be stored with the com-
pressed text to allow the decompressor to recover the source text.
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It is clear that the number of words encoded with 1, 2, 3 etc, bytes is fixed
(specifically 128, 1282, 1283 and so on) and does not depend on the word fre-
quency distribution. Generalizing, being k the number of bytes in each codeword
(k ≥ 1) words at positions i:

2b−1 2(b−1)(k−1) − 1
2b−1 − 1

≤ i < 2b−1 2(b−1)k − 1
2b−1 − 1

will be encoded with k bytes. These clear limits mark the change points in the
codeword lengths and will be relevant in the PETDC that we present in this
paper.

But not only the sequential procedure is available to assign codewords to the
words. There are simple encode and decode procedures that can be efficiently
implemented, because the codeword corresponding to symbol in position i is
obtained as the number x written in base 2b−1, where x = i − 2(b−1)k−2b−1

2b−1−1 and

k =
⌊

log2(2b−1+ (2b−1−1)i)
b−1

⌋

, and adding 2b−1 to the last digit.

Function encode obtains the codeword Ci = encode(i) for a word at the i-
th position in the ranked vocabulary. Function decode gets the position i =
decode(Ci) in the vocabulary for a codeword Ci. Both functions take just O(l)
time, where l = O(log(i)/b) is the length in digits of codeword Ci. Those func-
tions are efficiently implemented through just bit shifts and masking.

End-Tagged Dense Code is simpler, faster, and compresses 7% better than
Tagged Huffman codes. In fact, ETDC only produces an overhead of about
2% over Plain Huffman. On the other hand, since the last bytes of codewords
are distinguished, ETDC has all the search capabilities of Tagged Huffman code.
Empirical comparisons between ETDC and Huffman codes can be found in [5,4].

3 Pair-Based End-Tagged Dense Code

PETDC is a semistatic compressor based on ETDC. As in all semistatic com-
pressors, a first pass over the source text is performed in order to gather the
different words of the source text (vocabulary) and their number of occurrences.
After that first pass, an encoding scheme is used to assign a codeword to each
symbol in the vocabulary. A second pass over the source text replaces each source
symbol by the codeword associated to it. In addition, the compression process
ends by storing the vocabulary in such a way that, for each codeword, we can
obtain its corresponding original symbol.

However, there are some differences between PETDC and other semistatic
compressors such as ETDC, PH, etc. During the first pass, PETDC obtains an
initial vocabulary by gathering the different words and their number of occur-
rences in the source text. Moreover, PETDC collects also all the different pairs
of words that appear adjacent in the source text and counts their number of
occurrences. PETDC aims to take advantage of the co-occurrence of words in
the text by including some pairs in the vocabulary (which is composed by both
single-words and pairs). Its main idea is simple: In classic semistatic compressors,
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each symbol in the vocabulary has a unique codeword assigned by the encoding
scheme (in this case, ETDC is used). Therefore, replacing two source words by
a unique codeword during the second pass may need less bytes than replacing
two single words by two codewords. Example 1 clarifies this situation.

Example 1. Let us compress the sequence of words: ADCBACDCCDABABA
CDC with ETDC, assuming that special bytes of only 3 bits are used, and that
our words occupy 1 byte each. Therefore, the mapping word-codeword generated
by the encoding schema is: C ← 1

¯
00, A ← 1

¯
01, D ← 1

¯
10, B ← 1

¯
11. Hence, all

the words can be encoded with only one byte, and the size of the compressed
text is 18 bytes. In this case, the vocabulary consists of only 4 words. As a result,
the size of the compressed file is 18 + 4 = 22 bytes.

Let us add to the vocabulary the most frequent pair of words ‘BA’, and
compress the same text again. In this case, the vocabulary contains the symbols
‘C’, ‘D’, ‘BA’, ‘A’, and ‘B’, while the number of occurrences is 6, 4, 3, 2, and 0
respectively. Now the compressed text uses 15 bytes, and the vocabulary needs
6 bytes. Therefore, the compressed file occupies 15 + 6 = 21 bytes. ��

From Example 1 we show that processing some pairs of words as a unique source
symbol reduces the size of the compressed text. However, as a drawback, the
size of the vocabulary grows when a pair is added. Therefore, the existence of a
trade-off between compressed text size and vocabulary size has to be taken into
account when pairs are added to the vocabulary.

3.1 Deciding Which Pairs Should Be Added to the Vocabulary

Adding all the different pairs to the vocabulary is not a good idea because the
vocabulary would grow too much. In Figure 1(a), we show the evolution of the
size of a compressed file (as the sum of the size of the compressed data and the
size of the vocabulary) depending on the number of pairs added. As expected,
including the most frequent pairs in the vocabulary improves compression. Ho-
wever, at some point, the gain obtained by replacing two words by a unique
codeword does not compensate the growth of the vocabulary size.

In Figure 1(b) it is shown that the previous curve has multiple local minima.
This fact prevents us of looking for a heuristic to speed up the process by just
breaking the addition of pairs to the vocabulary when the addition of a new
pair worsens the compression. Instead of that, PETDC process all the pairs and
applies a heuristic to determine which ones have to be added.

Used heuristic. Let us assume that a pair αβ, composed of two words α and β,
is a candidate to be added to the vocabulary. Let us define fx as the number of
occurrences of a word or pair x. Let us also define Cx as the codeword that the
encoding scheme2 assigns to x, and let |Cx| be the length of that codeword. The
heuristic is based on comparing the number of bytes needed to encode all the
2 The codeword assigned to a word by ETDC depends only on the rank in the sorted

vocabulary.
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Fig. 1. Evolution of compressed file as pairs are added

occurrences of α and β in the text in two cases: i) The pair is skipped (skipbytes),
and ii) the pair is added to the vocabulary (addbytes). Once those values are
computed, the pair αβ is added to the vocabulary if skipbytes > addbytes and
skipped otherwise. Values skipbytes and addbytes are given by the two following
expressions:

skipbytes = fα ∗ |Cα| + fβ ∗ |Cβ |
addbytes = fαβ ∗ |Cαβ | + (fα − fαβ) ∗ |C′

α| + (fβ − fαβ) ∗ |C′
β | + K

Where C′
α and C′

β are the codewords assigned to the words α and β assuming
that the pair αβ is added, and therefore their number of occurrences is fα − fαβ

and fβ − fαβ respectively. The term ‘K’ is an estimation of the number of bytes
needed to store any pair into the vocabulary. In general, K = 5.

Particular cases. There are two special situations that arise when pairs of
words are considered:

– After adding a pair αβ to the vocabulary it is necessary to ensure that any
pair ending in α or beginning in β will not be included later. This happens
because, by an efficiency issue, we do not store all the words that precede or
follow any occurrence of αβ in the text. As a result, given the text ’γαβδαμ’,
adding the pair αβ implies that the pairs γα, βδ, and δα cannot be added to
the vocabulary. This is done by just marking α as “disabled as first word of
pair” and marking β as “disabled as last word of pair”, and finally checking
those flags before adding a pair to the vocabulary.

– Sequences of the same word: The appearance of sequences of the same word
α such as α1α2α3α4 might lead us to count erroneously the number of oc-
currences of the pair αα. Note that α2α3 is not a valid pair if the pair α1α2
is chosen. To avoid this problem, when a sequence is detected we only count
the occurrences of the pairs that start in odd positions.
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3.2 Data Structures and Compression Procedure

The data structures used by the compressor are sketched in Figure 2. There are
two well-defined parts: i) Data structures that make up the vocabulary, and ii)
data structures needed to hold the candidate pairs.

freq w1 w2 freq e2e1type w1 w2word

3 14 2

1 6 14

1 6 2

2 2 9

A 4 w f t

BA 3 p 14 2

C 6 w t t

2 6 9 414

4 4 3 23 1 -

2 9 7 1312 5 8 4 11 3

1 2 3 54 6 7 8 9

1 2 3 54 6 7 8 9 1110 12

1

2

3

5

4

6

7

8

9

11

10

12

3 6 9

2 9 2

3 9 6

1 6 6

2 2 6

2 2 14

D 5 w t t

14

13

pairsVector

h
a

s
h

T
a

b
le

o
f

w
o

rd
s

(h
a

s
h

W
o

rd
s
)
1

2

3

5

4

6

7

8

9

11

10

12

B 0 w t f

13

14

wordsVect

topVect

code type w1 w2word

A c2 w

BA c5 p 14 2

C c1 w

6 2 11 49 14

D c4 w

DC c3 p 9 6

h
a

s
h

T
a

b
le

o
f

w
o

rd
s

(h
a

s
h

W
o
rd

s
)

1

2

3

5

4

6

7

8

9

11

10

12

B c6 w

13

14

wordsVect

1 2 3 54 6 7 8

freq w1 w2 freq e2e1type w1 w2word

3 14 2

1 6 14

1 6 2

2 2 9

A 7 w t t

C 6 w t t

2 6 9 14

4 4 4 33 2 1

2 9 7 1312 5 8 4 11 3

1 2 3 54 6 7 8 9

1 2 3 54 6 7 8 9 1110 12

1

2

3

5

4

6

7

8

9

11

10

12

3 6 9

2 9 2

3 9 6

1 6 6

2 2 6

2 2 14

D 5 w t t

14

13

pairsVector

h
a

s
h

T
a

b
le

o
f

w
o

rd
s

(h
a

s
h

W
o

rd
s
)

1

2

3

5

4

6

7

8

9

11

10

12

B 3 w t t

13

14

wordsVect

topVect

1 2 3 54 6 7 8 1 2 3 54 6 7 8

h
a

s
h

T
a

b
le

o
f

c
a

n
d
ita

te
p

a
irs

(h
a

s
h

P
a

irs
)

h
a

s
h

T
a

b
le

o
f

c
a

n
d
ita

te
p

a
irs

(h
a

s
h

P
a

irs
)

(a) State after 1st pass (b) State after adding pair BA (c) State before 2nd pass

Fig. 2. Structures used in PETDC for text “ADCBACDCCDACADABABACDC”

– The vocabulary of the compressor consists of: A hash table used to locate
a word quickly (hashWords) and two vectors: wordsVect and topVect. The
hash table hashWords contains eight fields: i) type tells if an entry is either
a word ‘w’ or a pair ‘p’, ii) if the entry has type ‘w’, word stores the word
in ascii, iii) freq counts the number of occurrences of the entry, iv-v) e1 and
e2 flag if the word is enabled to be the first or second component of a pair
respectively, vi-vii) w1 and w2 store, for an entry of type ‘p’, pointers to the
words that form the pair, and viii) code stores the codeword assigned to each
entry of the vocabulary after the code generation phase.

Vector wordsVect serve us to maintain the vocabulary sorted by frequency.
Then, slot 1 of wordsVect points to the entry of hashWords where the most
frequent word (or pair) in the source text is stored. Assuming that wordsVect
is sorted decreasingly by frecuency, vector topVect[f ] keeps track of the first
entry in wordsVect whose frequency is f .

– Managing the candidate pairs includes also the use of two main data struc-
tures: i) A hash table hashPairs with fields freq, w1, and w2, used to give a
fast access to each candidate pair, and ii) a vector pairsVector that maintains
all the candidate pairs sorted, in the same way as wordsVect.

Compressing with PETDC. Compression consists of five main phases:

– First pass along the text. As shown, during this pass, PETDC obtains the
different v single-words and the different p candidate pairs that appear in
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the text. Moreover, it also counts their occurrences. The process costs O(n),
being n the number of words in the text. When the first pass ends, vectors
pairsVect and wordsVect are sorted by decreasing frequency. Finally, topVect
is initialized. Starting from element n downto 1, topV ec[i] = j if j is the first
entry in wordsV ect such that hashWords[wordsV ect[j]].freq = i. If �j such
that hashWords[wordsV ect[j]].freq = i, then topV ect[i] = topV ect[i + 1].
The overall cost of this first phase is O(n)+O(v log(v))+O(p log(p))+O(v) =
O(n) + O(p log(p)). Since n 	 p, we empirically proved that it costs O(n).

– Choosing and adding candidate pairs. During this phase, pairsV ector is tra-
versed (O(p)). A candidate pair αβ is either added to the vocabulary or
discarded, by applying the heuristic explained in Section 3.1. To compute
that heuristic we need to know the current position3 of α and β in the vo-
cabulary to know the size of their respective codewords (|Cx|). We also need
to assume that the pair αβ is added, and we need to compute the new ranks
of αβ, α, and β in the new ordered vocabulary. Since maintaining the vo-
cabulary ordered upon inserting a pair is too expensive, we only maintain
topV ect updated in such a way that, given a frequency f , topV ect[f ] stores
the rank, in a sorted vocabulary, of the first entry of frequency f . Then,
being x an entry with frequency fx, we estimate |Cx| as |C(topV ect[fx])|. It
costs O(F ) time, where F is the frequency of the second most frequent entry
of the vocabulary. Of course, αβ is also inserted into hashWords and into
wordsV ector. The overall cost of this phase is O(paF + p) = O(paF ), being
pa the number of pairs added to the vocabulary. Figure 2(b) shows the result
of adding the pair “BA” to the vocabulary.

– Code Generation Phase. The only data structures needed in this phase are
depicted in Figure 2(c). The vocabulary (with v′ entries) is ordered by fre-
quency and the encoding scheme of ETDC is used. Encoding takes O(v′)
time. As a result, hashWords will contain the mapping entryi → codei ∀i ∈
1 . . . v′. The cost of this phase is O(v′ log v′).

– Second pass. The text is traversed again reading two words at a time and re-
placing source words by codewords. If the read pair αβ belongs to hashWords
then the codeword Cαβ is output and two new words γδ are read. Otherwise
Cα is output and the only the following word γ is read to form a new pair
βγ. This phase takes O(n) time.

– storing the vocabulary. As in ETDC, the vocabulary is stored along with the
compressed data to permit decompression. A bitmask is used to save the
type of entry. Then the v′ entries of the vocabulary follow that bitmask. A
single-word is written in ascii (ending in ‘\0’). To store a pair αβ we write
the relative positions of α and β in the vocabulary (encoded with the on-
the-fly Cw = getCode(i) function used in [3] in order to save space). Finally,
the whole vocabulary is encoded with character-based Huffman.

Decompressing text compressed with PETDC. Decompression starts by
loading the vocabulary into a vector. Then each codeword is easily parsed due
3 Using the encoding scheme of ETDC, we can compute in O(log i) time the codeword

Ci = getCode(i) where i is the rank of a word wi in the vocabulary.
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to the flag bit that marks the end of a codeword. For each codeword Ci, the
function i = decode(Ci) [3] is used to obtain the entry i that contains either the
word or the pair associated to Ci.

Searching text compressed with PETDC. In text compressed with PETDC,
a word α can appear alone or as a part of one or more pairs αβ, γα,... Therefore
searches will usually imply using a multi-pattern matching algorithm. When we
load the vocabulary, we can easily generate for each single-word α, a list with
the codewords of the pairs in which it appears. After that, an algorithm from
the Boyer-Moore family such as Set Horspool [9,13] is used to search for those
codewords and for the codeword Cα.

4 Empirical Results

We compare PETDC against other semi-static word-based compressors such as
PH and ETDC and against two well-known compressors such as Gnu gzip4, a Ziv-
Lempel compressor and Seward’s bzip2 5, a compressor based on the Burrows-
Wheeler transform [6]. We used some large text collections from trec-2

6,
namely AP Newswire 1988 (AP) and Ziff Data 1989-1990 (ZIFF), as well as
some from trec-4: Congressional Record 1993 and Financial Times 1991 to
1994. We used the spaceless word model [7] to create the vocabulary; that is, if
a word was followed by a space, we just encoded the word, otherwise both the
word and the separator were encoded.

Our first experiment is focused in comparing compression ratio. Table 1 shows
in the two first columns the corpora used and their size. Columns three to six
gives information about applying PETDC such as the number of candidate pairs,
the number of occurrences of the most frequent pair, the number of pairs added,
and the number of entries (pairs and words) of the vocabulary. The last five
columns show compression ratio (in percentage) for the compressors used. It can
be seen that PETDC improves the compression of PH and ETDC by around 3
and 4 percentage points respectively. Gaps against gzip grow up to 6−7 percent-
age points. Finally, PETDC is overcome by Bzip2 in around 1 − 3 percentage
points.

We focus now on comparing PETDC against other alternatives in compres-
sion and decompression speed. An isolated Intel R©Pentium R©-IV 3.00 GHz system
(16Kb L1 + 1024Kb L2 cache), with 512 MB single-channel DDR-400Mhz was
used in our tests. It ran Mandrake Linux 9.2. The compiler used was gcc version
3.3.1 and -O9 compiler optimizations were set. Time results measure cpu user
time in seconds. As it is shown in Table 2, PETDC pays the extra-cost of man-
aging pairs during compression, being around 2.5 times slower than ETDC and
PH, and around 1.5 − 2 times slower than gzip. However, it is much faster than
bzip2. In decompression, the extra-cost of PETDC consists only in processing

4 http://www.gnu.org.
5 http://www.bzip.org.
6 http://trec.nist.gov.
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Table 1. Compressing with PETDC and comparison in compression ratio with others

Corpus Size cand. highest pairs entries Compression ratio (%)
(bytes) pairs freq. added vocab PETDC PH ETDC gzip bzip2

Calgary 2,131,045 53,595 2,618 4,705 35,700 41.31 42.39 43.54 37.10 29.14
FT91 14,749,355 239,428 18,030 12,814 88,495 30.72 33.13 34.02 36.42 27.06

CR 51,085,545 589,692 70,488 38,090 155,803 27.66 30.41 31.30 33.29 24.14
FT92 175,449,235 1,592,278 222,505 113,610 397,671 28.46 31.52 32.33 36.48 27.10
ZIFF 185,200,215 2,585,115 344,262 194,731 418,132 29.04 32.52 33.41 33.06 25.11
FT93 197,586,294 1,629,925 236,326 124,547 415,976 27.79 31.55 32.43 34.21 25.32
FT94 203,783,923 1,666,650 242,816 123,583 418,601 27.78 31.50 32.39 34.21 25.27

AP 250,714,271 1,574,819 663,586 118,053 355,674 28.80 31.92 32.73 37.32 27.22
ALL FT 591,568,807 3,539,265 709,233 314,568 891,308 27.80 31.34 32.22 34.94 25.91

Table 2. Comparison in compression and decompression time

Corpus Compression time (seconds) Decompression time (seconds)
PETDC PH ETDC gzip bzip2 PETDC PH ETDC gzip bzip2

Calgary 0.59 0.33 0.37 0.26 0.88 0.06 0.06 0.06 0.04 0.32
FT91 3.07 1.48 1.47 1.71 6.33 0.30 0.25 0.25 0.20 2.24

CR 8.85 3.97 4.01 5.83 21.26 0.78 0.66 0.65 0.64 7.52
FT92 33.24 13.86 13.85 20.28 76.47 2.90 2.39 2.50 2.36 29.42
ZIFF 33.47 13.84 13.87 20.20 79.70 2.83 2.35 2.32 2.20 27.00
FT93 35.81 15.61 15.30 21.34 80.21 3.17 2.73 2.75 2.62 32.58
FT94 37.11 15.84 15.73 22.08 88.96 3.33 2.81 2.87 2.63 33.78

AP 48.50 20.06 20.26 30.66 105.48 4.11 3.41 3.41 3.43 39.42
ALL FT 113.26 45.29 45.12 64.82 254.45 9.63 8.00 8.12 7.49 89.67

the bitmask in the header of the vocabulary file and rebuilding the pairs from
the pointers to single-words. Therefore, the loss of speed against PH, ETDC,
and gzip is small (under 20%), and PETDC becomes around 6 − 8 times faster
than bzip2.

5 Conclusions

We have presented a new semistatic pair-based byte-oriented compressor that
we named Pair-Based End-Tagged Dense code(PETDC). It takes advantage of
using both words and pairs of words (exploiting the co-occurrence of words) to
improve the compression obtained by similar word-based semistatic techniques
such as PH or ETDC.

Dealing with pairs has a cost in compression speed (PETDC is around 2.5
times slower than ETDC) and in decompression (PETDC is 20% slower than
ETDC). However, the new technique is able to reduce English texts to 27–28% of
its original size (over 3 percentage points better than PH). Moreover, it maintains
the ability of performing direct searches and random decompression of a portion
of the text.

To sum up, PETDC is a technique well-suited to use in Text Databases
due to its good compression ratio and decompression speed, as well as for its
good search capabilities. The main drawback with respect to others might be
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its medium compression speed. However, in a text retrieval scenario a medium
compression speed is only a minor problem since compression is done only once.

Acknowledgments. We want to thank Àngel Yàñez Miragaya for his help in
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Abstract. Research in dialogue systems has been moving towards re-
usable and adaptable architectures for managing dialogue execution and
integrating heterogeneous subsystems. In this paper we present a formali-
sation of Admp, an agent-based architecture which supports the develop-
ment of dialogue applications. It features a central data structure shared
between software agents, it allows the integration of external systems,
and it includes a meta-level in which heuristic control can be embedded.

1 Introduction

Research in dialogue systems has been moving towards reusable and adaptable
architectures for managing dialogue execution and integrating heterogeneous
subsystems. In an architecture of this type, different theories of dialogue man-
agement can be formalised, compared and evaluated. In this paper we present a
formalisation of Admp

1, an architecture which uses software agents to support
the development of dialogue applications. It features a central data structure
shared between agents, it allows the integration of external systems, and it in-
cludes a meta-level in which heuristic control can be embedded.

We have instantiated the system to support dialogue management. Dialogue
management involves maintaining a representation of the state of a dialogue, co-
ordinating and controlling the interplay of subsystems such as domain processing
or linguistic analysis, and deciding what content should be expressed next by the
system. Admp applies the information state update (ISU) approach to dialogue
management [1]. This approach uses an information state as a representation of
the state of the dialogue, as well as update rules, which update the information
state as the dialogue progresses. The ISU approach supports the formalisation
of different theories of dialogue management.

The framework of our research is the Dialog project2, which investigates
flexible natural language dialogue in mathematics, with the final goal of natural
tutorial dialogue between a student and a mathematical assistance system. In
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the course of a tutorial session, a student builds a proof by performing utter-
ances which contain proof steps, thereby extending the current partial proof.
The student receives feedback from the Dialog system after each proof step.
This feedback is based on the computations and contribution of numerous sys-
tems, such as a domain reasoner or a natural language analysis module. The
integration of these modules and the orchestration of their interplay as well as
the selection of a next dialogue move which generates the feedback is the task
of the dialogue manager.

The work presented in this paper is motivated by an initial prototype dialogue
manager for the Dialog demonstrator [2]. After its development we were able
to pinpoint some features which we consider necessary for the Dialog system,
and which the platform presented here supports. The overall design of Admp is
influenced by the design of Ω-Ants [3], a suggestion mechanism which supports in-
teractive theorem proving and proof planning. It uses societies of software agents,
a blackboard architecture, and a hierarchical design to achieve concurrency, flex-
ibility and robust distributed search in a theorem proving environment.

Although Admp has been developed to support dialogue systems, it can be
seen as a more general architecture for collaborative tasks which utilise a cen-
tral data store. For example, we have used Admp to quickly implement a lean
prototype resolution prover for propositional logic.

Our work is related to other frameworks for dialogue management such as
TrindiKit, a platform on top of which ISU based dialogue applications can be
built. TrindiKit provides an information state, update rules and interfaces to
external modules. Another such framework is Dipper [4], which uses an agent
paradigm to integrate subsystems.

This paper is structured as follows. In Section 2 we give an overview of the
Dialog project and the role a dialogue manager plays in this scenario. Section
3 outlines the architecture of Admp. Section 4 presents the formalisation of the
system, and Section 5 concludes the paper.

2 The Dialog Project

The Dialog project is researching the issues involved in automating the tutoring
of mathematical proofs through the medium of flexible natural language. In or-
der to achieve this a number of subproblems must be tackled. An input analyser
[5] must perform linguistic analysis of utterances. These typically contain both
natural language and mathematical expressions and exhibit much ambiguity. In
addition to the linguistic analysis the input analyser delivers an underspecified
representation of the proof content of the utterance. Domain reasoning is en-
capsulated in a proof manager [6], which replays and stores the status of the
student’s partial proof. Based on the partial proof, it must analyse the correct-
ness, relevance and granularity of proof steps, and try to resolve ambiguous proof
steps. Pedagogical aspects are handled by a tutorial manager [7], which decides
when and how to give which hints.
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These three modules, along with several others such as a natural language gen-
erator, collaborate in order to fully analyse student utterances and to compute
system utterances. Their computation must be interleaved, since they work with
shared information, and this interplay is orchestrated by the dialogue manager.
Fig. 1 shows the modules involved in the Dialog system.

GUI
Tutorial

Manager

NL Generator

Proof
Manager

Dialogue Move
Recogniser

Domain Info
Manager

Input
Analyser

Dialogue Management
Platform

Dialogue Manager

Information
State

Update Rules

Fig. 1. The Dialog system

We illustrate how the system works with an example from the Dialog corpus
[8] in Fig. 2, where K stands for the complement operation and U is the universal
set. The student has made a correct step (Stud1) and thus has begun building
a partial proof of the theorem. Later in the proof he makes an irrelevant step
(Stud2). We now consider how the modules of the system interact to generate
the response in (Sys2).

The student’s utterance first goes to the input analyser, which calculates
its linguistic meaning and underspecified proof content. The proof content in
this case is a representation of the content of the formula which is given in the
utterance. This is then taken up by the proof manager. In the given proof context
it assigns the proof step category correct, since the formula holds under the
assumptions, but also irrelevant, because the step does not lead to a proof, or
at least does not appear in a proof of the theorem. Simultaneously the dialogue
move recogniser uses the linguistic meaning to determine the function of the
utterance in the dialogue, and encodes this function in a dialogue move [9]. A
dialogue move is a multi-dimensional abstraction of the functions of an utterance
in a dialogue, such as question or assertion. In the example the utterance is a
domain contribution , since it asserts a new piece of information in the theorem
proving task.

A domain information manager determines what domain information was ad-
dressed by the proof step by accessing static mathematical knowledge
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Sys0: Bitte zeigen Sie: Wenn A ⊆ K(B), dann B ⊆ K(A)
Please show that: If A ⊆ K(B) then B ⊆ K(A)

Stud1: U/A = K(A)
U/A = K(A)

Sys1: Das ist richtig! Und weiter?
That’s correct! And now?
. . .

Stud2: also ist A �⊆ B
Therefore it holds that A �⊆ B

Sys2: Nein, das bringt nichts. Wissen Sie, was Sie mit der wenn-dann-Beziehung
anfangen müssen?
No, that doesn’t help. Do you know what to do with the if-then relation?

Fig. 2. Excerpt from the Dialog corpus, session soc20k

resources. The tutorial manager uses a combination of these results to add hint-
ing information to the dialogue moves. In this case it decides to explicitly indicate
the inappropriateness (“No”) and irrelevance (“that doesn’t help”) of the step.
Furthermore, a combination of a student and tutor model result in an explicit
hint, namely to draw the student’s attention to dissolving the if-then relation
which is the head of the theorem.

In general, the result of each module’s computation is a contribution of content
to some system dialogue move. The final step is that a natural language generator
generates the utterances constituting the system’s response in (Sys2) from these
dialogue moves. Since a module’s computations depend only on information
stored in a subset of the information state, their execution order is only partially
constrained. This means that many computations can and should take place in
parallel, as in the case of the proof manager and dialogue move recogniser in the
example above.

Dialog is an example of a complex system in which the interaction of many
non-trivial components takes place. This interaction requires in turn non-trivial
control to facilitate the distributed computation which results in the system
response. This control function resides in the dialogue manager. As shown in
Fig. 1, the dialogue manager forms the hub of the system and mediates all
communication between the modules. It furthermore controls the interplay of
the modules.

We realised a first Dialog demonstrator in 2003. It includes a dialogue man-
ager built on top of Rubin [10], a commercial platform for dialogue applications.
This dialogue manager integrates each of the modules mentioned above and con-
trols the dialogue. It provides an information state in which data shared between
modules is stored, input rules which can update the information state based on
input from modules, and interfaces to the system modules.

However, we identified some shortcomings of this first dialogue manager for the
demonstrator, and these have formed part of the motivation for the development
of Admp:
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– The modules in the system had no direct access to the information state,
meaning they could not autonomously take action based on the state of the
dialogue.

– The dialogue manager was static, and neither dialogue plans nor the inter-
faces to modules could be changed at runtime.

– There was also no way to reason about the flow of control in the system.

Admp solves these problems by using a software agent approach to information
state updates and by introducing a meta-level. The meta-level is used to reason
about what updates should be made, and provides a place where the execution
of the dialogue manager can be guided.

3 Architecture

The central concepts in the architecture of Admp are information states and
update rules, and these form the core of the system. An information state consists
of slots which store values, and can be seen as an attribute-value matrix. It is
a description of the state of the dialogue at a point in time, and can include
information such as a history of utterances and dialogue move, the results of
speech recognition or a representation of the beliefs of dialogue participants.
Update rules encode transitions between information states, and are defined by
a set of preconditions, a list of sideconditions, and a set of effects. Preconditions
constrain what information states satisfy the rule, sideconditions allow arbitrary
functions to be called within the rule, and effects describe the changes that
should be made to the information state in order to carry out the transition
that the rule encodes.

An update rule is embodied by an update rule agent, which carries out
the computation of the transition that the update rule encodes. These check
if the current information state satisfies the preconditions of the rule. When this
is the case, they compute an information state update representing the fully in-
stantiated transition. An information state update is a mapping from slotnames
in the information state to the new values they have after the update is executed.
We introduce information state updates as explicit objects in Admp in order to
be able to reason about their form and content at the meta-level.

As an example, we consider the information state in (1), a subset of the
information state of the Dialog system3. Here the user’s utterance is already
present in the slot user utterance, but the linguistic meaning in the slot lm has
not yet been computed. The slot lu stores a representation of the proof content
of the utterance, and eval lu stores its evaluated representation.

(1)

IS

⎡

⎢
⎢
⎢
⎣

user utterance "also ist A �⊆ B"

lm ""

lu ""

eval lu ""

⎤

⎥
⎥
⎥
⎦

3 In general an information state will contain richer data structures such as XML
objects, but for presentation we restrict ourselves here to strings.
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The update rule in (2) represents transitions from information states with a
non-empty user utterance slot to information states in which the lm and lu
slots have been filled with the appropriate values.

(2) {non empty(user utterance)}
{lm → p , lu → q}

< r := input analyser(user utterance),
p := extract lm(r),
q := extract lu(r) >

In Admp’s update rule syntax this rule is defined as:

(3) (ur~define-update-rule
:name "Sentence Analyser"
:preconds ((user_utterance :test #’ne-string))
:sideconds ((r :function input_analyser

:slotargs (user_utterance))
(p :function extract-lm :varargs (r))
(q :function extract-lu :varargs (r))
)

:effects ((lm p) (lu q))
)

The precondition states that the slot user utterancemust contain a non-empty
string. When this is the case, the rule can fire. It carries out its sideconditions,
thereby calling the function input analyser, which performs the actual compu-
tation and calls the module responsible for the linguistic analysis of utterances.
Rule (2) thus represents the input analyser. The result of this computation is an
object containing both the linguistic meaning of the utterance and an underspec-
ified representation of the proof content. The functions extract lm and extract lu
access the two parts and store them in the variables p and q, respectively. The
information state update that the rule computes maps the slot name lm to the
linguistic meaning of the utterance and the slot name lu to its proof content.

Rule (4) represents the proof manager, and picks up the proof content of the
utterance in the slot lu.

(4) {non empty(lu)}
{eval lu → r} < r := pm analyse(lu) >

The proof manager augments the information in lu by attempting to resolve
underspecification and assign correctness and relevance categories, and the re-
sulting update maps eval lu to this evaluated proof step. A similar update
rule forms the interface to the dialogue move recogniser, which uses the linguis-
tic meaning of the utterance in lm to compute the dialogue move it represents.
Since these two computations are both made possible by the result of the update
from the input analyser, they can run in parallel.

Fig. 3 shows the architecture of Admp. On the left is the information state.
Update rules have in their preconditions constraints on some subset of the in-
formation state slots and are embodied by update rule agents, which are shown
here next to the information state. When an update rule agent sees that the
preconditions of its rule hold, the rule is applicable and can fire. The agent then
executes each of the sideconditions of the rule, and subsequently computes the
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information state update that is expressed by the rule’s effects. The resulting in-
formation state update is written to the update blackboard, shown in the middle
of the diagram.

Slot 1

Slot 2

Slot 3

Slot 4

IS Update 1

IS Update 2

IS Update 3

. . .

ISUs Chosen ISU

ISU execution

Information State Update Rule Agents Update Blackboard Update Agent

Fig. 3. The architecture of Admp

The update blackboard collects the proposed updates from the update rule
agents. These agents act in a concurrent fashion, so that many of them may
be simultaneously computing results; some may return results quickly and some
may perform expensive computations, e.g. those calling external modules. Thus
the set of entries on the update blackboard can grow continually. On the far
right of the diagram is the update agent, which surveys the update blackboard.
After a timeout or some stimulus it chooses the heuristically preferred update
(or a combination of updates) and executes it on the current information state.
This completes a transition from one information state to the next.

Finally the update agent resets the update rule agents. Agents for whom
the content of the slots in their preconditions has not changed can continue to
execute since they will then be computing under essentially the same conditions
(i.e. the information that is relevant to them is the same). Agents for whom
the slots in the preconditions have changed must be interrupted, even if their
preconditions still happen to hold. This is because they are no longer computing
within the correct current information state.

4 A Formal Specification of Admp

We now give a concise and mathematically rigorous specification of Admp.
We introduce the concepts and terminology necessary to guarantee the well-
definedness of information states and update rules, and we give an algorithmic
description of the update rule agents and the update agent.

Information States and Information State Updates. First, we fix some
data structures for the slot names and the slot values of an information state.
In our scenario it is sufficient to work with strings in both cases (alternatively
we could work with more complex data structures). Let A and B be alphabets.
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We define the language for slot names as SlotId := A∗ and the language for slot
values as SlotVal := B∗. In our framework we want to support the checking of
certain properties for the values of single slots. Thus we introduce the notion
of a Boolean test function for slot values. A Boolean test function is a function
f ∈ BT := SlotVal → {�, ⊥}.

Next, we define information state slots as triples consisting of a slot name,
a slot value, and an associated Boolean test function. The set of all possible
information state slots is Slots := SlotId × BT × SlotVal . Given an information
state slot u = (s, b, v), the slot name, the test function, and the slot value can be
accessed by the following projection functions: slotname(u) := s, slotfunc(u) := b
and slotval (u) := v.

Information states are sets of information state slots which fulfil some addi-
tional conditions. Given r ⊆ Slots , we call r a valid information state if r �= ∅
and for all u1 , u2 ∈ r we have slotname(u1 ) = slotname(u2 ) ⇒ u1 = u2 . We
define IS ⊂ P(Slots) to be the set of all valid information states. The set of all
slot names of a given information state r ∈ IS can be accessed by a function
slotnames : IS → P(SlotId) which is defined as follows

slotnames(r) = {s ∈ SlotId | ∃ u ∈ r . slotname(u) = s}

We define a function read : IS × SlotId → SlotVal to access the value of a slot
in an information state where read(r, s) = slotval (u) for the unique u ∈ r with
slotname(u) = s.

In our framework information states are dynamically updated, i.e. the values
of information state slots are replaced by new values. Such an information state
update is a mapping from slots to their new values. The set of all valid information
state updates μ is denoted by ISU , the largest subset of P(SlotId × SlotVal)
for which the following restriction holds: ∀(s1 , v1 ), (s2 , v2 ) ∈ μ . s1 = s2 ⇒
v1 = v2 for all μ ∈ ISU . We define ISU⊥ := ISU ∪ {⊥}. An information state
update μ ∈ ISU is executable in an information state r ∈ IS if the slot names
addressed in μ actually occur in r and if the new slot values suggested in μ fulfil
the respective Boolean test functions, i.e.

executable(r, μ) iff ∀(s, v) ∈ μ . ∃ u ∈ r . slotname(u) = s ∧ slotfunc(u)(v) = �

We overload the function slotnames from above and analogously define it for
information state updates. Information state updates are executed by a function
execute update : IS × ISU → IS. Given an information state r ∈ IS and an
information state update μ ∈ ISU we define

execute update(r, μ) =

{
r if not executable(r, μ)
r− ∪ r+ otherwise

where

r− := (r \ {(s, b, v) ∈ r|s ∈ slotnames(μ)}
r+ := {(s′, b′, v′) | (s′, v′) ∈ μ ∧ ∃u ∈ r . s′ = slotname(u) ∧ b′ = slotfunc(u)}
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Update Rules. Update rules use the information provided in an information
state to compute potential information state updates. They consist of precondi-
tions, sideconditions and effects.

The preconditions of an update rule identify the information state slots that
the rule accesses information from. For each identified slot an additional test
function is provided which specifies an applicability criterion. Intermediate com-
putations based on information in the preconditions are performed by the side-
conditions of the update rules. For this, a sidecondition may call complex external
modules, such as the linguistic analyser or the domain reasoner. The results of
these side-computations are bound to variables in order for them to be accessible
to subsequent sideconditions and to pass them over from the sideconditions to
the effects of a rule. We now give a formal definition of each part in turn.

Let s ∈ SlotId and b ∈ BT . The tuple (s, b) is called an update rule precondi-
tion. The set of all update rule preconditions is denoted by C := SlotId ×BT . We
define projection functions pc slotname : C → SlotId and pc testfunc : C → BT
such that pc slotname(pc) = s and pc testfunc(pc) = b for all pc = (s, b). An
information state r ∈ IS satisfies an update rule precondition pc = (s, b)
if the function b applied to the value of the slot in r named s returns �,
i.e. satisfies(r, pc) iff ∃u ∈ r . pc testfunc(pc)(slotval (u)) = � ∧ slotname(u) =
pc slotname(pc). We overload the predicate satisfies and define it for sets of pre-
conditions C′ ⊆ C and information states r ∈ IS as follows: satisfies(r, C′) holds
if each precondition in C′ is satisfied by r.

Let v ∈ Var be a variable where Var is a set of variables distinct from
the languages A∗ and B∗, let (v1 . . . vm) ∈ Varm be an m-tuple of variables,
let (s1 . . . sn) ∈ SlotIdn be an n-tuple of slot names, and let f : SlotValn →
SlotValm → SlotVal be a function4 (n, m ≥ 0). A single sidecondition is thus
given by the quadruple (v, (s1 , . . . , sn), (v1 , . . . , vm), f). The set of all single side-
conditions is denoted by D := Var ×SlotIdn ×Varm × (SlotValn → SlotValm →
SlotVal).

Given the set D of single sideconditions sci , the sideconditions of an up-
date rule are now modelled as lists l := <sc1 , . . . , scn >, n ≥ 0. We further
provide projection functions sc var : D → Var , sc slottuple : D → SlotIdn ,
sc slotnames : D → P(SlotId), sc vartuple : D → Varm , sc varnames : D →
P(Var) and sc func : D → (SlotValn → SlotValm → SlotVal), such that for
all sc = (v, (s1 , . . . , sn), (v1 , . . . , vm), f) ∈ D it holds that sc var(sc) = v,
sc slottuple(sc) = (s1 , . . . , sn), sc slotnames(sc) = {s1 , . . . , sn}, sc vartuple
(sc) = (v1 , . . . , vm), sc varnames(sc) = {v1 , . . . , vm} and sc func(sc) = f .

A sidecondition list l is called valid if two conditions hold: for all sci , scj ∈ l
with i �= j we must have sc var(sci) �= sc var(scj ) and for all sci ∈ l we must
have sc varnames(sci) ⊆ {v|∃ scj ∈ l . j < i ∧ v = sc var(scj )}. The set of all
valid sidecondition lists is denoted as Dl .

Let s ∈ SlotId and v ∈ Var be a variable. The tuple (s, v) is called an update
rule effect. The set of all update rule effects is denoted by E := SlotId × Var .

4 We assume the right-associativity of → .
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We provide projection functions e slotname : E → SlotId and e var : E → Var
such that e slotname((s, v)) = s and e var((s, v)) = v.

Let U be a set of rule names (distinct from A∗, B∗, and Var). An update rule
is a quadruple ν ∈ UR := U ×P(C)×Dl ×P(E). An update rule ν = (n, c, d, e) ∈
UR is well-defined w.r.t. the information state r if

1. the slotnames mentioned in the preconditions actually occur in r, i.e, for all
pc ∈ c we have pc slotname(pc) ∈ slotnames(r),

2. each slot that is accessed by a sidecondition function has been mentioned
in the preconditions, i.e., (

⋃
di∈dsc slotnames(di)) ⊆ {s ∈ SlotId | ∃ pc ∈

c . pc slotnames(pc) = s},
3. the variables occurring in the effects have been initialised in the sidecon-

ditions, i.e., {v ∈ Var | ∃ ei ∈ e . e var(ei) = v} ⊆ {v ∈ Var | ∃ sc ∈
d . sc var(sc) = v}, and

4. the slotnames in the effects refer to existing slots in the information state r,
i.e., {s ∈ SlotId | ∃ei ∈ e . e slotname(ei) = s} ⊆ slotnames(r).

Let ν = (n, c, d, e) ∈ UR be an update rule and r ∈ IS be an information
state. ν is called applicable in r if ν is well-defined w.r.t. r and satisfies(r, c)
holds. This is denoted by applicable(r, ν).

Update Rule Agents. Update rule (software) agents encapsulate the update
rules, and their task is to compute potential information state updates. The
suggested updates are not immediately executed but rather they are passed to
an update blackboard for heuristic selection. Update rule agents may perform
their computations in a distributed fashion.

An update rule agent embodies a function execute ur agent : UR → (IS →
ISU⊥). The function execute ur agent(ν) takes an update rule ν and returns
a function (lambda term) representing the computation that that rule defines.
The new function can then be applied to a given information state in order to
compute a suggestion for how to update this information state. For each update
rule we obtain a different software agent.

We introduce a macro sc evaluate which abbreviates the retrieval of the
values in the variables and slotnames in the body of sidecondition and the com-
putation of the value which is to be stored in the sidecondition’s variable. We
use function call to apply a function to the arguments which follow it and
value of to retrieve the value stored in a variable.

sc evaluate(sc) =
let (s1 , . . . , sn) := sc slottuple(sc)
let (v1 , . . . , vm) := sc vartuple(sc)
let (t1 , . . . , tm) := (value of(v1 ), . . . , value of(vm))
function call(sc func(sc), (read(r, s1 ), . . . , read(r, sn )), (t1 , . . . , tm))
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We now define execute ur agent as

execute ur agent(ν = (n, c, d, e)) =
λr . if applicable(r, ν)

then
let <sc1 , . . . , scn> := d
let sc var(sc1 ) := sc evaluate(sc1 )
let sc var(sc2 ) := sc evaluate(sc2 )

...
let sc var(scn) := sc evaluate(scn )

{(s, v)|∃(s, sc var(sci)) ∈ e . v = value of(sc var(sci))}
else ⊥

Update Blackboard and Update Agent. An update blackboard is modelled
as a set of information state updates w ∈ UB := P(ISU), and stores pro-
posed updates to the current information state. The update agent investigates
the entries on the update blackboard, heuristically chooses one of the proposed
information state updates and executes it. We assume a user-definable function
choose : UB → ISU which realises the heuristic choice based on some heuristic
ordering criterion > UB : ISU × ISU . A simple example of a partial ordering
criterion >UB is

μ1 >UB μ2 iff slotnames(μ2 ) ⊆ slotnames(μ1 )

In fact, choose may be composed of several such criteria, and clearly the overall
behaviour of the system is crucially influenced by them. The update agent now
embodies a function update agent : UB × (UB → ISU) × IS → IS which is
defined as

update agent(w, choose , r) = execute update(r, choose(w))

5 Conclusion

In this paper we have presented a formalisation of Admp, a platform for devel-
oping dialogue managers using the information state update approach. We were
motivated by the need to integrate many complex and heterogeneous modules
in a flexible way in a dialogue system for mathematical tutoring. These modules
must be able to communicate and share information with one another as well as
to perform computations in parallel.

Admp supports these features by using a hierarchical agent-based design. The
reactive nature of the update rule agents allows for the autonomous concurrent
execution of modules triggered by information in the information state. This
furthermore obviates the need for a strict pipeline-type control algorithm often
seen in dialogue systems, since agents can execute without being explicitly called.
Interfacing the dialogue manager with system modules is also simplified by using
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the agent paradigm, because adding a new module involves only declaring a new
update rule. Finally, the meta-level provides a place where overall control can
take place if needed.

Admp thus allows the formalisation of theories of dialogue in the information
state update approach, offering the functionality of related systems like TrindiKit
and Dipper. However by introducing an explicit heuristic layer for overall control
it allows reasoning about the execution of the dialogue manager which these two
systems do not support.

An instantiation of Admp is achieved by declaring an information state, a set
of update rules which operate on the information state, and a choose function,
whereby a developer can fall back to a default function such as suggested in the
previous section. A user-defined choose function should compute valid ISUs,
also in the case where ISUs from the update blackboard are merged. As an
example, a conservative merge strategy would simply reject the merging of pairs
of ISUs whose slotname sets intersect. Update rule agents and the update agent
are automatically generated from the update rule declarations.

We have recently implemented Admp and given an instantiation for the Dialog

system which uses eleven update rules and requires no declaration of control struc-
ture. We have also shown that we can implement a propositional resolution prover
in Admp with four agents and five information state slots, which corresponds to
just 40 lines of code. Extensions such as a set of support strategy can be realised
simply by adding agents, possibly at runtime.

We foresee as future work the extension of our agent concept to include for
instance resource sensitivity, and the investigation of further default heuristics
for the dialogue scenario. Other interesting work is to turn the specification given
in this paper into a formalisation within a higher-order proof assistant such as
ISABELLE/HOL, HOL or OMEGA and to verify its properties.
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Abstract. We present an encoding of the mobile ambients without com-
munication into a subset of the π-calculus, namely the localized sum-
free synchronous π-calculus. We prove the operational correspondence
between the two formalisms. A key idea of the encoding is the separa-
tion of the spatial structure of mobile ambients from their operational
semantics. The operational semantics is given by a universal π-process
Ruler which communicates with a π-calculus term StructureA simulat-
ing the spatial structure of a mobile ambient A by means of channels.
We consider the presented encoding as a first step toward designing a
fully abstract translation of the calculus of mobile ambients into the
π-calculus and thus developing a uniform framework for the theory of
mobile computations.

1 Introduction

We consider two important models of the mobile computations, namely the π-
calculus and mobile ambients. These formalisms are well suited for capturing two
different aspects of mobility: the π-calculus is a process algebra where communi-
cation channels can “move” along other channels, whereas mobile ambients are
suitable to represent such issue as migration of processes between boundaries.

The π-calculus [14] is a widely accepted model of interacting systems with
dynamically evolving communication topology. Its mobility is expressed by the
changing configuration and connectivity among processes. This mobility in-
creases the expressive power of the π-calculus, and the π-calculus is a general
model of computation which takes interaction as a primitive. The π-calculus
models computing by reduction and interactive matching.

Another successful formalism for mobility is provided by mobile ambients [2].
The ambient calculus is a model for reasoning about properties of mobile pro-
cesses and a programming language prototype for the Web. An ambient captures
both the idea of process and the idea of location. The ambient calculus reflects
the ability to bound the scope of process interaction and to provide migration of
processes between boundaries. This formalism is well suited for expressing such
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issues of mobile computations as working environment, an access to information
and resources, mutual arrangement of mobile processes and devices, etc.

Although both the π-calculus and the calculus of mobile ambients are Turing-
complete [2,14] and they have almost the same field of application (mobile com-
putations), it is widely believed (see [5]) that π-calculus does not directly model
phenomena such as the distribution of processes within different localities, their
migrations, or their failures. At the same time the π-calculus provides a solid
and useful foundation for concurrent programming languages [7,15] and it is
also supplied with a set of comprehensive techniques and tools for verification
and analysis [6,18]. Therefore, it is worthwhile to take those advantages of the
π-calculus that could be useful for manipulation, implementation, verification,
etc. of mobile ambients.

In a number of papers (see [2,3,11,19]) it has been demonstrated that the
calculus of mobile ambients can be used for simulating the π-calculus computa-
tions. On the other hand, Fournet, Levy and Schmitt [9] have translated mobile
ambients into the distributed join-calculus. The atomic steps of mobile ambi-
ent computation are decomposed into several elementary steps, each involving
only local synchronization. By combining this translation with the encoding of
distributed join calculus into the join calculus [8] and then with the encoding
of the join calculus into asynchronous π-calculus [7] one could obtain the trans-
lation of mobile ambients into the asynchronous π-calculus. But to the best of
our knowledge no efforts were made to trace this chain of encodings from the
beginning to the end. An attempt to build a straightforward translation from
mobile ambients into a subset of synchronous π calculus has been undertaken by
Brodo, Degano and Priami [1]. In this paper to imitate the spatial structure of
mobile ambients some very rigid restrictions on the structural congruence rules
of the π-calculus are imposed. It may be said that in [1] the encoding of mobile
ambients into the π-calculus has been achieved on the pure syntactic level.

In our paper we also try to assess the capability of the π-calculus to encode
mobile ambients. The topic is interesting because mobile ambients can be con-
sidered a higher-order calculus of fundamental character. Moreover, an encoding
of mobile ambients into π-calculus appears challenging, in particular because
distributed conformance changes must be effectuated over varying numbers of
encoded agents and capabilities (as encoded ambients migrate or open up them-
selves). The main objective of our research is to build such a straightforward
translation from the calculus of mobile ambients to the π-calculus which could
preserve the behavioural properties of the processes. This translation coupled
with that of [2,3,19] may form a basis for the development of a uniform theory
of mobile computations.

As the starting point in this paper we present a rather simple variant of the
straightforward encoding of mobile ambients into the π-calculus to demonstrate
the practicability of our expectancies. A key idea of the encoding is based on
the separation of the spatial structure of mobile ambients from their operational
semantics. The operational semantics of mobile ambients is given by a univer-
sal π-process Ruler which plays the role of an interpreter routine. Each mobile
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ambient A is encoded into a π-calculus term StructureA which simulates the
spatial structure of A by means of channels. Each step of the encoding is ex-
plained in some details (a complete elucidation of all constructions used in our
encoding, their intended meaning and behaviour could be readily found in [4]).
We also provide an operational correspondence between the two calculi.

To emphasize the key ideas of our encoding we confine ourselves with its most
simple (sequential) variant which assumes the using of the unique Ruler for the
whole system. As it can be readily seen from the description this encoding can
be improved in such a way that it becomes both distributed and compositional.
This can be achieved by supplying every π-process Node corresponding to an
ambient with its own interpreter Ruler.

The structure of the paper is as follows. Section 2 presents the pure mobile
ambients, and provides a short description of the π-calculus. The core of the
paper is represented by Section 3; it presents the translation of mobile ambients
into π-processes. We introduce the tree-wire processes, then we describe the
simulation of capabilities consumption; the behaviour of an ambient is simulated
by a Ruler process. Finally the encoding is defined in terms of two relations
|=0 and |=. The completeness and soundness of the encoding are presented in
Section 4.

2 Mobile Ambients and the π-Calculus

We give here a short description of pure mobile ambients; more information can
be found in [2]. Given an infinite set of names N (ranged over by m, n, . . .)
we define the sets A of MA-processes (denoted by A, A′, B, . . .) and capabilities
(denoted by M, M ′, . . .) as follows

M ::= in n | out n | open n
A ::= 0 | A|B | !A | M.A | n[A] | (νn) A

Processes of the form M.A and n[A] are called actions and ambients, respectively.
The free names of MA-process A are denoted by fn(A). Hereafter, it will be
convenient to assume an external ambient � /∈ fn(A). For every process we
define the set of top-level subprocesses as follows:

TL(0) = ∅; if A = M.B or A = n[B], then TL(A) = {A};
if A = B1|B2, then TL(A) = TL(B1) ∪ TL(B2);
if A =!B or A = (νn) B, then TL(A) = TL(B).

For each action A = M.B or ambient A = n[B] we will say that TL(B) is the
lower context of A and A is the upper context of every subprocess from TL(B).

The structural congruence ≡a on MA-processes is the least congruence satis-
fying the following requirements:

(A, |,0) is a commutative monoid;
if n �∈ fn(A) then (νm) A ≡a (νn) A{n/m}, and (νn) (B|A) ≡a A|(νn) B;
if n �= m then (νn) m[A] ≡a m[(νn) A];
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(νn) 0 ≡a 0, (νn) (νm)A ≡a (νm) (νn)A, !A ≡a A|!A.
The operational semantics of pure ambient calculus is defined in terms of a
reduction relation →a by the following axioms and rules.
Axioms:

(In) n[in m.A|A′]|m[B] →a m[n[A|A′]|B] ;
(Out) m[n[out m.A|A′]|B] →a n[A|A′]|m[B] ;
(Open) open n.A|n[B] →a A|B .

Rules:

(Res) A →a A′
(νn) A →a (νn) A′ ; (Comp) A →a A′

A|B →a A′|B ;

(Amb) A →a A′
n[A] →a n[A′]

; (Struc) A ≡a A′, A′ →a B′, B′ ≡a B
A →a B .

Now we review the syntax and operational semantics of synchronous monadic
π-calculus without sum and τ -prefix operators. Given the infinite set V of vari-
ables (ranged over by x, y, . . .) and the infinite set N of channel names (ranged
over by m, n, . . .) we define the set P of π-processes (denoted P, Q, . . .) as follows

M ::= x | n
P ::= 0 | P |Q | !P | M〈M ′〉.P | M(x).P | [M = M ′](P, Q) | (νn) P

The set of free names in a π-process P is denoted by fn(P ). We restrict our con-
sideration to the monadic π-calculus; therefore an expression M(x1, x2, . . . , xn)
(or M〈M1, M2, . . . , Mn〉) should be read as denoting M(x1).M(x2). . . . M(xn)
(or, resp., M〈M1〉. M〈M2〉. . . . M〈Mn〉). Accordingly, [M1 = N1 ∧ M2 =
N2]. (P, Q) is just a shorthand of [M1 = N1]. ([M2 = N2]. (P, Q), Q).

A π-process P is called localized if P has no subprocesses of the form M(x).Q,
[x = M ](Q, R), or [M = x](Q, R) such that x occurs in Q as the subject of an in-
put prefix x(y).Q′. As demonstrated in [16], the locality property is useful for the
analysis of the π-calculus terms, and for developing distributed implementations
of the language.

The structural congruence ≡π on π-processes is the least congruence satisfying
the following requirements:

– (P , |,0) is a commutative monoid;
– if n /∈ fn(P ) then (νm) P ≡π (νn) P{n/m}, and (νn) (P |Q) ≡π P |(νn) Q;
– (νn) (νm) P ≡π (νm) (νn) P , !P ≡π P |!P , [M = M ′](P, Q) ≡π [M ′ =

M ](P, Q).

The operational semantics of π-calculus is given in the form of a one-step reduc-
tion relation →π by the following axioms and rules.
Axioms:

(Comm) n〈m〉.P | n(x).Q →π P |Q{m/x};
(Match) [n = n](P, Q) →π P ;
(MisMatch) [n = m](P, Q) →π Q, where n �= m.
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Rules:

(Res) P →π P ′
(νn) P →π (νn) P ′ ; (Comp) P →π P ′

P |Q →π P ′|Q ;

(Struc) A ≡π A′, A′ →π B′, B′ ≡π B
A →π B ;

For the sake of clarity we will widely use recursive definitions of π-processes.
This does not requires an extension of the syntax, since recursion can be easy
codified by means of replication !P (see [14] for details).

We denote by →∗
π the transitive and reflexive closure of →π. A π-process P is

called deterministic if for every pair of π-calculus terms Q1, Q2 such that P →π

Q1 and P →π Q2, we have Q1 ≡π Q2. Otherwise P is called non-deterministic.
Whenever P is deterministic (non-deterministic) and P →π Q we will use the
notation P �→π Q (respectively P ↪→π Q) for a one-step reduction. We will write
P ↪→i

π Q for a chain of i non-deterministic reduction steps and �→∗
π for the tran-

sitive and reflexive closure of �→π. If P →∗
π Q and there are no processes R such

that Q →π R, then we say that P →∗
π Q is a terminating run of P .

3 Encoding of the Ambient Calculus into the π-Calculus

In this section we describe a relationship between MA-processes and π-proces-
ses. This relationship may be thought of as a non-deterministic encoding of pure
ambients into π-processes: with every MA-process A it associates a set [[A]] of
π-processes. In the next section we prove the operational correspondence of the
encoding by demonstrating that each π-process from [[A]] corresponds to the
behaviour of A. The only purpose of considering [[·]] as a relation is to simplify
the proofs. When using our translation in applications, one may take a single
(minimum-size) π-process from [[A]] as a true image of A.

A specific feature of pure ambient calculus is that an MA-process A has a
spatial tree-like structure which serves a dual function. On the one hand, mobile
ambients control the run of processes in A by bounding the scope of actions. On
the other hand, the mobile ambients of A are acted upon by the spatial structure
of A. A similar idea of decomposing the ambient process into a tree and actions is
used in [12] to define the normal semantics for mobile ambients. When translating
A into a π-process we separate these functions of mobile ambients. An ambient A
is translated into a π-process ProcA = StructureA|Ruler|Environment which
is a composition of three π-processes StructureA, Ruler and Environment. The
process StructureA is designed according to the following principles.

1. The mobile ambients and capabilities from A are represented by individual
subprocesses Ambi and Actj ; we will call these π-calculus terms nodes. The
spatial structure of A is maintained by means of specific tree-wire subpro-
cesses TWk that are used for communication between nodes that represent
ambients and actions. Thus, we have

StructureA = Amb1| . . . |AmbN |Act1| . . . |ActM |TW1| . . . |TWL

where Ambi, Actj , and TWk represent generic notations for ambients, capa-
bilities, and tree-wire structure.



Encoding Mobile Ambients into the π-Calculus 153

2. Each subprocess Ambi is associated with some mobile ambient n[P ] in A. It
keeps the name n of the ambient and provides communication between the
ambient and its upper and lower contexts.

3. Each subprocess Actj is associated with some action of the form in n.P ,
out n.P or open n.P in A. It keeps the type of capability (in, out or open)
and the name n and also provides communication between the action and
its upper and lower context.

4. A subprocess TWk is a set of wires arranged into a tree-like structure. TWk

delivers requests from its leaf nodes to the root and sends back replies from
the root to the leaves. A tree-wire subprocess is intended to provide message
exchange between the nodes and to accumulate consumed capabilities and
dissolved ambients of A.

5. When a capability is consumed or an ambient is dissolved, a corresponding
node becomes passive. A passive node rearranges to a wire and adds itself to
some tree-wire. Thus, the wires of StructureA take account of computation
steps generated by A. Since there are many different ways to derive the same
mobile ambient term A, it may be encoded into a whole set of π-calculus
terms which have the same nodes and differ only in structures of their tree-
wires.

The subprocess Ruler does not depend on A. It is a universal π-process intended
for simulating the operational semantics of mobile ambients. Here the Ruler is
presented as a central handler. It is also possible to have Ruler acting as a
virtual machine at each location; in this way the encoding becomes distributed.
An execution of Ruler conforms to the following scenario.

1. Ruler selects from StructureA an arbitrary triple of nodes Act, Ambi1 and
Ambi2 and collects the information about their types, names and links.

2. If (1) the type of Act is in, (2) Act is linked with Ambi1 , (3) Act stores the
same name as Ambi2 , and (4) Ambi1 and Ambi2 are linked with the same
node in StructureA, then the subprocess Act|Ambi1 |Ambi2 corresponds to
a mobile ambient pattern n[in m.P |Q]|m[R]. In this case Ruler simulates
the implementation of an entry instruction by switching the link of Ambi1

to Ambi2 and converting the node Act into a wire. This changes the entry-
pattern n[in m.P |Q]|m[R] into m[n[P |Q]|R].

3. If (1) the type of Act is out, (2) Act is linked with Ambi1 , (3) Act keeps the
same name as Ambi2 , and (4) Ambi1 is linked with Ambi2 , then Act|Ambi1

|Ambi2 corresponds to a pattern m[n[out m.P |Q]|R. In this case Ruler sim-
ulates the implementation of an exit instruction by converting the node Act
into a wire, and directing the link of Ambi1 to the same destination where the
link of Ambi2 is directed to. This changes the exit-pattern m[n[out m.P |Q]|R
into m[R]|n[P |Q].

4. If (1) the type of Act is open, (2) Act keeps the same name as Ambi1 and
(3) both Act and Ambi1 are linked with Ambi2 , then Act|Ambi1 |Ambi2 cor-
responds to a pattern m[open n.P |n[Q]]. In this case Ruler simulates the
implementation of an open instruction by converting both Act and Ambi1

into wires. This changes the open-pattern m[open n.P |n[Q]] into m[P |Q].
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5. If none of the above cases holds, then Ruler tries another triple of nodes
Act′, Ambj1 and Ambj2 from StructureA.

The subprocess Environment plays a role of a virtual external environment of
mobile ambients. It bounds every MA-process and can not be dissolved. When
Ruler simulates an open operation, it can select Environment for Ambi2 .

Now we are ready to present the formal description of the processes involved in
StructureA, Ruler and Environment and define the encoding relation between
pure mobile ambients and π-processes.

3.1 Tree-Wire Processes

A spatial structure of mobile ambients is represented by specific π-processes
which are called tree-wires. A tree-wire is parallel composition of some basic
processes which are called wires. A wire serves the message passing from one
agent to another and back. By setting up an appropriate correspondence on
the names of agents one could compose wires into any tree-like communication
structure.

For x �= y, we define a wire process by W (x, y) = ! (νu) x(v). y〈u〉. u(t). v〈t〉.
A wire has two parameters x and y. The parameter x is a name of a channel
for communication with low-level components of a system, whereas y is a name
of a channel for communication with its top-level component. The wire W (x, y)
receives a request x(v) from one of the low-level components, re-address it to
the top-level component y〈u〉, then receives a reply u(t) via a private channel
u, and finally re-address this reply v〈t〉 to the low-level component. It should
be noticed that it may be the case when several low-level components at the
same time try to communicate with a top-level component via W (x, y). Then
the top-level component can serve all the low-level components one by one. To
avoid broadcasting every time a new private channel u is selected.

A tree-wire process TWI,k, where I is a set of names and k is a name
such that k /∈ I, is any process which is composed of basic wires TWI,k =
W (x1, y1)| . . . |W (xm, ym) in such a way that this parallel composition has a
tree-like communication structure and provides message exchange between the
set of leaf nodes I and the root k.

Definition 1. The set of tree-wires is the minimal set of π-processes satisfying
the following requirements.

1. Every wire Wx,y is a tree-wire TW{x},y.
2. If Wx,y is a wire, TWI,x is a tree-wire and y /∈ I, then the term (νx) (Wx,y

|TWI,x) is a tree-wire TWI,y.
3. If TWI,y and TWJ,y are tree-wires such that I ∩ J = ∅, then the term

TWI,y|TWJ,y is a tree-wire TWI∪J,y.

When dealing with a tree-wire TWI,y, where I = {x1, x2, . . . , xn}, we use the
shorthand notation (νI)(P |TWI,k) for (νx1) (νx2) . . . (νxn) (P |TWI,k).
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Proposition 1. If TWI,y is a tree-wire, then y /∈ I and fn(TWI,y) = I ∪ {y}.

When appending a tree-wire to a tree-wire we get again a tree-wire.

Proposition 2. Let TWI1,y1 and TWI2,y2 be a pair of tree-wires such that I1 ∩
I2 = ∅, y1 /∈ I2, y2 ∈ I1. Then (νy2) (TWI1,y1 |TWI2,y2) is a tree-wire TWI3,y1 ,
where I3 = (I1 − {y2}) ∪ I2.

A tree-wire delivers requests from its leaf nodes to the root and replies from the
root to leaf nodes.

Proposition 3. Let TWI,y be a tree-wire and x ∈ I. Then the π-process
(νv) x〈v〉. v(z). z|TWI,y|y(u). u〈t〉

has a deterministic terminating run
(νv) x〈v〉. v(z). z|TWI,y|y(u). u〈t〉 �→∗ t|TWI,y

3.2 Ambients and Actions

The main difficulty of encoding pure ambient processes into π-processes is that
of simulating the consumption of capabilities, dissolving the boundaries of ambi-
ents, and changing the structure accordingly. In an MA-process, when an action
in n.P , out n.P or open n.P is executed, the corresponding capability just dis-
appears from the process (it is consumed). The same effect manifests itself when
the boundary of an ambient named m[Q] is dissolved. But when simulating ac-
tions and ambients as individual π-subprocesses of StructureA it is not possible
just to reduce the consumed capabilities or dissolved ambients to inactive pro-
cesses 0 since in this case we lose the links between the processes in StructureA.
The simplest way to make such processes inactive while preserving a tree-like
structure of links between the remaining processes is to convert consumed capa-
bilities and dissolved ambients into wires and use them merely to maintain links
between the active processes. In this case the process StructureA corresponding
to an MA-process A will depend not only on the spatial structure of A, but
also on the way A is computed (the history of A). That is why instead of using
deterministic encoding which maps every MA-process into a single π-process we
introduce an encoding relation |= which associates every MA-process A with a
set of π-processes [[A]]. Each process StructureA from [[A]] keeps along with the
spatial structure of A the possible history of A, i.e. the way the MA-process A
can be computed from the other processes. This history is represented by wires
which keep track of consumed capabilities and dissolved ambients. The history
of A does not influence the functionality of StructureA; its only purpose is to
maintain the links between active nodes of StructureA.

Definition 2. The formal description of a π-process Node(a, n, u, d, s, l) is
Node(a, n, u, d, s, l) = Reply(d, s, l)|Main(a, n, u, d, s, l)
Reply(d, s, l) = d(y). [y = l] (1)

( d(u). s〈l〉. Wd,u , (2)
y〈l〉. Reply(d, s, l) ) (3)
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Main(a, n, u, d, s, l) = (νv) (νw) (νk) (4)
s〈v〉. v(x). (5)
u〈w〉. w(lu). (6)
x〈a, n, l, u, d, lu〉. v(y, z). (7)
[y = l] (8)
( d〈l〉. d〈z〉 , (9)

d〈k〉. k(w′). (10)
s〈l〉. Main(a, n, z, d, s, l) ) (11)

The π-processes Act and Amb associated with actions cap n.P , where cap ∈
{in, out, open}, and ambients n[P ] in MA-process A have a similar arrange-
ment. An action represented by a capability cap n is encoded into the π-process
Node(cap, n, up, down, sact, label), where up and down are names of channels
used for communication with upper and lower contexts of the action, sact is a
channel name shared by all action-type nodes of StructureA for communica-
tions with Ruler, and label is an individual label of the action in A. An ambient
n is encoded into the π-process Node(amb, n, up, down, samb, label), where up,
down and label have the same meaning as above, amb is the key word for dis-
tinguishing ambients from capabilities, and samb is a channel name shared by
all ambient-type nodes of StructureA for communications with Ruler.

The π-process Node(a, n, u, d, s, l) is a recursive process composed of two sub-
processes Reply(d, s, l) and Main(a, n, u, d, s, l). The subprocess Reply serves
the dual function of providing communication with the lower context of a node
(which is a set of nodes) and also of converting (if necessary) the node into a
wire. The subprocess Main keeps the information about the node (its type, name
and context) and communicates with Ruler. More details about the intended
meaning of some fragments of Reply and Main can be found in [4].

3.3 Simulating the Operational Semantics of Pure Ambients

The π-process StructureA represents only the spatial structure of MA process A.
The behaviour of A is simulated by a universal π-process Ruler which does not
depend on A. This process has two parameters sact and samb as channel names
for receiving submissions from nodes corresponding to actions and ambients.
The received submissions indicate the readiness of the nodes to participate in
the simulation of some MA operation (entering, exiting or opening).

Definition 3. The formal description of a π-process Ruler is as follows.
Ruler(sact, samb) = (νx0) (νx1) (νx2) (νy) (12)

sact(v0). samb(v1). samb(v2). (13)
v0〈x0〉.x0(tc, nc, lc, uc, dc, ulc). (14)
v1〈x1〉.x1(ta,1, na,1, la,1, ua,1, da,1, ula,1). (15)
v2〈x2〉.x2(ta,2, na,2, la,2, ua,2, da,2, ula,2).
[tc = in ∧ nc = na,2 ∧ ulc = la,1 ∧ ula,1 = ula,2] (16)
(

v0〈lc, uc〉.v1〈y, da,2〉.v2〈y, ua,2〉 , (17)
[tc = out ∧ nc = na,2 ∧ ulc = la,1 ∧ ula,1 = la,2] (18)
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(
v0〈lc, uc〉.v1〈y, ua,2〉.v2〈y, ua,2〉 , (19)

[tc = open ∧ nc = na,1 ∧ ulc = la,2 ∧ ula,1 = la,2] (20)
( v0〈lc, uc〉.v1〈la,1, ua,1〉.v2〈y, ua,2〉 , (21)

v0〈y, uc〉.v1〈y, ua,1〉.v2〈y, ua,2〉 ) (22)
)

).sact(z0). samb(z1). samb(z2). Ruler(sact, samb) (23)

Environment: The environment is considered as a top-most ambient encom-
passing MA-process A. But unlike conventional ambients it can not be dissolved
and no ambient can exit out of it. The environment plays the role of an up-
per context for unguarded actions and ambients; it can also participate in the
simulation of open operations as Amb2. Moreover, for the sake of uniformity
it is convenient to compose an environment out of two ambient-type processes.
Only one of these processes can actually participate in simulation of some MA-
operation. The other is just a dummy which gives Ruler a possibility to operate
till at least one active action-type node remains in StructureA.

Definition 4. The formal description of a π-process Environment is
Environment(env, �, d, samb) = Top(env, �, d, samb) |

(ν d′) Top(env,�, d′, samb) (24)
Top(env,�, d, s) = (νv) (νl) (νu) (νw) (25)

s〈v〉. v(x). (26)
x〈env, �, l, u, d, w〉. (27)
v(y, z). s〈l〉. T op(env,�, d, s) (28)

3.4 The Intended Meaning of the Encoding Constructions

We present here some details about our encoding. First we briefly explain the
intended meaning of some fragments of Reply and Main from the formal de-
scription of Node(a, n, u, d, s, l):

(1) Reply(d, s, l) can receive via the channel d either a request from the lower
context of the node, or an instruction from Main which alters the whole
node into a wire. In the former case y is evaluated into a private channel
name for emitting at y the label l of the node. In the latter case the main
process evaluates y into the label l (see line (9)) which does not match any
private name. Therefore, after receiving the label l from Main the process
Reply is reduced to the line (2), whereas after receiving a request from the
lower context of the node it is reduced to the line (3).

(2) After receiving the label l of the node from the main subprocess of the node,
Reply receives an updated channel name for communication with the upper
context of the node (see line (9)), sends a synchronization message to Ruler
indicating thus the completion of the instruction processing, and evolves
into a wire which connects the lower and the upper contexts of the node.
This may happen when the node becomes passive since the corresponding
capability is consumed or the ambient boundary is dissolved.
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(3) If Reply receives a request from the lower context of the node it considers
the value of y as a private name of a channel and sends via this channel
the label l of the node. As a consequence, the label of the node becomes
available to its lower context. Afterwards Reply reverts to the original state.

(4) The subprocess Main(a, n, u, d, s, l) uses the following private names:
• v as a name of a channel for receiving acknowledgments and instructions

from Ruler,
• w as a name of a channel for receiving the label of a node that precedes

our node in StructureA,
• k as an arbitrary fresh name different from the label of the node to switch

Reply to the line (3).
(5) Main begins with sending a message to Ruler to indicate the readiness of

the node to participate in the simulation of some MA operation. Ruler will
consider this message as a private name of a channel for communication
with the node. If Ruler selects the node for simulating MA operation it
sends via v another private name (see lines (14),(15)). This name will be
used as a channel for sending to Ruler additional information: the name,
the type and the environment of the node.

(6) The node sends a request to its upper context to know the label of preceding
node in the StructureA. The upper context replies via w and evaluates lu
to the label of the predecessor see (see lines (1), (3) and Proposition 3).

(7) The node sends to Ruler its type, name and label, the channel names for
communication with the upper and lower context, the label of its prede-
cessor in StructureA. After processing this information Ruler replies via
v to the node and informs it about its new status (active or passive) and
its new upper context (see lines (17), (19), (21) and (22)). If the node does
not match a pattern for simulating an MA operation or corresponds to a
component of MA which is not consumed or dissolved along the operation,
then Ruler emits at v some private name which does not match l. The
node should consider this private name as an instruction to remain active.
Otherwise Ruler evaluates y into the label l of the node and this is con-
sidered as an instruction to alter the node into a wire. In both cases Ruler
evaluates z into a name of a new channel for communication with the upper
context of the node (since the context of the node may be also changed as
a result of simulation of MA operation).

(8) Main checks the instruction.
(9) If the node becomes passive due to the consumption of a capability or disso-

lution of an ambient, then Reply is instructed to become a wire and receives
an updated channel name for communication with its upper context. In this
case the main subprocess of the node is reduced to 0.

(10) Otherwise the subprocess Reply is informed that the node remains active.
The input action k(w′) is used just for the sake of uniformity.

(11) Afterwards the main subprocess sends to Ruler a synchronization message
which indicates completion of the instruction processing, updates its upper
context and reverts to the original state.
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The intended meaning of the lines in the definition of Ruler(sact, samb) is as
follows.

(12) The subprocess Ruler uses the following private names:
• x0, x1, x2 for communication with the nodes selected for simulating MA

operations, and
• y for instructing the selected nodes to remain active.

(13) Ruler selects non-deterministically three nodes representing an action and
a pair of ambients in an MA-process that could participate in the simulation
of MA operation. Selection is put into effect by receiving requests via public
channels sact and samb (see line (5)). The first selected node is an action-
type node since the request from this node is received via the channel sact

which is shared by action-type-nodes only. Two others are ambient-type
nodes. The requests include private channel names for communication with
the selected nodes.

(14) Using this private channel, Ruler sends a fresh channel name x0 to the
action-type node. The node considers this message as an inquiry about its
characteristics (type tc, name nc, label lc, channel names uc, dc for commu-
nication with upper and lower contexts, label ulc of the preceding node).
It delivers the required names to Ruler via the private channel x0 (see line
(7)).

(15) As in the case of actions (see line (14)), Ruler asks the selected ambient-
type nodes to provide the information on the names na,1 and na,2, labels
la,1 and la,2, channel names for communication with lower contexts da,1
and da,2, and labels of the preceding nodes ula,1 and ula,2 of these nodes.

(16) From this point Ruler begins to check which operation on MA can be
executed by means of the capability represented by the selected action-
type node on the ambients represented by the selected ambient-type nodes.
There are three conditions to ensure that Ruler simulates the application
of entering reduction step to the MA process. First, the selected action-type
node labeled with lc should represent an action which has the capability
for entering (tc = in) into the ambient named na,2 (nc = na,2); secondly,
it lies on the top level in the ambient named na,1 (ulc = la,1); and finally,
the ambients named na,1 and na,2 are siblings (ula,1 = ula,2).

(17) The entering reduction step is simulated by changing the communication
net in the π-process StructureA which represents the spatial structure of
MA-process A. Since the capability represented by the selected action-type
node is consumed, Ruler sends to this node its label lc via the private
channel. After receiving this message the node evolves into a wire (see
lines (7),(8),(9),(1),(2)). Since the ambient named na,1 enters the sibling
ambient named na,2, the corresponding ambient-type node has to change
the upper context. Ruler sends to this node the channel name da,2 for
communication with its new upper context which is the node corresponding
to the ambient named na,2. The upper context of the node corresponding to
the ambient named na,2 remains the same, and Ruler acknowledges this by
communicating back the value ua,2. A private name y which does not match
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the labels la,1 and la,2 is sent to the ambient-type nodes as an instruction
to remain active (see lines (7),(8),(10),(11),(1),(3)).

(18) If the selected nodes do not match an entry-pattern, then Ruler checks for
an exit-pattern. There are three conditions to ensure that Ruler simulates
the application of exiting reduction step to the MA process. First, the
selected action-type node labeled with lc should represent an action which
has the capability for exiting (tc = out) out of the ambient named na,2
(nc = na,2); secondly, it lies on the top level in the ambient named na,1
(ulc = la,1); and finally, the ambient named na,1 lies on the top level of the
ambient named na,2 (ula,1 = la,2).

(19) Since the capability represented by the selected action-type node is con-
sumed, Ruler sends to this node its label lc to evolve the node into a wire
(see lines (7),(8),(9), (1),(2)). Since the ambient named na,1 is transformed
into a sibling of the ambient named na,2, it changes the upper context from
ua,1 to ua,2. The upper context of the node corresponding to the ambient
named na,2 remains the same. Ruler sends a private name y which does not
match the labels la,1 and la,2 to instruct the ambient-type nodes to remain
active (see lines (7),(8),(10),(11),(1),(3)).

(20) If the selected nodes do not match exit-pattern, then Ruler checks for an
open-pattern. If the selected action-type node labeled with lc represents an
action which has the capability for dissolving the boundary (tc = open) of
the ambient named na,1 (nc = na,1), lies on the top level in the ambient
named na,2 (ulc = la,2), and the ambient named na,1 also lies on the top
level of the ambient named na,2 (ula,1 = la,2), then Ruler simulates the
application of an opening reduction step to the MA process.

(21) To simulate an opening MA-operation, Ruler sends lc to the action-type
node and la,1 to the ambient-type node named na,1 to evolve these nodes
into wires (see lines (7),(8),(9),(1),(2)) since the capability is consumed
and the boundary of the ambient is dissolved. Ruler sends a private name
y which does not match the label la,2 to instruct the ambient-type node
named na,2 to remain active (see lines (7),(8),(10),(11),(1),(3)).

(22) If the selected nodes do not match any pattern, then Ruler informs them
via private channels to remain active and to keep their channels for com-
munication with upper contexts unchanged.

(23) After this Ruler waits till the nodes participated in this round of simulation
send their synchronization messages (the labels) to indicate that instruc-
tions sent to them (see lines (17), (19), (21), or (22)) are performed (see
lines (2) and (11)), reverts to the initial state and tries another triple of
nodes.

Finally, we comment briefly on the intended meaning for Environment.

(24) The environment is composed of two processes Top. They have the same
functionality, but only the first one has a global name for communication
with its lower context (top-level actions and ambients encompassed by the
environment). Nevertheless both processes can communicate with Ruler via
the channel samb shared by ambient-type nodes. The name � is an arbitrary
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name which is different from any free name in an ambient encompassed by
the environment.

(25) A process Top uses the following private names:
• v as a name of a channel for receiving acknowledgments and instructions

from Ruler,
• l, u, w as dummy names that are used only for the sake of uniformity

in communications with Ruler (they stand for the label, upper context
and label of the predecessor of the node that are of no importance for
the environment).

(26) The environment processes begin with sending to Ruler their requests for
participation in the simulation of MA operations. When participation is
granted Top receives a private channel name for communication with Ruler
(see line (15)).

(27) Using this channel Top sends to Ruler the information about its type (a
keyword env), name (it should be different from any name in StructureA),
channel names for communication with its upper context (since it does not
exist any private name is possible) and lower context (d), the label of the
preceding node (it does not exist also and Top uses any private name for
this purpose).

(28) As any other node participating in the simulation of MA operation as seen
in line (7), Top receives a pair of names (y and z) which are interpreted
as instructions for changing its status and updating its context. But since
the environment can not be dissolved and it has no upper context, these
names do not affect on its functionality. This input is used only for the sake
of uniformity which gives Ruler a possibility not to distinguish Top as a
specific node. Therefore, Top just acknowledges the receipt of these names
by sending a synchronization message to Ruler and reverts to the original
state.

3.5 Encoding of Pure Ambients into π-Processes

The encoding of pure ambients in π-processes is defined in terms of two relations
|=0 and |=. We use |=0 for constructing StructureA corresponding to MA process
A and |= for constructing the ultimate π-process out of StructureA, Ruler and
Environment.

Definition 5. The encoding relation |=0 is defined inductively by the following
axioms and rules. In every pair [P, k] to the right of |=0 the second component
k stands for the free channel name used in the π-process P for communication
with its upper context.
Axioms:

Ax1 (Simple Inactivity) 0 |=0 [0, k], where k ∈ N ;

Ax2 (Tree-wire) 0 |=0 [(νI) TWI,k, k], where I ⊂ N , k ∈ N ;

Rules:

R1 (Add tree-wire) A |=0 [P, k]
A |=0 [(ν I) (WI,m|P ), m] ,
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where k ∈ I, fn(P ) ∩ I ⊆ {k}, m /∈ fn(P ) ∪ I;

R2 (Composition) A1 |=0 [P1, k] , A2 |=0 [P2, k]
A1|A2 |=0 [P1|P2, k] ;

R3 (Restriction) A |=0 [P, k]
(νn) A |=0 [(ν n) P, k] ; R4 (Replication) A |=0 [P, k]

!A |=0 [!P, k] ;

R5 (Action) A |=0 [P, k]
cap n. A |=0 [(ν k) (ν l)(Node(cap, n, m, k, sact, l)|P ), m] ,

where cap ∈ {in, out, open}, l, m /∈ fn(P ) ∪ {n};

R6 (Ambient) A |=0 [P, k]
n[A] |=0 [(ν k) (ν l) (Node(amb, n, m, k, samb, l)|P ), m] ,

where l, m /∈ fn(P ) ∪ {n}.

The encoding relation |= is defined by the single rule
R0 (MA-to-π)

A |=0 [StructureA, k]
A |= (ν Σ) (StructureA|Ruler(sact, samb)|Environment(env, �, k, samb))

where νΣ stands for the prefix

(ν in) (ν out) (ν open) (ν amb) (ν env) (ν sact) (ν samb) (ν �) (ν k) ,

and � is any name from N − fn(A).

Proposition 4.

1. Let A, B be two MA-processes such that A ≡a B, and A |= P . Then there
exists a derivation B |= Q such that P ≡π Q.

2. If A |= P , then fn(A) = fn(P ).

4 Operational Correspondence

In this section we will demonstrate that the encoding of pure ambients into π-
calculus is complete and sound. By completeness we mean that any π-process P
associated with an MA-process A through the encoding relation A |= P admits
only those π-calculus reductions P →∗

π P ′ that can be interpreted in terms of
pure ambient reductions A →a A′ such that A′ |= P ′. Soundness means that any
reduction A →a A′ corresponds to some chain of π-calculus reductions P →∗

π P ′

of P such that A′ |= P ′. Thus, we may speak of a homomorphic embedding of
pure mobile ambients into π-calculus.

Theorem 1 (Completeness). Let A0, A1 be MA-processes and P0 be a π-
process such that A0 →a A1 and A0 |= P0. Then there exists a chain of π-calculus
reduction steps

P0 ↪→3
π P ′

1 �→∗
π P1

such that A1 |= P1.
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The proof follows straightforward from the description of processes Main, Reply,
Ruler, Top and Proposition 3. The only non-deterministic steps in the reduction
P0 →∗

π P1 are three communications steps when Ruler selects nodes representing
a capability and a pair of ambients for simulating a reduction step A0 →a A1.
Afterwards the reduction of P0 is completely deterministic until all communi-
cation actions in the the bodies of subprocesses Ruler, Main and Reply are
executed to an end.

Theorem 2 (Soundness). Let A0 be an MA-process and P0 be a π-process
such that A0 |= P0. Let P0 →∗

π P be a chain of π-calculus reduction steps.
Then there exist an integer N , 0 ≤ N ≤ 2, a sequence of π-calculus terms
P ′

1, P1, P
′
2, P2, . . . , P

′
n, Pn and a sequence of pure ambient terms A1, A2, . . . , An

such that the following conditions hold

1. P ↪→N
π P ′

n �→∗
π Pn;

2. The chain of π-calculus reductions P0 →∗
π P →∗

π Pn can be partitioned as
follows:
P0 ↪→3

π P ′
1 �→∗

π P1 ↪→3
π P ′

2 �→∗
π P2 ↪→3

π · · · ↪→3
π P ′

n−1 �→∗
π Pn−1 ↪→3−N

π P ↪→N
π P ′

n �→∗
π Pn

such that
(a) Ai |= Pi for every i, 0 ≤ i ≤ n;
(b) for every i, 0 ≤ i < n, either Ai ≡a Ai+1 or Ai →a Ai+1.

The intended meaning of this theorem is as follows. Suppose that a π-process
P0 encodes an MA-process A0, and it can be reduced to a π-process P . Then
either P encodes an MA-process An, or P is in an “intermediate” form and it
can be further reduced to a π-process Pn which encodes An. In the latter case,
the reduction of P to Pn is a composition of

– N non-deterministic reduction steps P ↪→N
π P ′

n, where 0 ≤ N ≤ 2; these
steps complete, if necessary, a non-deterministic selection of nodes represent-
ing an action and ambients in MA-process (see Section 3.4.(13)), and

– a finite number of deterministic reduction steps P ′
n �→∗

π Pn corresponding
to the interaction between the Ruler and the selected processes Node (see
Section 3.4. (14)-(23)).

When reduction of P to Pn is completed, the whole chain of π-calculus reductions
P0 →∗

π P →∗
π Pn becomes a step-by-step simulation of some MA computation

A0 →∗
a An.

The proof of this theorem is by induction on the number of non-deterministic
steps ↪→π in a reduction of P0. Each triple of non-deterministic steps in such
reduction is followed by a chain of deterministic reduction steps that either
simulate the execution of some MA-reduction step if the selected nodes in a
π-process Pi comply to one of MA reduction rules, or restore Pi otherwise.

We may note that our translation has diverging reductions whenever the se-
lected nodes do not conform any MA reduction rule. In this case we may obtain
an infinite chain P ↪→3

π P ′ �→∗
π P ↪→3

π P ′ �→∗
π P ↪→3

π . . .
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Proposition 5. If A is an MA-process and P is a π-process such that A |= P ,
then we can see that P is a localized π-calculus term.

5 Conclusion

Both ambient calculus andπ-calculus are very expressive andallow the natural em-
bedding into them of many other universal models of computations such as Turing
machine and λ-calculus. In [2] and [3], the π-calculus was encoded into the full am-
bient calculus; [19] has proposed an encoding of the π-calculus only into the pure
ambients calculus. In this paper we provide an encoding of the pure mobile am-
bients into the localized sum-free synchronous monadic π-calculus. The encoding
uses the matching and mismatching operators. The encoding is close to an inter-
preter, and it can be used for implementing the ambient calculus. We prove the
completeness and soundness of our encoding by showing that each reduction step
of an MA process can be uniformly simulated by chains of π-calculus reductions
of corresponding the π-terms. The encoding gives a possibility to analyze some
properties of mobile ambients by means of static analysis and congruence-checking
machinery developed for the π-calculus. The fact that we restrict ourselves with
localized and sum-free π-terms alleviates substantially the analysis. Moreover, our
encoding does not involve any sophisticated structures that can affect the precision
of such analysis.

The encoding can be extended to a full ambient calculus, adding a communica-
tion channel per ambient. This implies a “merging” of channels when an ambient
is opened; we may use the same mechanism: the Ruler randomly selects an input
and an output, checks if they belong to the same ambient, and performs com-
munication. On the other hand, it is worth noticing that our encoding is slightly
more general in the sense that the target language is even simpler. We can use the
asynchronous π-calculus, which is even simpler than the synchronous π-calculus,
by using the standard encoding [10].

We consider our encoding in combination with the earlier results of [2,3,19] as
the first efforts towards bridging the gap between the calculus of mobile ambients
and the π-calculus. For the sake of clarity we present here the most simple
(sequential) variant of the encoding: the unique Ruler serves the whole system.
It can readily be imagined that the encoding could be made more advanced
by combining every π-process Node corresponding to an ambient with its own
interpreter Ruler. In this case a distributed interaction between the components
of a system can be achieved, and the encoding becomes compositional. To study
the behavioural properties of mobile ambients that are preserved by such an
advanced encoding would be our next step. The ultimate aim is to build a fully
abstract translation which preserves behavioural equalities between processes,
such as reduction barbed congruence [13,17]. If such a translation should be
obtained, it provides a sound basis for a uniform framework of the theory of
mobile computations.
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Abstract. In this paper we focus on characterizations of cooperating
distributed grammar systems (henceforth CDGSs) working in {≤ k, =
k, ≥ k}-competence mode, k ≥ 1, defined in [1], by means of time,
space and several other resources of a multicounter machine such as
number of counters, reversals or 0-tests. We show that CDGSs working
in {≤ k, = k, ≥ k}-competence mode, k ≥ 1, can be simulated by one-
way nondeterministic multicounter machines in linear time and space,
with a linear-bounded number of reversals. If we impose restrictions on
the capacity of each counter to perform 0-testings, we find that CDGSs
working in {≤ 1, = 1}∪{≥ k|k ≥ 1}-competence mode can be simulated
by one-way partially blind multicounter machines in quasirealtime. It is
known from [8] that quasirealtime partially blind multicounter machines
accept the family of Petri net languages. Consequently, various deci-
sion problems for partially blind multicounter machines are decidable.
With respect to them, several decidability results, for CDGSs working
in competence mode, grammars and systems with regulated rewriting,
that emerge from the above simulations are presented, too.

1 Introduction

In this paper we deal with cooperating distributed grammar systems that use a
special type of cooperation protocol based on the level of competence of a com-
ponent to rewrite a certain number of nonterminals occurring in the underlying
sentential form. The new protocol has been recently introduced in [1].

Informally, a component is ≤ k-competent, = k-competent or ≥ k-competent,
k ≥ 1, on a certain sentential form if it is able to rewrite at most, exactly, or at
least k distinct nonterminals occurring in the sentential form, respectively. Once
a component starts to be f -competent on a sentential form, f ∈ {≤ k, = k, ≥ k},
k ≥ 1, it has to continue the derivation as long as it is f -competent on the newest
sentential form. The formal definition of competence-based protocols is provided
in Section 2.

In [1] it is proved that competence-based protocols lead CDGSs to work
at least at the level of forbidding random context grammars for the case of

I. Virbitskaite and A. Voronkov (Eds.): PSI 2006, LNCS 4378, pp. 166–179, 2007.
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{≤ 1, = 1}-competence mode, at the level of ET0L systems for ≥ 1-competence
mode, at the level of random context ETOL systems for ≥ k-competence mode,
k ≥ 2, and finally they are as powerful as random context grammars for the
case of {≤ k, = k}-competence mode, k ≥ 2, i.e., they characterize the class of
recursively enumerable languages.

In Section 3 we give several characterizations of CDGSs that work in {≤ k, =
k, ≥ k}-competence mode, k ≥ 1, by means of time, space and several other
resources of a multicounter machine such as number of counters, number of re-
versals or 0-tests. For f ∈ {≤ k, = k, ≥ k}, k ≥ 1, we present a simulation
of CDGSs working in f -competence mode by one-way nondeterministic multi-
counter machines in linear time and linear space, with a linear-bounded number
of reversals. With respect to this simulation we give an equivalent result for non-
deterministic Turing machines. For CDGSs working in {≤ 1, = 1}-competence
mode or in ≥ k-competence mode, k ≥ 1, the simulation is done in quasirealtime
by one-way partially blind multicounter machines.

We conclude in Section 4 with several decidability results for CDGSs work-
ing in competence mode, grammars and systems with regulated rewriting, that
emerge from the above simulations.

2 CD Grammar Systems Working in Competence Mode

The aim of this section is to introduce the basic notions and notations that
concern CDGSs that work in competence mode. For basic results on CDGSs the
reader is referred to [3] and [1]. Let X be a finite set of alphabet letters, |X | be
the cardinal number of X , and X∗ be the set of all strings over the alphabet
X . The empty word is denoted by λ, the number of occurrences of the symbol
a ∈ X , in the string w ∈ X∗, is denoted by |w|a, and the length of a string
w ∈ X∗ is denoted by ||w||.

Definition 1. A cooperating distributed grammar system of degree s, is an (s +
3)-tuple Γ = (N, T, α, P1, . . . , Ps), where N and T are disjoint alphabets, the
nonterminal and the terminal alphabet, respectively. P1, . . . , Ps are finite sets
of context-free rules over N × (N ∪ T )∗, called the system components, and
α ∈ (N ∪ T )+ is the system axiom.

Definition 2. Let Γ = (N, T, α, P1, . . . , Ps) be a CDGS, dom(Pi)={A ∈ N |A →
z ∈ Pi} be the domain of the component Pi, 1 ≤ i ≤ s, and alphN (x)={A ∈
N ||x|A > 0}. We say that Pi is ≤k-competent, =k-competent or ≥k-competent
on a sentential form x, x ∈ (N ∪ T )∗, if and only if |alphN (x) ∩ dom(Pi)| is less
than k, equal with k, or greater than k, respectively.

Informally, we say that a component Pi has the level of competence ≤ k, = k or
≥ k, k ≥ 1, on a certain sentential form x, x ∈ (N ∪ T )∗, if the component Pi is
≤k-competent, =k-competent, ≥k-competent on a sentential form x, x ∈ (N ∪T )∗,
i.e., it is able to rewrite at most, exactly, or at least k distinct nonterminals
occurring in the sentential form, respectively. We denote by clevi(x) the level of
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competence of Pi on x. The cooperation protocol, based on the capability of a
component Pi to be ≤k-competent, =k-competent, ≥k-competent on x ∈ (N∪T )∗,
is defined in [1] as follows.

Definition 3. Let Γ = (N, T, α, P1, . . . , Ps) be a CDGS, x, y ∈ (N ∪ T )∗, and
1 ≤ i ≤ s.
1. We say that y is derived from x in the ≤k-competence mode, denoted by
x ⇒≤k-comp.

i y, iff there is a derivation x = x0 ⇒i x1... ⇒i xm−1 ⇒i xm = y
such that (a) clevi(xj) ≤ k for 0 ≤ j < m and (i) clevi(xm) = 0 or (ii) y ∈ T ∗,

(b) clevi(xj) ≤ k for 0 ≤ j < m and clevi(xm) > k;
2. We say that y is derived from x in the =k-competence mode, denoted by
x ⇒=k-comp.

i y, iff there is a derivation x = x0 ⇒i x1... ⇒i xm−1 ⇒i xm = y
such that (a) clevi(xj) = k for 0 ≤ j < m and clevi(xm) 	= k or

(b) clevi(x0) = k, clevi(xj) ≤ k for 1 ≤ j ≤ m, and y ∈ T ∗;
3. We have x ⇒≥k-comp.

i y iff there is a derivation x = x0 ⇒i x1... ⇒i xm−1 ⇒i

xm = y such that (a) clevi(xj) ≥ k for 0 ≤ j < m and clevi(xm) < k or
(b) clevi(x0) ≥ k, and y ∈ T ∗.

Let M = {≤ k-comp., = k-comp., ≥ k-comp.|k ≥ 1}, and let ⇒f denote ⇒f
i ,

for 1 ≤ i ≤ s, f ∈ M . We denote by ⇒∗f the reflexive and transitive closure of
⇒f .

Definition 4. The language generated by Γ in f -mode of derivation, f ∈ M , is

Lf (Γ ) = {w ∈ T ∗|α ⇒∗f w}.

The family of languages generated by CDGSs in f -mode, f ∈ M , is denoted by
L(CD, CF, f).

Definition 5. Let Γ = (N, T, S, P1, . . . , Ps) be a CDGS, and D be a derivation
in f -mode, D : S = w0 ⇒=n1

Pi1
w1 ⇒=n2

Pi2
w2... ⇒=nm

Pim
wm = w, f ∈ M , where

Pij performs nj steps, 1 ≤ ij ≤ s, 1 ≤ j ≤ m. Let w be an arbitrary word
in Lf (Γ ). The Szilard word of w associated with the terminal derivation D, is
defined as: γw(D) = in1

1 in2
2 ...inm

m , where ij is the label of the component Pij ,
and nj is the number of times the component Pij brings its contributions on
the sentential form when it is activated in the f -mode. The Szilard language
associated with the derivation D in Γ is defined as: Sz(Γ, f) = {γw(D)|w ∈
Lf(Γ ) and D a terminal derivation in f -mode, f ∈ M}.

We denote by SZ(CD, CF, f) the family of Szilard languages Sz(Γ, f) associated
to CDGSs with context-free components working in f -mode, f ∈ M .

3 On the Time, Space and Reversal Complexity

In this section we focus on the characterization of CDGSs working in {≤ k, =
k, ≥ k}-comp.-mode, k ≥ 1, by means of time, space, number of counters, number
of reversals or 0-tests of a multicounter machine.
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3.1 Multicounter Machines

Informally, a multicounter machine, abbreviated MC, is an accepting device
composed of a finite state control, an input head, an input tape, and a finite
number of semi-infinite storage tapes that function as counters capable to store
any integer. If the input head is allowed to move only to the right the machine is a
one-way (or on-line) multicounter, otherwise is a 2-way (or off-line) multicounter
machine. Next we deal only with one-way MC machines.

If X is the input alphabet, then an input for a one-way MC is a string of
the form �w�, where � is the input delimiter and w ∈ (X − {�})∗. The machine
starts in an initial state, with the input head placed on the left delimiter with
all counters set on zero. Each time the input head reads a symbol from the
input tape, on a particular state q, the machine checks the configuration of each
counter, increments each counter by +1, -1, or 0, moves the head on the right
and changes the state q into q′. The input is accepted if the machine gets into a
final state, having the input head placed on the right delimiter and all counters
empty. In the case that the machine has at most one choice of action on any
configuration, we have a deterministic multicounter. Otherwise, the machine is
said to be nondeterministic. Each choice of action is defined by a transition
function, denoted as δ.

The most important resources of multicounter machines are the time, i.e.,
the number of steps performed by the MC machine during the computation,
the space, i.e., the sum of the maximum absolute values of the contents of each
counter during the computation, the number of counters, the number of reversals,
i.e., the number of alternations from increasing to decreasing and vice-versa
performed during the computation, and the number of 0-tests.

For the formal definition of MC machines and other complexity and hierarchy
results on counter languages the reader is referred to [6] and [7].

Theorem 1. The Szilard language Sz(Γ ,f) attached to a CDGS Γ , working in
f -mode, f ∈ M , is recognizable by one-way nondeterministic m-counter ma-
chine, in linear time and linear space, within linear bounded reversals and linear
0-tests, where m is the number of the system nonterminals.

Proof. Let Γ = (N, T, α, P1, . . . , Ps) be a CDGS working in f -mode, f ∈ M .
Next we give the demonstration for = k-comp.-mode, k ≥ 1. Let us con-
sider the ordered set of nonterminals N = {A1, A2, ..., Am}, m ≥ k, and let
P = {1, 2, ..., s} be the set of labels attached to each component in the system.
Let M be the one-way nondeterministic m-counter machine, having as alphabet
the set P and as input a word γw(D) ∈ P ∗ of length n. Each counter corre-
sponds to a nonterminal in N . For each 1 ≤ i ≤ m, we denote by Ci the counter
associated with Ai. In order to keep control of the constant number of nonter-
minals occurring in the axiom α we will consider an initial state of the form
qα = q[x1]...[xm−1][xm], in which1 xi = |α|Ai , for 1 ≤ i ≤ m.

The machine starts in qα with all counters set on zero, having the input head
placed on the first delimiter �. From the state qα the machine goes into the
1 Within a cell each xi, 1 ≤ i ≤ m, is a symbol, while ”outside” the cell xi is a number.
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state2 q[x1−1]...[xm], by reading λ and increasing the value of the counter C1
by +1. The operation continues until the system reaches the state q[0][x2]...[xm],
using x1 number of transitions through which the first counter is increased by
x1 = |α|A1 times. When the first cell of the state q[x1]...[xm] had been ”reduced”
to 0 the same operation continues with the second cell ”storing” the value x2,
by increasing the second counter with the value x2 = |α|A2 , and so on. These
operations end when all the m cells from the initial state had been reduced
to 0 and each counter Ci had been increased by xi = |α|Ai , 1 ≤ i ≤ m. All
the transitions3 proceed by reading the empty string. Let us denote as q0 the
state q[0]...[0][0]. From now on the multicounter machine simulates the work of
the CDGS in = k-comp.-mode, as follows.

Step 1. Let us suppose that the first symbol from γw(D) is the label e cor-
responding to the component Pe, such that |dom(Pe)| ≥ k. Firstly M checks
whether Pe is = k-competent on α, i.e., |dom(Pe)∩alphN (α)| = k, where alphN

(α) = {A ∈ N ||α|A > 0}. This is done by checking in the state q0, through the
δ function that defines M, whether reading e there are exactly k counters, that
correspond to the k nonterminals from dom(Pe) ∩ alphN (α), that have positive
values. If this condition does not hold γw(D) is rejected. This can be done by
not defining the δ function when reading e in other configurations than those
mentioned before. ♦

Step 2. Let us consider that each nonterminal Al ∈ dom(Pe) ∩ alphN (α) is
rewritten by a rule of the form Al → rhs(Al). Then Cl is decreased by 1, and
the value of each counter Ci corresponding to Ai occurring in rhs(Al) is increased
by 1, as many times as the letter Ai occurs in rhs(Al). ♦

Note that, when a component Pe is = k-competent on a sentential form x, M
nondeterministically chooses which nonterminal from x is rewritten by Pe, and
which rule that rewrites the chosen nonterminal is applied. In order to emphasize
that the component Pe has been activated4 we let the machine M ends the
procedure from Step 2 in state qe.

For the next label in γw(D), denoted as e′, the machine checks, in state qe

by reading λ, whether the former component Pe, is still = k-competent on the
newest sentential form. This is done analogously as in Step 1, taking x instead
of α. If Pe is = k-competent on x and e = e′, then the computation continues as
in Step 2. If Pe is = k-competent on x, and e 	= e′, then γw(D) is rejected.

If Pe′ is = k-competent and Pe is not, the same operations on counters,
described at Step 2, are nondeterministically performed for the component Pe′ .
The procedure ends in the state qe′ in order to mark that the component Pe′

became active. If Pe′ is not = k-competent then γw(D) is rejected.
2 Here by [x1 − 1] we understand a notation and not the subtraction operation.
3 These transitions cannot ”go below zero”, and due to this for a cell marked by 0

there is no transition that modifies this cell.
4 Following the definition of the = k-comp.-mode this grammar should be active as

long as it is = k-competent, even if several other components are = k-competent in
the newest sentential form, too.
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Finally, γw(D) is accepted if and only if the machine ends the computation
with the input head placed on the last delimiter �, with all counters set on zero.

Clearly, the number of 0-tests is linearly related to the length of the Szilard
word γw(D). Each time the input head reads a label from γw(D), decreases one
counter and increases a constant number of several other counters, therefore the
number of reversals cannot be constant or more than linear.

Let us denote as max(Ci) the maximum absolute value stored in the counter
Ci, then max(Ci) ≤ |α|Ai + li, where li is the number of times the counter
Ci is increased by 1 during the computation. It is clear that each li is upper
bounded by n/2. Therefore,

∑m
i=1 max(Ci) ≤ |α|+mn/2. These remarks justify

our assertion that the simulation is done in linear time and linear space, within
O(n) reversals and O(n) 0-tests, in terms of the length of the Szilard word.

For the other cases the simulation works analogously without major improve-
ments. For the ≤ k-comp.-mode, for instance, when checking the ≤ k-competence
of the component Pe, we should allow to M nondeterministically verify whether
at most k counters corresponding to nonterminals from dom(Pe) ∩ alphN (α),
have positive values. For the next label e′ from γw(D), when checking the ≤ k-
competence of Pe′ and the non ≤ k-competence of Pe on the newest sentential
form x, where Pe has been previously applied, we check whether there are at
most k positive counters corresponding to at most k nonterminals from dom(Pe′)
∩ alphN(x), and all counters corresponding to nonterminals from dom(Pe) ∩
alphN (x) are zero, where alphN(x)={A ∈ N ||x|A > 0}. ��

In [2], and [6] several trade-offs between time, space and number of reversals of
a MC machine, as well as their relations to Turing machines time and space are
presented. Accordingly, from Theorem 1 we have the following result.

Theorem 2. The Szilard language Sz(Γ ,f) attached to a CDGS Γ , working
in f -mode, f ∈ M , is recognizable by a nondeterministic Turing machine in
O(n2logn) time and O(nlogn) space.

Next our approaches are based on the notion of cycles introduced in [5], [10],
and [11] in order to describe the structure of the words belonging to languages
recognizable by multicounter machines and used in order to prove closure prop-
erties for these languages. Each time a MC machine reads a group of identical
symbols whose number is greater than the number of states, the device enters
in a cycle, i.e., a part of the computation delimited by two equal states q (the
beginning and the end of the cycle) such that no further state q and no two equal
states different from q occur in the part of computation from q to q. We say that
this part of the computation is a cycle with state characteristic q, reading head
characteristic h, i.e., the symbol read by the reading head, and counter char-
acteristic c, for each counter, i.e., the difference between the counter contents
at the beginning and at the end of the cycle. For a multicounter machine with
s states the number of cycles with different characteristics is bounded by the
constant s · s · (2s + 1)k.

Following the above structural characterization of the languages accepted by
a multicounter machine, Theorem 1 implies a kind of cyclicity phenomenon in
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the structure of the words belonging to the Szilard language associated with
a CDGS working in competence mode in terms of the above state, head and
counter characteristics. Based on this remark we have.

Lemma 1. Let Γ be a CDGS. The Szilard word γw(D) of a word w ∈ Lf(Γ ),
f ∈ M , associated with a terminal derivation D performed in f -mode, can be
written in terms of a multicounter state, head and counter characteristics, of
the form γw(M) = z1o

n1
1 z2o

n2
2 ...zco

nc
c zc+1, where zi, 1 ≤ i ≤ c + 1, are finite

subwords containing no cycles, oj are finite cycles and nj, 1 ≤ j ≤ c, represents
the number of times oj is consecutively repeating.

Note that in the structure of the Szilard word given by Lemma 1, each segment
zi and oj is a sequence of the form z1

i ...zpi

i and o1
j ...o

rj

j , 1 ≤ i ≤ c + 1 and
1 ≤ j ≤ c, respectively. According to the computation performed by the machine
M, described in Theorem 1, each zp

i and or
j , where 1 ≤ p ≤ pi and 1 ≤ r ≤ rj ,

is a symbol that encodes three parameters, the state characteristic q of M, the
reading head characteristic h, i.e., the symbol read by M in state q, and the
counter characteristic c, i.e., the content of the counter in state q.

The length of γw(M) might be greater than the length of γw(D) due to the
fact that several zp

i and or
j symbols might have a head characteristic 0, i.e., the

multicounter machine from Theorem 1 reads λ. The relation between the length
of γw(D) and the length of γw(M) is the following one ||γw(M)|| = d+ ||γw(D)||
in which d ≤ q||γw(D)||, because the machine M works in linear time of delay
d and q is a constant.

In the sequel we denote as ċ, ż, and ȯ, the maximum of c, the maximum of
the length of zi, 1 ≤ i ≤ c + 1, and the maximum of the length of oj , 1 ≤ j ≤ c,
taken over all groups of Szilard words with the same structure given by Lemma 1,
respectively. In the sequel our aim is to refine the class of counters that simulate
CDGSs, in order to find decidability results for them.

3.2 Blind and Partially Blind Multicounter Machines

Informally, a blind counter is a particular multicounter that does not depend
on the counters configuration, but only on states and input. A blind counter is
unable to test the signs of its counters. The computation ends when the machine
enters in a final state with empty counters.

A partially blind multicounter (henceforth pBMC) is a blind counter for which
its counters store only natural numbers, they cannot be checked for zero, but
the computation is blocked whenever at least one of counters becomes negative.

A (partially blind) MC machine works in quasirealtime if there exists a con-
stant d such that the length of each part of any computation in which the reading
head is stationary is bounded by d.

Blind MCs are strictly less powerful than quasirealtime pBMCs. Quasirealtime
pBMCs accept the family of Petri net languages defined in [9]. They are strictly
less powerful than linear time pBMCs and the family of quasirealtime one-way
nodeterministic MCs. For the formal definition of blind MCs and pBMCs the
reader is referred to [8].
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Theorem 3. The Szilard language Sz(Γ , f) attached to a CDGS Γ , working in
f -comp.-mode, f ∈ {≤ 1, = 1}, can be recognized in quasirealtime by one-way
nondeterministic pBMC, with at most r = ż(ċ + 1) + ȯċ counters.

Proof. Let Γ = (N, T, α, P1, . . . , Ps) be a CDGS working in {≤ 1, = 1}-comp.-
mode. Let us consider the ordered set of nonterminals N = {A1, A2, ..., Am},
and let P = {1, 2, ..., s} be the set of labels attached to each component in the
system. Let B be a one-way nondeterministic pBMC with at most r =ż(ċ + 1)
+ ȯċ counters, that has as alphabet the set P , and as input the Szilard word
γw(D) ∈ P ∗ of length n. According to Lemma 1, γw(D) can be also rewritten of
the form γw(M) = z1o

n1
1 z2o

n2
2 ...zco

nc
c zc+1 in which the segments zi and oj are of

the form z1
i ...zpi

i and o1
j ...o

rj

j , 1 ≤ i ≤ c+1 and 1 ≤ j ≤ c, respectively. According
to the computation performed by the machine M, described in Theorem 1, each
symbol zp

i and or
j , 1 ≤ p ≤ pi and 1 ≤ r ≤ rj , is characterized by three

parameters, the state characteristic q of M, the reading head characteristic h,
and the counter characteristic c. Using the head characteristic we can make a
direct relation between the Szilard word γw(D) written as a sequence of labels
from P and the Szilard word γw(M) of the machine M, written as a sequence
of symbols characterized by the above multicounter parameters.

The r counters are associated only with nonterminals Ai ∈ N . The first m
counters are associated with (different) nonterminals occurring in the axiom.
The other counters are used accordingly with the length of the segments zi and
oi from the Szilard word. Furthermore, we consider each state of B being of the
form q[]...[][], in which the ith cell [] stands for the ith nonterminal Ai, 1 ≤ i ≤ m,
and the last cell stands for the label from P corresponding to the component
that is currently simulated.

Next we give the simulation for = 1-comp.-mode. For ≤ 1-comp.-mode the
simulation works analogously without any major improvements.

The machine starts with all counters set on zero, having the input head placed
on the first delimiter �, and the initial state qα = q[x1]...[xm−1][xm][0], in which5

xi = |α|Ai , for 1 ≤ i ≤ m. The last zero-cell in qα is kept for the grammar system
component that is activated at each step of the computation. As in the previous
theorem from the state qα the machine goes into the state q[x1−1]...[xm][0], by
reading λ and increasing the value of the counter C1 by +1. The operation
continues until the system reaches the state q[0][x2]...[xm][0], using x1 number of
states through which the first counter is increased by x1 = |α|A1 times. Due to
the fact that this time we work with blind counters, when working with them we
are not able to see the value stored in them. In order to be able to manipulate
this lack each cell in the state that is reduced to 0 will be finally marked by
+. In this way we can predict which counter could be non-empty and that the
corresponding nonterminal could exist in the sentential form. Thus the state
q[0][x2]...[xm][0] becomes q[+][x2]...[xm][0].

When the first cell of the state q[x1]...[xm][0] had been ”reduced” to + the same
operation continues with the second cell ”storing” the value x2, by increasing the
second counter with the value x2 = |α|A2 , and so on. These operations end when
5 Here xi, 1 ≤ i ≤ m, have the same significance as in the previous theorem.
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all the m cells storing a ”non-zero value”, in the initial state had been reduced
to + and each counter Ci had been increased by xi = |α|Ai , 1 ≤ i ≤ m. Let us
denote as qc the final state reached at the end of this procedure. The state qc

has all cells corresponding to nonterminals occurring in α marked by +, all cells
corresponding to nonterminals not-occurring in α marked by 0, and the last cell
still 0, because none of the system components has been activated so far. As in
the previous theorem, all the transitions proceed by reading the empty string.
From now on the simulation of the CDGS in the = 1-comp.-mode is performed
as follows.

Let e, e ∈ P , be the first symbol that occurs in γw(D) ∈ P ∗. Firstly B checks
whether Pe is = 1-competent on α. Because the machine cannot see its counters,
to perform this operation, it will use the counters configuration codified into the
current state. The = 1-competence of Pe on α, is checked as in Step 1.

Step 1. Let us consider that dom(Pe) = {Ai1 , ..., Aip}, where p ≤ m. The
component Pe is = 1-competent on α if in the state qc only one of the ij

th cells,
that correspond to nonterminals Aij ∈ dom(Pe), 1 ≤ j ≤ p, is marked by +, no
matter how the other m − p cells, that correspond to nonterminals that are not
in dom(Pe) have been marked so far. If the above condition does not hold γw(D)
is rejected6. Otherwise, the machine continues the computation as in Step 2. ♦

Step 2. Let us suppose that the cell corresponding to the Aij nonterminal from
Pe has the property from Step 1. The system nondeterministically chooses which
rule from Pe that rewrites Aij is applied. Let us consider that this is of the form
Aij → rhs(Aij ). Then the counter Cij associated with Aij is decreased by 1.
The value of each counter Ci that corresponds to each nonterminal Ai occurring
in rhs(Aij ) are increased by 1, as many times as Ai occurs in rhs(Aij ). Each
ith cell, corresponding to nonterminal Ai occurring in rhs(Aij ) from state qc is
marked by +, in the case that it has not been marked so far. ♦

The pBMC machine ends the procedure described in Step 2 in state qe, in which
the ithj cell together with the cells corresponding to the new nonterminals intro-
duced so far in the axiom or in the newest sentential form x, are marked by a +
symbol. In order to emphasize that the component Pe has been activated, the
last cell of the state qe is marked by an e symbol.

With respect to the definition of the = 1-comp.-mode, the component Pe

should be active as long as it is = 1-competent on x. A new label e′ 	= e will
be accepted only and only if Pe is not anymore = 1-competent on x. In Step
3 we explain how the simulation goes on when reading a new symbol from
γw(D).

Step 3. Let us suppose that the next symbol in γw(D) is e′. Firstly the existence
of Aij in the sentential form x is checked7 (subtract 1, add 1 to the counter Cij

6 This can be done by letting the δ function that defines B, to read the label e only
in those states in which only one nonterminal from dom(Pe) is marked by +.

7 Due to the fact that Aij had been rewritten once, it might not exist in x.
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associated with Aij ). If the computation does not block the cell corresponding
to Aij in the state qe is kept as +. If the computation blocks then the simulation
continues as in Step 4.

If the symbol Aij still exists in the sentential form then the = 1-competence
of Pe is checked as in Step 1. This time this operation is performed by reading
λ but having the last cell of the state qe marked by e. If Pe is = 1-competent
and e′ = e, then the simulation continues as in Step 2. It is blocked otherwise,
by rejecting γw(D). If Pe is not = 1-competent on x then the = 1-competence of
the component P ′

e is checked as in Step 1, by reading e′. If P ′
e is = 1-competent

on x and e′ 	= e the simulation continues as in Step 2, by substituting e with e′.
It blocks otherwise. ♦

Below we give the procedure when zeroing the cells in states.

Step 4. Let us suppose that at Step 3, B has to guess whether the symbol
Aij has been wholly rewritten, i.e., it does not exist anymore in the senten-
tial form x. If the label e is the head characteristic of an element belonging to
an zi segment, after the guessing procedure, the counter Cij associated with
Aij ∈ dom(Pe) is left as it is, and never be used during the simulation. To
keep control for the next symbol Aij introduced in the sentential form another
counter, different from Cij , will be used. If the label e is the head character-
istic of an element belonging to an oi cycle, then the computation proceeds as
follows.

Let us consider that until the end of the cycle oi, the machine performs a
number of q guessing procedures. At each guessing B leaves a counter, that
could be empty or not (depending on the correctness of the guess). With respect
to the order in which the above counters have been left during the very first
running of oi, we will consider the ordered set of them C = {C1

i , C2
i , ..., Cq

i }.
Part of these counters are loaded during the execution of the cycle oi, others
before the cycle oi. Accordingly, the set C can be parted into two subsets, the
set C1 = {C1

i,1, C
2
i,1, ..., C

q1
i,1} of counters used before the machine B enters in

oi, and C2 = {C1
i,2, C

2
i,2, ..., C

q2
i,2} the set of counters that are used and loaded

only within the cycle oi. We have C1∩C2 = ∅, C1∪C2 = C. The counters from
the first set start to be used in the cycle oi with nonempty contents (being
charged before B enters in oi). At each guessing procedure they are left and
never be used again during the computation. It is clear that the number of these
counters is finite, due to the finiteness length of the zi part. Counters from the
second set start to be used in the oi segment with empty contents. At each
guess they are left and never be used again during the current reading of oi,
and in none of the zi segments or different than oi cycles that follow oi. These
counters are ”recyclable”. The recycling process of the set C2 is performed as
follows.

At each consecutive repetition of the cycle oi the machine reuses the counter
C1

i,2 that keeps control of a certain nonterminal A, exactly in the same point of
the cycle oi in which C1

i,2 had been firstly used to store A, during the very first
execution of oi. The counter C1

i,2 is left at the first guessing procedure performed
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within oi, and will never be used until the end of this cycle and in none of the
zi segments or different than oi cycles. To keep control for the next symbol Aij

introduced in the sentential form during the same session of oi, another counter
different from Cij , will be used. In the same way the next counters will be reused
until the end of the cycle oi.

It is clear that if the counters Cj
i,2, 1 ≤ j ≤ q2 have been left empty due to a

correct guessing procedure performed during the first reading of the cycle oi they
will be correctly reused, with the chance of leaving them empty again for the next
guessing procedure that concerns the nonterminal associated to it, performed at
the next execution of oi. If one of the guessing procedure was not correct, i.e., one
of the counters of C2 enters in the next execution of oi with a nonempty content
then, there is no chance to have it empty at the end of the next guessing proce-
dure performed within oi (due to the periodicity of the increasing and decreasing
operation performed at each repetition of oi).

The same thing happens each time another cycle oi is read 1 ≤ i ≤ c. A
successful computation ends only and only if all counters have been left empty,
i.e., all guesses done by B, during the simulation were correct.

When a counter Cij associated to a nonterminal A is left, to keep control for
the next nonterminals A introduced in the sentential form another counter will
be used. Each time a new counter is introduced or reused, the cell associated
with the nonterminal A from the current state, will be zeroed. After zeroing a
cell in a state the procedure that checks the = 1-competence of the new compo-
nent, for which its label is read by the input head, is performed again as in Step
1 following accordingly Step 2 and Step 3. ♦

To be observed that for all guesses performed by B during the scanning of all zi

segments a maximum number of ż(ċ + 1) counters is required. For the guesses
performed during the scanning of all oi cycles, the machine needs a maximum
of ȯċ counters. In this way the number of counters required by the above pBMC
is finite, and it is upper bounded by ż(ċ + 1) + ȯċ.

Finally, the computation continues as explained before, i.e., Step 1, Step 2
and Step 3 with the guessing procedure described in Step 4, until all symbols
from γw(D) are read. The Szilard word γw(D) is accepted if the system reaches
a final state with all counters empty.

It is easy to observe that the partially blind r-counter machine works in
quasirealtime. The reading head is stationary only when B checks the = 1-
competence of a component Pe previously applied in the simulation. This is
done by reading λ with the last cell in the current state marked by e, and it is
performed each time, using a constant number of stationary steps. ��

Theorem 4. The Szilard language Sz(Γ ,f) attached to a CDGS Γ , working in
{≥ k|k ≥ 1}-comp.-mode can be recognized in quasirealtime by one-way nonde-
terministic pBMC, with at most r =ż(ċ + 1) + ȯċ counters.

Proof. Let Γ = (N, T, α, P1, . . . , Ps) be a CDGS working in {≥ k|k ≥ 1}-comp.-
mode, with the ordered set of nonterminals N = {A1, ..., Am} and the set of
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labels associated with components P = {1, 2, ..., s}. Let B be a one-way nonde-
terministic pBMC with at most r =ż(ċ + 1) + ȯċ counters, having as alphabet
the set P , and as input the Szilard word γw(D) ∈ P ∗ of length n. According to
Lemma 1, γw(D) can be rewritten as γw(M) = z1o

n1
1 z2o

n2
2 ...zco

nc
c zc+1. The r

counters are associated only with nonterminals in N . The first m counters are
used to keep control of the nonterminals occurring in the axiom.

The system starts in the initial state qα = q[x1]...[xm−1][xm][0], where xi = |α|Ai ,
for 1 ≤ i ≤ m. As in the procedure explained in Theorem 3, the input head is
stationary until each counter Ci, 1 ≤ i ≤ m, is increased accordingly with the
number of nonterminals Ai, occurring in the sentential form α. The state qc in
which B ends this procedure has all cells corresponding to nonterminals occurring
in α marked by +, all cells corresponding to nonterminals not-occurring in α
marked by 0, and the last cell marked also by 0, because none of the system
components has been activated so far. From now on the simulation of the CDGS
in the = 1-comp.-mode is performed as follows.

When reading the first letter from γw(D) ∈ P ∗, let us suppose that this is
e ∈ P , B tests whether the component Pe, such that |dom(Pe)| ≥ k, is ≥ k-
competent on the sentential form, i.e., the axiom contains at least k distinct
nonterminals from dom(Pe). The procedure that decides whether Pe is ≥ k-
competent is described in Step 1.

Step 1. Let us denote as Sj = {A
(j)
i1

, ..., A
(j)
ik

}, 1 ≤ j ≤ Ck
p , all possible subsets8

of k elements from dom(Pe), |dom(Pe)| = p, p ≥ k. For each j, 1 ≤ j ≤ Ck
p ,

in state qc, reading the label e, each counter C
(j)
il

, 1 ≤ l ≤ k, is 0-tested
(subtract 1, add 1). Here is an example how this operation proceeds using
the δ function: δ(qc, e) = (qe− , ..., −1

C
(j)
i1

, ..., −1
C

(j)
ik

, ...) for the 0-testing and

δ(qe− , λ) = (qe, ..., +1
C

(j)
i1

, ..., +1
C

(j)
ik

, ...) to restore the counters. ♦

It is clear that the machine reaches the state qe only for those subsets Sj , for
which each counter C

(j)
il

, 1 ≤ l ≤ k, has a positive value, otherwise, the machine
blocks. In this way we ensure that the component Pe is ≥ k-competent, k ≥ 1,
on α, or on some other sentential forms on which has been tested9.

In state qe the system nondeterministically chooses which rule from Pe that
rewrites a nonterminal from dom(Pe), occurring or not in Sj , is applied. In this
way the system has the possibility to nondeterministically rewrite a nonterminal
from dom(Pe), that it might not have been included in Sj , but it might exist
in the sentential form. However, the simulation fails when decreasing a counter
corresponding to a nonterminal that does not occur in the sentential form.

Step 2. Let us consider that the chosen rule from dom(Pe) is of the form A →
rhs(A). Then the counter associated with A is decreased by 1, and the value
8 The cardinal number of all possible subsets is given by the formula Ck

p = p!/k!(p−k)!
9 We conclude that if the pBMC does not block, α contains at least, but not exactly,

k distinct nonterminals from dom(Pe). The lack of this procedure is that, in the case
that B blocks, we do not know with how many counters it failed. That is why this
method cannot be used to test the = k or ≤ k-competence, k ≥ 1, of a component.
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of each counter Ci that corresponds to a nonterminal Ai occurring in rhs(A) is
increased by 1, as many times as Ai appears in rhs(A). ♦

According to the definition of the ≥ k-comp.-mode, Pe should be active as long
as it is ≥ k-competent on the newest sentential form, denoted as x. Due to this,
at the next step, in qe the system checks whether Pe is still ≥ k-competent on
x, by using the 0-testing procedure described at Step 1. If the 0-test fails for
all subset Sj ⊆ dom(Pe), then Pe is no longer ≥ k-competent on x, and the
machine continues the simulation by reading the next label e′ with the 0-testing
procedure described at Step 1. On the other hand, when reading a new symbol
from γw(D), a guessing procedure is performed for the nonterminal that has been
previously rewritten, i.e., A for this example. This procedure is performed as in
Step 4, Theorem 3, by taking A instead of Aij . For the same reasons, explained
in Theorem 3, the simulation requires a maximum of ż(ċ + 1) + ȯċ, counters.
Finally the simulation, done in quasirealtime, ends and accepts the Szilard word,
only in a final state having all counters empty. ��

4 Consequences of the Main Results

For CDGSs working in competence mode, from [1] we have the following results:

1) L(CD, CF, f-comp.) = L(RC, CF), f ∈ {≤ k, = k}, k ≥ 2,
2) L(fRC, CF) ⊆ L(CD, CF, f-comp.), f ∈ {≤ 1, = 1},
3) L(CD, CF, ≥ 1-comp.) = L(ETOL),
4) L(CD, CF, ≥ k-comp.) = L(RC, ETOL), k ≥ 2.

It is known from [8] that quasirealtime pBMC accept the family of Petri net lan-
guages defined in [9]. Hence, decidability problems, such as finiteness, emptiness
and membership, solvable for Petri nets are decidable for quasirealtime pBMC
machines, too. From Theorem 3, Theorem 4 and the above remark we have.

Theorem 5. The finiteness, emptiness and membership problems are decidable
for the class of Szilard languages SZ(CD, CF, f), f ∈ {≤ 1, = 1}∪{≥ k|k ≥ 1}.
As a consequence of the above theorem we have.

Theorem 6. The finiteness and emptiness problems are decidable for the class
of languages generated by CDGSs that work in f -comp.-mode, f ∈ {≤ 1, =
1} ∪ {≥ k|k ≥ 1}.

Proof. The decidability of the emptiness problem for the class of languages
L(CD, CF, f), where f ∈ {≤ 1, = 1} ∪ {≥ k|k ≥ 1}, follows directly from
Definition 5 and Theorem 5.

To prove the decidability of the finiteness problem for the same class of lan-
guages, we provide the pBMC machines from Theorem 3 and Theorem 4 with one
more counter, let us denote it as T . When the machine B meets the very first cy-
cle in the structure of a Szilard word, from Sz(Γ, f) attached to a CDGS Γ , that
contains a label of a component for which the nondeterministically chosen rule,
of the form A → rhs(A), contains in the right-hand side at least one terminal,
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T is increased by one and will never be used until the end of the computation.
It is clear that this pBMC machine accepts only Szilard languages associated
with languages that are finite, and rejects all Szilard languages associated with
languages that are infinite10. Analogously, we can find a pBMC machine that
accepts Szilard languages associated with languages that are infinite and rejects
all Szilard languages associated with languages that are finite. ��
Furthermore, in [4] it is proved the equality between the class of languages
generated by ordered grammars (O) and forbidding random context grammars
(fRC), with or without λ rules. From the inclusion 2), Theorem 6 and the above
remark, the finiteness and emptiness problems are decidable for O and fRC
grammars, too. From the relation 4) and Theorem 6 these problems are decidable
also for RC ETOL systems. Thus we consider that we solved several decision
problems left open in [4] related to the above rewriting grammars and systems.
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1. ter Beek, M.H., Csuhaj-Varjú, E., Holzer, M., Vaszil, G.: On Competence in CD
Grammar Systems. In Calude, C.S., Calude, E., Dinneen, M.J., (Eds.), Develop-
ments in Language Theory, 8th International Conference, Auckland, New Zealand,
December 13-17, Proceedings. LNCS 3340, Springer-Verlag (2004) 76–88

2. Chan. T.: Reversal-Bounded Computations. PhD. Thesis, December 1980, TR 80-
448, Department of Computer Science, Cornell University, Ithaca, New York (1980)
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5. Ďurǐs, P., Hromkovič, J.: One-Way Simple Multihead Finite Automata are not
Closed under Concatenation. Theoretical Computer Science 27 (1983) 121–125

6. Fischer, P.C., Meyer, A. R., Rosenberg, A.L.: Counter Machines and Counter Lan-
guages. Mathematical System Theory 2 (1968) 265–283

7. Greibach, S.A.: Remarks on the Complexity of Nondeterministic Counter Lan-
guages. Theoretical Computer Science 2 (1976) 269–288

8. Greibach, S.A.: Remarks on Blind and Partially Blind One-Way Multicounter Ma-
chines. Theoretical Computer Science 7 (1978) 311–324

9. Hack, M.: Petri Net Languages, Computation Structures. Group Memo 124.
Project MAC, Massachusetts Institute of Technology (1975)
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Abstract. The external behaviour of an interactive component refers to
the communication histories on the input and output channels. The com-
ponent’s implementation employs an internal state where inputs effect
output and an update of the state. The black-box view is modelled by a
stream processing function from input to output streams, the glass-box
view by a state transition machine. We present a formal method how
to implement a stream processing function with several arguments by a
state transition machine in a correctness preserving way. The transfor-
mation involves two important steps, called differentiation and history
abstraction. The differentiation localizes the effect of a single input on
one of the input channels wrt. the previous input histories. The history
abstraction introduces states as congruence classes of input histories. We
extend our previous results from interactive components with one input
channel to components with several input channels. The generalization
employs a ‘diamond property’ for states and outputs which ensures the
confluence of the resulting state transition system.

Keywords: Interactive component, communication history, stream
processing function, state transition machine, history abstraction.

1 Introduction

An interactive system [23] consists of a network of components that communicate
asynchronously via unidirectional channels. In general, the components possess
multiple input channels and multiple output channels. In the setting of untimed
systems, the communication history of a channel is modelled by a sequence
of messages, called a stream. The input/output behaviour of a deterministic
component is described by a stream processing function [13] mapping a tuple of
input histories to a tuple of output histories.

During the design of an interactive component [5], the software engineer em-
ploys different points of view. On the specification level, the component is con-
sidered as a ‘black box’ whose behaviour is determined by the relation between
input and output histories. The external view describes the service provided by
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the component when cooperating with other components or with the environ-
ment. On the implementation level, the component is considered as a ‘glass box’
described by a state transition machine with input and output. Inputs are pro-
cessed message by message by successively updating the state and generating
the output streams in an incremental way.

A crucial design step amounts to transforming the specified input/output be-
haviour of an interactive component into a state-based implementation. In our
approach, we introduce machine states as abstractions of the input histories. A
state stores information about the component’s past input histories that deter-
mines the future output histories when receiving further input. In general, there
are different abstractions of the input histories which lead to state spaces of
different granularity [8].

We present a formal method how to implement a multiary stream process-
ing function by a state transition machine in a correctness preserving way. The
transformation involves two important steps, viz. differentiation and history ab-
straction. The differentiation localizes the effect of a single input on a particular
input channel wrt. the previous input histories. The history abstraction intro-
duces states as congruence classes of input histories. The resulting state tran-
sition machine is well defined, if we impose two requirements, viz. transition
closedness and output compatibility. When receiving further input on an arbi-
trary input channel, the history abstraction must be compatible with the state
transitions and with the generation of the output.

This paper extends our previous results [9] from interactive components with
one input channel to components with several input and several output channels
[21]. In the setting of asynchronous systems, the generalization from one to mul-
tiple input channels leads to state transition machines with interleaved inputs.
We impose a ‘diamond property’ for states and outputs to ensure the conflu-
ence of the state transition system and the determinism of the input/output
behaviour. Under these constraints, the produced output streams are indepen-
dent of the relative order in which the messages arrived on the different input
channels.

The paper is organized as follows. In Section 2 we summarize the basic notions
for the functional description of interactive components with communication
histories. Section 3 introduces state transition machines with multiple inputs
and outputs. In Section 4 we present a universal approach for implementing
an interactive component with a canonical state transition machine. Section 5
describes the systematic construction of coarser state transition machines with
history abstractions. In Section 6 we apply the formal method to a requests
driven sender. The conclusion surveys the approach and outlines future work.

2 Streams and Stream Processing Functions

In this section we briefly summarize the basic notions about streams and stream
processing functions to render the paper self-contained. The reader is referred
to [20] for a survey and to [21] for a comprehensive treatment.
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2.1 Streams as Communication Histories

Streams model the communication history of a single directed channel by the
temporal succession of messages transmitted. Streams abstract from time and
record only the sequence of messages.

Given a non-empty set A of messages, a (communication) history, for short a
stream X = 〈x1, . . . , xk〉 of length |X | = k ≥ 0 is a finite sequence of elements
xi ∈ A for i ∈ [1, k] . A� denotes the set of all streams, A+ the set of all non-
empty streams over A .

The concatenation X & Y of a stream X = 〈x1, . . . , xk〉 with a stream Y =
〈y1, . . . , yl〉 over the same set yields the stream 〈x1, . . . , xk, y1, . . . , yl〉 of length
k + l . The concatenation 〈x〉 & X (resp. X & 〈x〉) appending a single element x
at the front (resp. rear) of a stream X is denoted by x � X (resp. X � x) . The
subtraction Y � X = R of the initial segment X from its extension Y = X & R
yields the final segment R .

The take and drop operations split a stream into its initial part of a given
length n ≥ 0 and the remaining part. If |X | = n , then take(n)(X & Y ) =
X and drop(n)(X & Y ) = Y . If |X | < n holds, then take(n)(X) = X and
drop(n)(X) = 〈〉 .

Operational progress is modelled by the prefix relation on streams — the
longer stream forms an extension of the shorter history. A stream X ∈ A� is
called a prefix of a stream Y ∈ A� , denoted X � Y , iff a stream R ∈ A� exists
with X &R = Y . The structure (A�, �, 〈〉) forms a partial order with the empty
stream as the least element.

Components receive input on several input channels and deliver output to
several output channels. The communication on independent channels is mod-
elled by tuples of streams. A tuple

−→
X = (X1, . . . , Xm) of streams Xi ∈ A�

i with
i ∈ [1, m] and m ≥ 1 is written using vector notation. We extend all operations
on and relations between streams in a componentwise way to tuples of streams.
In particular,

−→
& denotes the concatenation of tuples of streams, and

−→� the prefix
relation on tuples of streams.

For a channel index i ∈ [1, m] , the operation �i (resp. �i) attaches an el-
ement to the front (resp. rear) of the i-th stream of a tuple of streams: x �i

(X1, . . . , Xm) = (X1, . . . , Xi−1, x � Xi, Xi+1, . . . , Xm) .
We use small letters to denote single messages of streams, capital letters to

denote streams and vectors on capital letters to denote tuples of streams.

2.2 Components as Stream Processing Functions

A component repeatedly processes messages from its input channels and emits
messages to its output channels. A deterministic component can be modelled by
a function mapping a tuple of input histories to a tuple of output histories.

A stream processing function, also called a history function f : A�
1×. . .×A�

m →
B�

1 × . . . × B�
n maps m ≥ 1 input streams to n ≥ 1 output streams. The types

(A1, . . . , Am) of the input streams and the types (B1, . . . , Bn) of the output
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streams determine the (syntactic) interface of the component. A stream process-
ing function describes the (input/output) behaviour of an interactive component.

We require that a stream processing function is monotonic with respect to
the prefix order:

f(
−→
X)

−→� f(
−→
X

−→
&

−→
Y ) (1)

Monotonicity formalizes the requirement that an interactive component cannot
change the previous output histories in reaction to additional input, but only
prolong them.

A stream processing function f : A�
1 × . . . × A�

m → B�
1 × . . . × B�

n can be split
into its spontaneous output f(〈〉, . . . , 〈〉) emitted before input is processed, and
the reactive behaviour react(f) : A�

1 × . . . × A�
m → B�

1 × . . . × B�
n in response to

input:

react(f)(
−→
X ) = f(

−→
X )−→� f(〈〉, . . . , 〈〉) (2)

2.3 Differentiation

While stream processing functions summarize the overall behaviour on entire
communication histories, the implementation processes the input streams mes-
sage by message. The differentiation reveals the causal relationship between
a single input on one of the input channels and the corresponding segments
of the output streams depending on the previously processed input histories,
cf. Fig. 1.

Definition 2.1. The differentiation εi : [A�
1 × . . . × A�

m → B�
1 × . . . × B�

n] →
[A�

1 × . . .×A�
m]×Ai → B�

1 × . . .×B�
n of a stream processing function with respect

to the i-th input channel (i ∈ [1, m]) is defined by

εi(f)(
−→
X, x) = f(

−→
X �i x)−→� f(

−→
X ) . (3)

f(
−→
X �i x)

f(
−→
X )

εi(f)(
−→
X, x)

︷ ︸︸ ︷

Fig. 1. Differentiation of a stream processing function f : A�
1 × . . . × A�

m → B�
1 with

respect to the i-th input channel

The differentiation determines the reactive part of a stream processing function.

Proposition 2.2. The differentiations of two stream processing functions f, g :
A�

1 × . . . × A�
m → B�

1 × . . . × B�
n with the same interface agree iff their reactive

parts agree:
(

m∧

i=1

εi(f) = εi(g)

)

⇐⇒ react(f) = react(g) (4)
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The differentiation of stream processing functions enjoys many useful properties.
The implementation by state transition machines widely exploits the following
property.

Proposition 2.3. Subsequent differentiations of a stream processing function
f : A�

1 × . . . × A�
m → B�

1 × . . . × B�
n with respect to different input channels

i �= j ∈ [1, m] commute in the following way:

εi(f)(
−→
X, xi)

−→
& εj(f)(

−→
X �i xi, xj) = εj(f)(

−→
X, xj)

−→
& εi(f)(

−→
X �j xj , xi) (5)

3 State Transition Machines with Input and Output

The operational semantics of systems is often formalized by labelled transition
systems [24] which specify a labelled transition relation between states. When
modelling interactive components, state transitions are triggered by arriving
inputs on the different input channels.

3.1 Architecture

A state transition machine processes an input at one of the input channels by an
update of its internal state while emitting data segments to the different output
channels.

Definition 3.1. A state transition machine with input and output, for short a
state transition machine

M = (Q; A1, . . . , Am; B1, . . . , Bn; next1, . . . ,nextm; out1, . . . , outm; q0) (6)

consists of
– a non-empty set Q of states,
– m ≥ 1 non-empty sets Ai of input data (i ∈ [1, m]) ,
– n ≥ 1 non-empty sets Bj of output data (j ∈ [1, n]) ,
– m (one-step) state transition functions next i : Q × Ai → Q (i ∈ [1, m]) ,
– m (one-step) output functions out i : Q × Ai → B�

1 × . . . × B�
n (i ∈ [1, m]) ,

– an initial state q0 ∈ Q .

The types (A1, . . . , Am) and (B1, . . . , Bn) determine the interface of the state
transition machine.

The transition functions have to compensate the order of the consumption of
messages from different input channels. For all input channels i �= j ∈ [1, m] we
assume the following diamond property:

nextj(next i(q, xi), xj) = next i(nextj(q, xj), xi) (7)

out i(q, xi)
−→
& outj(next i(q, xi), xj) = out j(q, xj)

−→
& out i(nextj(q, xj), xi) (8)
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Fig. 2. Diamond property with
−→
Yi = out i(q, xi) ,

−→
Yij = outj(next i(q, xi), xj) ,

−→
Yj =

outj(q, xj) , and
−→
Yji = out i(nextj(q, xj), xi)

The one-step transition functions associate with the current state and input
on one of the input channels a unique successor state and a tuple of output
sequences. The state transition machine processes in a nondeterministic style, if
there is input available on two or more input channels, cf. Fig. 2. Condition (7)
ensures that the one-step state transition functions can be integrated into one
overall multi-step state transition function processing tuples of input streams.
Condition (8) guarantees that the one-step output functions processing input
from different input channels can consistently be chained into one multi-step
output function.

Definition 3.2. The multi-step state transition function next� : Q → [A�
1 ×

. . . × A�
m → Q] yields the unique final state after processing a tuple of input

streams:

next�(q)(〈〉, . . . , 〈〉) = q (9)

next�(q)(x �i
−→
X ) = next�(next i(q, x))(

−→
X ) (10)

In each state q ∈ Q , the multi-step state transition function cooperates with
concatenation:

next�(q)(
−→
X

−→
&

−→
Y ) = next�(next�(q)(

−→
X ))(

−→
Y ) (11)

Definition 3.3. The multi-step output function out� : Q → [A�
1 × . . . × A�

m →
B�

1 × . . . × B�
n] accumulates the unique tuple of output streams generated by a

tuple of input streams:

out�(q)(〈〉, . . . , 〈〉) = (〈〉, . . . , 〈〉) (12)

out�(q)(x �i
−→
X ) = out i(q, x)

−→
& out�(next i(q, x))(

−→
X ) (13)

The multi-step output function describes the (input/output) behaviour of the
state transition machine.
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In each state q ∈ Q , the multi-step output function out�(q) forms a prefix
monotonic stream processing function:

out�(q)(
−→
X

−→
&

−→
Y ) = out�(q)(

−→
X )

−→
& out�(next�(q)(

−→
X ))(

−→
Y ) (14)

Starting in any state, the multi-step output function offers a history-based view
of a state transition machine which abstracts from the interleaving of the tran-
sitions when processing single messages from different input channels.

3.2 Output Equivalence

We aim at transforming a state transition machine into a more compact one
with a reduced number of states without changing the machine’s input/output
behaviour. To this end, we are interested in states which induce the same multi-
step output function.

Definition 3.4. Two states p, q ∈ Q of a state transition machine M are called
output equivalent, denoted p ≈ q , iff they generate the same tuple of output
streams for all tuples of input streams: out�(p) = out�(q)

An observer cannot distinguish output equivalent states by observing the ma-
chine’s input/output behaviour. Successor states of output equivalent states are
also output equivalent.

3.3 State Homomorphisms

A state homomorphism reduces the number of states by identifying subsets of
output equivalent states [7].

Definition 3.5. A state homomorphism hom : Q → Q′ from a state transition
machine M = (Q; A1, . . . , Am; B1, . . . , Bn;next1, . . . ,nextm; out1, . . . , outm; q0)
to a state transition machine M ′=(Q′; A1, . . . , Am; B1, . . . , Bn;next ′1, . . . ,next ′m;
out ′1, . . . , out ′m; q′0) with the same interface is compatible with the operations and
constants of the machines (i ∈ [1, m]):

hom(next i(q, x)) = next ′i(hom(q), x) (15)
out i(q, x) = out ′i(hom(q), x) (16)
hom(q0) = q′0 (17)

A state homomorphism is compatible with the multi-step transition functions:

hom(next�(q)(
−→
X )) = (next ′)�(hom(q))(

−→
X ) (18)

out�(q) = (out ′)�(hom(q)) (19)

Consequently, if a state homomorphism exists between two state transition ma-
chines, then it is uniquely determined on the subset of reachable states by the
multi-step state transition functions. Furthermore, states identified by a state
homomorphism are output equivalent:

hom(p) = hom(q) =⇒ p ≈ q (20)
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From the view point of universal algebra, state homomorphisms are indeed a
specialization of Σ-homomorphisms to state transition machines regarded as
multi-sorted algebras. Thus, well-known results from universal algebra [15,22]
about Σ-homomorphisms carry over to state homomorphisms. For example, the
composition of state homomorphisms yields a state homomorphism, the kernel of
a state homomorphism forms a state congruence, and the quotient map φ∼(q) =
[q]∼ associating with each state its congruence class is a state homomorphism
from M to the quotient state transition machine M/∼ with the same interface.

3.4 Related Models

There exist several computational devices which are closely related to our state
transition machines with input and output processing multiple input streams
and generating multiple output streams in a completely asynchronous way.

State transition machines with input and output extend generalized sequential
machines [11], Stream X-machines [1], and Mealy machines (beyond further as-
pects) to multiple input and multiple output channels. In Harel’s statecharts [12],
UML state diagrams [17], and mini-statecharts [19] communication is conducted
via a broadcast mechanism or via multicast communication, respectively.

In contrast to port input/output automata [14], in which output can be ar-
bitrarily delayed by repeatedly always giving priority to further input actions,
state transition machines establish a direct relation between input and the cor-
responding output.

State transition systems as defined in [3] are in particular used for the verifi-
cation of safety and liveness properties [2,4]. Hence their states carry additional
information: states are labelled with the previous and the future content of the
channels and additional attributes.

For more thorough comparisons, the reader is referred to [9].

4 Canonical State Transition Machine

For every stream processing function, there is a canonical state transition ma-
chine recording the complete input histories in its states.

Definition 4.1. The canonical state transition machine M [f ] = (A�
1 × . . . ×

A�
m; A1, . . . , Am; B1, . . . , Bn;next1, . . . ,nextm; out1, . . . , outm; (〈〉, . . . , 〈〉)) of a

stream processing function f : A�
1 × . . . × A�

m → B�
1 × . . . × B�

n is defined by

next i(
−→
X, x) =

−→
X �i x (21)

out i(
−→
X, x) = f(

−→
X �i x)−→� f(

−→
X ) . (22)

The state transition function appends the current input from the i-th input
channel to the state determined by the tuple of input histories. The output
function corresponds to the differentiation of the stream processing function,
cf. Definition 2.1. The constructed machine validates the diamond property (7)
and (8).
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In [6] the same basic idea is employed for a specification scheme for agents
which process a sequence of input actions. With the same principle, [18] presents
the construction of a total “spelling” automaton for a unary stream processing
function.

The multi-step state transition function accumulates the input streams; the
multi-step output function extends the output histories:

next�(
−→
X )(

−→
Y ) =

−→
X

−→
&

−→
Y (23)

out�(
−→
X )(

−→
Y ) = f(

−→
X

−→
&

−→
Y )−→� f(

−→
X ) (24)

Equation (24) shows the correctness of the canonical state transition machine.

Proposition 4.2. The canonical state transition machine M [f ] correctly im-
plements the stream processing function f : A�

1 × . . . × A�
m → B�

1 × . . . × B�
n :

react(f) = out�(〈〉, . . . , 〈〉) (25)

State transition machines provide their first output only in reaction to some in-
put, whereas stream processing functions can provide spontaneous output before
receiving input.

Knowing that input streams mimic the states of the canonical state transition
machine, we transfer the term ‘output equivalence’ to tuples of input streams
and construct coarser state transition machines with state homomorphisms.

5 State Introduction with History Abstractions

History abstractions identify input histories which generate the same output
streams for future input histories. History abstractions constitute a key issue for
the systematic construction of state transition machines implementing a given
stream processing function.

The following proposition names the unique state homomorphism from a
canonical state transition machine to another state transition machine realiz-
ing the same stream processing function.

Proposition 5.1. Let M = (Q; A1, . . . , Am; B1, . . . , Bn;next1, . . . ,nextm;
out1, . . . , outm; q0) be any state transition machine implementing a stream pro-
cessing function f : A�

1 × . . . × A�
m → B�

1 × . . . × B�
n . Then the multi-step state

transition function next�(q0) : A�
1 × . . . × A�

m → Q forms the unique state ho-
momorphism from the canonical state transition machine M [f ] to M .

The canonical state transition machine serves as a universal starting point for
constructing coarser state transition machines with the same behaviour.

Definition 5.2. A function abstr : A�
1 × . . . × A�

m → Q is called a history
abstraction for a stream processing function f : A�

1 × . . . × A�
m → B�

1 × . . . × B�
n

iff it is transition closed (26) and output compatible (27):

abstr(
−→
X ) = abstr (

−→
Y ) =⇒ abstr (

−→
X �i x) = abstr(

−→
Y �i x) (26)

abstr(
−→
X ) = abstr (

−→
Y ) =⇒ εi(f)(

−→
X, x) = εi(f)(

−→
Y , x) (27)
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A history abstraction identifies all the prolongations of a tuple of identified
streams:

abstr(
−→
X ) = abstr(

−→
Y ) =⇒ abstr(

−→
X

−→
&

−→
Z ) = abstr(

−→
Y

−→
&

−→
Z ) (28)

We summarize the formal basis for the envisaged method in the following

Theorem 5.3. Let abstr : A�
1 × . . . × A�

m → Q be a history abstraction for the
stream processing function f : A�

1 × . . . × A�
m → B�

1 × . . . × B�
n . Then the state

transition machine M [f, abstr ] = (Q; A1, . . . , Am; B1, . . . , Bn;next1, . . . ,nextm;
out1, . . . , outm; abstr(〈〉, . . . , 〈〉)) with transition functions

next i(abstr(
−→
X ), x) = abstr(

−→
X �i x) (29)

out i(abstr(
−→
X ), x) = εi(f)(

−→
X, x) (30)

correctly implements f through the history abstraction abstr .

The constructed machine validates the diamond property (7) and (8). The set
abstr(A�

1 × . . .×A�
m) constitutes the set of states reachable from the initial state.

Transitions originating from unreachable states are not relevant.
The theorem provides the foundations for a formal method how to construct

a state transition machine which implements a given stream processing func-
tion. The crucial design decision concentrates on the choice of a suitable history
abstraction and an associated state space. This decision determines the con-
stituents of the resulting state transition machine apart from the definition of
the transition functions on the subset of unreachable states.

The canonical state transition machine M [f, id ] obtained with the identity as
a history abstraction is a finest state transition machine. Choosing the function
abstr(

−→
X ) = [

−→
X ]≈ mapping each tuple

−→
X of input streams to its output equiv-

alence class results in a state transition machine M [f, abstr ] with the coarsest
set of states possible [21].

Frequently used history abstractions comprise, for example, constant func-
tions, filter functions, the length function, truncation functions at the front or
at the rear of the streams, set and multiset abstractions, and reductions of the
input histories. The abstraction functions can be combined in a suitable way
into further abstraction functions coping with more input streams.

6 Application: Requests Driven Sender

As an application, we construct a state transition machine for a request driven
sender. The component receives data items and numbers of requests on two
different channels and forwards the requested number of data items, as far as
possible, to a receiver.

6.1 Specification

A requests driven sender is a communicating component with two input channels
and one output channel. The component receives numbers as requests on its
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send
�
��

2 1 0 3 . . .

x1 x2 x3 x4 x5 x6 x7 . . .

x1 x2 x3 x4 x5 x6 . . .

Fig. 3. Input/output behaviour of a sender component

requests channel and forwards the respective number of data items from its data
channel to its output channel, compare Fig. 3.

The component’s interface is determined by the natural numbers IN for re-
quest numbers and the non-empty type D of data. The component’s input/output
behaviour is described by a function

send : IN� × D� → D�

that maps a pair of input histories to an output history:

send(N, D) = take(sum(N))(D) (31)

The auxiliary function sum : IN� → IN sums up the elements of a stream of
natural numbers.

6.2 Differentiation

We differentiate the component’s history function wrt. the requests channel

ε1(send) : (IN� × D�) × IN → D�

obtaining the following result:

sum(N) ≥ |D| =⇒ ε1(send)((N, D), n) = 〈〉 (32)
sum(N) = |D| =⇒ ε1(send)((N, D & E), n) = take(n)(E) (33)

If the component collected more requests than data items were available on the
data channel, then a further request produces no data on the output channel
(32). Otherwise an additional request effects the output of the requested number
of data items, as far as they exist (33).

The differentiation of the send function with respect to the data channel

ε2(send) : (IN� × D�) × D → D�

leads to the following equation:

ε2(send)((N, D), d) =
{

〈〉 if |D| ≥ sum(N)
〈d〉 if |D| < sum(N) (34)

A single data item can only pass the sender iff there exist pending requests (34).
The output only depends on the non-negative difference between the sum of

the requests and the length of the previous data input and otherwise on the data
items which have not been forwarded yet.
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6.3 History Abstraction

The component’s internal state records the sum of pending requests received on
the requests channel or the data items that were received on the data channel,
but were not sent on the output channel:

Q = Reqs(IN) ∪ Buffer(D+) (35)

The history abstraction
abstr : IN� × D� → Q

retains the non-negative difference between the sum of the requests and the
length of the previous data input and otherwise the data items which have not
been forwarded yet:

abstr(N, D) =
{

Reqs(sum(N) − |D|) if sum(N) ≥ |D|
Buffer(drop(sum(N))(D)) if sum(N) < |D| (36)

The history abstraction is surjective: the state Reqs(m) can be obtained from
the pair (〈m〉, 〈〉) of input streams, the state Buffer(D) from the pair (〈〉, D) .

The ‘state’ Buffer(〈〉) is not needed because it would have the same effect on
future output as the state Reqs(0) . The chosen history abstraction will lead to
a coarsest state transition machine (up to isomorphism) for the sender compo-
nent. Any function identifying further input histories would violate transition
closedness (26) or output compatibility (27).

6.4 State Transition Machine

Given the history abstraction abstr from Section 6.3, the constituents of the
state transition machine

M [send , abstr ] = (Q; IN, D; D;next1,next2; out1, out2; q0)

can be derived from Equations (29) and (30) in Theorem 5.3 using the states
abstr(〈m〉, 〈〉) and abstr(〈〉, D) as standard representations.

For the initial state we obtain q0 = abstr(〈〉, 〈〉) = Reqs(0) .
The state transition functions for input on the requests channel

next1(Reqs(m), n) = Reqs(m + n) (37)

next1(Buffer(D), n) =
{

Buffer(drop(n)(D)) if n < |D|
Reqs(n − |D|) if n ≥ |D| (38)

and on the data channel

next2(Reqs(m), d) =
{

Reqs(m − 1) if m > 0
Buffer(〈d〉) if m = 0 (39)

next2(Buffer (D), d) = Buffer(D � d) (40)

are obtained with a few simple derivation steps.
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Similarly, we develop the output functions for input on the requests channel

out1(Reqs(m), n) = 〈〉 (41)
out1(Buffer (D), n) = take(n)(D) (42)

and on the data channel:

out2(Reqs(m), d) =
{

〈d〉 if m > 0
〈〉 if m = 0 (43)

out2(Buffer (D), d) = 〈〉 (44)

The state transition machine M [send , abstr ] implements the sender compo-
nent in an iterative way processing input from the requests and from the data
channels message by message. The state transition machine either stores the
number of pending requests or the pending data items.

The resulting state transition machine is often described by a state transition
table, compare Fig. 4. Each row of the state transition table defines a transition
rule combining the results of the state transition functions next i and the output
functions out i . The component’s state after a transition is denoted by a prime.

state input conditions state′ output
req data

Reqs m n Reqs m + n 〈〉
Reqs m d m > 0 Reqs m − 1 〈d〉
Reqs 0 d Buffer 〈d〉 〈〉

Buffer D n n ≥ |D| Reqs n − |D| D
Buffer D n n < |D| Buffer drop(n)(D) take(n)(D)
Buffer D d Buffer D � d 〈〉

Fig. 4. State transition table for the state transition machine M [send , abstr ]

The formal method presented here has been applied to a variety of inter-
active components. We refer, for example, to transmission components [21], to
synchronization components [21], multiplexers [10] or memory components [21].

7 Conclusion

We presented a formal method for transforming the communication oriented
input/output behaviour of interactive components with multiple input channels
and multiple output channels into a state-based implementation.

The state represents an abstraction of the input histories that records relevant
information from the past which determines the component’s behaviour in the
future. The approach supports a smooth transition between the black-box and
the glass-box views of an interactive component. The transformation contributes
to a better understanding of state transition machines which tend to narrow the
programmer’s view to the local transitions, but do not exhibit the component’s
overall behaviour on an adequate level of abstraction.
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As our particular contribution, we developed a simple theory how to imple-
ment interactive components with multiple input channels in a state-based way.
The approach supports asynchronous components where input from different
channels arrives in an independent way. The differentiations of multiary stream
processing functions with respect to different input channels show a diamond
property which ensures the confluence of the resulting state transition machine.
Moreover, the output streams generated are independent of the particular com-
putation path taken. We established sufficient criteria under which the resulting
state transition machines compensate the interleaving of their input messages
from different channels.

The sequential state transitions consume one input from one channel in one
step. When we chain two sequential state transitions for inputs from different
channels, we arrive at a ‘parallel state transition’ processing inputs from two
different channels in one step. In this way, sequential state transition machines
implicitly also describe parallel transitions processing two or more inputs from
different channels in one step.

Future research will generalize the formal method to different types of timed
streams [16]. For untimed systems, the history abstraction often splits into a
control abstraction and a data abstraction. For timed systems, the history ab-
straction will additionally involve a timing abstraction to describe the processing
schedule.

The history-oriented and the state-based description of software and hardware
components allow complementary insights. Both formalisms show advantages
and shortcomings with respect to compositionality, abstractness, verification,
synthesis, and tool support. In long term, proven design methods must flexibly
bridge the gap between functional behaviour and internal realization following
sound refinement rules.
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1. T. Bălănescu, A. J. Cowling, H. Georgescu, M. Gheorghe, M. Holcombe, and
C. Vertan. Communicating stream X-machines systems are no more than X-
machines. Journal of Universal Computer Science, 5(9):494–507, 1999.

2. M. Breitling and J. Philipps. Step by step to histories. In T. Rus, editor, Algebraic
Methodology and Software Technology (AMAST’2000), number 1816 in Lecture
Notes in Computer Science, pages 11–25. Springer, 2000.

3. M. Broy. The specification of system components by state transition diagrams.
Technical Report TUM-I9729, Technische Universität München, May 1997.

4. M. Broy. From states to histories: Relating state and history views onto systems.
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Abstract. Reasoning about functional programs is simpler than reason-
ing about their imperative counterparts. However, finding bugs in lazy
functional languages has been more complex until quite recently. The
reason was that not much work was done on developing practical debug-
gers. Fortunately, several debuggers exist nowadays. One of the easiest to
use Haskell debuggers is Hood, whose behavior is based on the concept
of observation of intermediate data structures. However, although using
Hood can be simple when observing some structures, it is known that
it can be hard to understand how it works when dealing with complex
situations.

In this paper, we formalize the behavior of the Hood debugger by ex-
tending Sestoft’s natural semantics. Moreover, we also indicate how to de-
rive an abstract machine including such debugging information. By doing
so, we do not only provide a formal foundation, but we also provide an
alternative method to implement debuggers. In fact, we have already im-
plemented a prototype of the abstract machine commented in this paper.

Keywords: Functional programming, debugging, semantics.

1 Introduction

Classically, researchers working on lazy functional programming have devoted
their efforts to show the elegance of their paradigm. In this sense, many rele-
vant works show the clarity of the functional semantics. However, not so much
effort was devoted in the past to deal with other more practical aspects of the
paradigm, like the development of debuggers. Debugging lazy functional pro-
grams is an important and not trivial task. Although not much attention was
paid to it in the past (see e.g. [23]), during the last years there have been sev-
eral proposals for incorporating execution traces to lazy functional languages.
For instance, we can highlight the work done with Hat [22,24], HsDebug [6], the
declarative debuggers Freja [14,15] and Buddha[19], and specially the work done
with the Haskell Object Observation Debugger (Hood) [7,20]. All of these works
provide practical tools for debugging. However, their theoretical foundations are
frequently missing.
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All of the debuggers commented before are designed to be used with the
language Haskell [18], the de facto standard in the lazy-evaluation functional
programming community. The approaches followed in each of the previous de-
buggers are quite different, both from the point of view of the user of the system
and from the implementation point of view. For instance, from an implementa-
tion point of view, most of them strongly depend on the compiler being used,
while that is not the case in Hood. From the user point of view, Freja and Bud-
dha are question-answer systems that directs the programmer to the cause of
an incorrect value, while Hat allows the user to travel backwards from a value
along the redex history leading to it. In this paper we will not concentrate on
those differences (the interested reader can find a detailed comparison between
Freja, Hat and Hood in [1], while [16] presents a common framework to describe
all of them).

In this paper we will concentrate on how to provide a formal foundation for
one of the debuggers commented before. Among all of the Haskell debuggers,
Hood has an interesting advantage over the rest, as it is the only one that can
be used with different Haskell compilers. The reason is that it is implemented
as an independent library that can be used from any Haskell compiler, provided
that the compiler implements some quite common extensions. Basically, it only
needs to have access to a primitive allowing to perform an input/output action
without being inside of the IO monad. Fortunately, most Haskell compilers in-
clude an unsafePerformIO primitive (or something similar to it). In fact, Hood
can currently be used with the Glasgow Haskell Compiler, Hugs98, the Snowball
Haskell compiler, and also with nhc98. Due to its portability, Hood has become
one of the most used Haskell debuggers.

Hood works by using a relatively simple way. First, the programmer instru-
ments the program marking the variables he wants to observe and, after finish-
ing the execution of the program, the system produces a printing of their final
value. Let us remark that final value does not necessarily mean normal form,
but evaluation to the degree required by the computation. Unfortunately, it is
sometimes tricky to understand what should be observed by using Hood in spe-
cial situations. In fact, as the author recognizes in [7], the semantics of observe
(the principal debugging combinator of Hood) should be clearly defined to help
understanding these situations.

In this paper we propose a formalization of the Hood debugger allowing both
to reason about it and to implement it in a different way. In order to do that, we
will use as starting point the semantical foundations presented in [10,13,21,11].
More precisely, what we propose is an extension of Sestoft’s natural seman-
tics1 [21] that incorporates new rules to deal with Hood observations. More-
over, we also comment how to derive an equivalent abstract machine. By doing
so, we obtain two main benefits. First, the semantics of the observations are
clearly defined. Second, we can reuse the work done in [3,4] to be able to ac-
tually implement a debugging system. In fact, we have already implemented a
prototype of the abstract machine commented in the paper. Summarizing, we
propose a cleaner and more modular approach to the trace problem in lazy

1 Sestoft’s semantics is an extension of the original natural semantics introduced by
Launchbury in [13].
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functional programming, allowing to easily provide both implementations and
formal foundations for them.

The rest of the paper is structured as follows. In the next section we introduce
the main characteristics of Hood. Then, in Section 3 we briefly review the main
characteristics of Sestoft’s semantics. Next, in Section 4 we show how to modify
the original semantics to include debugging information equivalent to that ob-
tained by Hood. Afterwards, in Section 5 we sketch how to introduce an abstract
machine equivalent to our new semantics. Finally, in Section 6, in addition to
presenting our conclusions and lines for future work, we briefly comment some
details about our current implementation of the debugger.

2 An Introduction to Hood

In this section we show the basic ideas behind Hood. The interested reader is
referred to [7,8] for more details about it.

When debugging programs written in an imperative language, the program-
mer can explore not only the final result of the computation, but also the inter-
mediate values stored in the variables being used by the program. Moreover, it
is simple to follow how the value of each variable changes along time. Unfortu-
nately, this task is not that simple when dealing with lazy functional languages.
However, Hood allows the programmer to observe something similar to it. In
fact, Hood provides a way to observe any intermediate structure appearing in a
program. Moreover, by using GHood [20] we can also observe the evolution in
time of the evaluation of the structures under observation.

The core of Hood is the observe combinator. The type declaration of this
combinator is: observe :: String -> a -> a From the evaluation point of
view, observe only returns its second value. That is, observe s a = a. How-
ever, as a side effect, the value associated to a will be squirrelled away, using
the label s, in a file that will be analyzed after the evaluation finishes. It is
important to remark that observe returns its second parameter in a completely
lazy, demand driven manner. That is, the evaluation degree of a is not modified
by introducing the observation, in the same way that it is not modified when
applying the identity function id. Thus, as the evaluation degree is not modified,
Hood can deal with infinite structures.

It is important to remark that Hood does not only observe simple data types.
In fact, it can observe anything appearing in a Haskell program. In particular, we
can observe functions. For instance, observe "sum" sum (4:2:5:[]) will
observe the application of function sum to its parameter. Before executing it,
“sum” will have no observation attached to it. Then, as the evaluation takes
place, it will first be recorded that it was necessary to evaluate the first element
of the list (“4”), then, the second, and so on. Finally, it will return the observation

-- sum
{ \ (4:2:5:[]) -> 11 }

Notice that what we observe can be read as when the function receives as input
the list 4:2:5:[], it returns as output the value 11. The elements 4, 2 and 5 appear
explicitly because they were really demanded to evaluate the output. However,
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when observing something like observe "length" length (4:2:5:[]) we
will obtain the following observation:

-- length
{ \ (_:_:_:[]) -> 3 }

That is, we are observing a function that when it receives a list with three
elements it returns the number 3 without evaluating the concrete elements ap-
pearing in the list. Note that it is only relevant the number of elements, but not
the concrete elements. As it can be expected, higher-order functions can also be
observed. This is done in a similar way as in the previous cases. For instance,
in the following example we observe a higher-order function that produces as
output an infinite list: take 3 (observe "iterate" iterate (+2) 4) The
observation obtained is:

-- iterate
{ \ { \ 8 -> 10, \ 6 -> 8, \ 4 -> 6 }

4 -> 4 : 6 : 8 : _ }

That is, it observes that iterate is a function that returns 4:6:8: when it
receives as second parameter 4 and as first parameter a function (+2) that has
been observed with three different input values: 4, 6 and 8. Note that only three
elements of the infinite list where demanded. Thus, the rest of the infinite list
remains unevaluated.

It is important to remark that Hood has to analyze who was the responsible
of evaluating each component. That is, if we are observing a structure in a
given environment, we are not interested in the parts of the structure that were
evaluated due to other environments. For instance, if we are observing function
length in the following example

let xs = take 5 (1:2:3:4:5:6:7:[])
in (observe "length" length xs) + (sum xs)

we will obtain the output

-- length
{ \ (_:_:_:_:_:[]) -> 5
}

That is, even though all the elements of the list xs where actually computed
(due to function sum), they were not needed at all to compute any application
of the function length.

3 A Semantics for Lazy Evaluation

We begin by reviewing the language and semantics given by Sestoft [21] as
an improvement to Launchbury’s semantics. A well-known work from Launch-
bury [13] defines a big-step operational semantics for lazy evaluation. The only
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e → x -- variable
| λx.e -- lambda abstraction
| e x -- application
| letrec xi = ei in e -- recursive let
| C xi -- constructor application
| case e of Ci xij → ei -- case expression

Fig. 1. Sestoft’s normalized λ-calculus

machinery needed is an explicit heap where bindings are kept. A heap is consid-
ered to be a finite mapping from variables to expressions, i.e. duplicated bindings
to the same variable are disallowed. The proposals of Launchbury and Sestoft
share the language given in Figure 1 where Ai denotes a vector A1, . . . , An of
subscripted entities. It is a normalized λ-calculus, extended with recursive let,
constructor applications and case expressions. Sestoft’s normalization process
forces constructor applications to be saturated and all applications to only have
variables as arguments. Weak head normal forms are either lambda abstractions
or constructions. Throughout this section, w will denote (weak head) normal
forms.

Sestoft’s semantic rules are given in Figure 2. There, a judgement Γ : e ⇓ Δ :
w denotes that expression e, with its free variables bound in heap Γ , reduces
to normal form w and produces the final heap Δ. Let us remark that, if the
configuration Γ : e reduces to normal form, then Δ and w are unique. Thus,
in the rest of the paper we will assume this fact to avoid introducing extra
quantifiers in our formalizations. Let us also remark that the notation ê in rule
Letrec means the replacement of the variables xi by the fresh pointers pi. This
is the only rule where new closures are created and added to the heap. We
use the term pointers to refer to dynamically created free variables, bounded to
expressions in the heap, and the term variables to refer to (lambda-bound, let-
bound or case-bound) program variables. We consistently use p, q, . . . to denote
pointers and x, y, . . . to denote program variables. The notation Γ [p �→ e] means
that (p �→ e) ∈ Γ , and Γ ∪ [p �→ e] represents the disjoint union of Γ and
(p �→ e).

4 Semantics with Debugging Features

4.1 Low Level Details of the Real Behavior of Hood

In order to better understand how we should define the rules of our seman-
tics, it is convenient to start commenting some details of the implementation
of Hood. When Hood is in action, it makes annotations that have this form:
(portId, parent, change). The portId corresponds to a pointer to the place
where the annotation is made: in the implementation it corresponds to a line
number in the file of annotations. In order to be able to post-process the file,
when a function or a constructor is evaluated, its arguments need to know the
place where they were invoked. That is, we need to access to the parent of the
arguments; formally, parent is a tuple (observeParent, observePort), where
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Γ : λx.e ⇓ Γ : λx.e Lam

Γ : C pi ⇓ Γ : C pi Cons

Γ : e ⇓ Δ : λx.e′ Δ : e′[p/x] ⇓ Θ : w

Γ : e p ⇓ Θ : w App

Γ : e ⇓ Δ : w

Γ ∪ [p �→ e] : p ⇓ Δ ∪ [p �→ w] : w Var

Γ ∪ [pi �→ êi] : ê ⇓ Δ : w

Γ : letrec xi = ei in e ⇓ Δ : w
where pi are fresh

Letrec

Γ : e ⇓ Δ : Ck pj Δ : ek[pj/xkj ] ⇓ Θ : w

Γ : case e of Ci xij → ei ⇓ Θ : w Case

Fig. 2. Sestoft’s natural semantics

e → x -- variable
| x@str -- observed variable
| λx.e -- lambda abstraction
| e x -- application
| letrec xi = ei in e -- recursive let
| C xi -- constructor application
| case e of Ci xij → ei -- case expression
| p@(r,s) -- observed pointer (internal)
| λ@(r,s)x.e -- observed lambda abstraction (internal)

Fig. 3. Sestoft’s normalized λ-calculus extended

observeParent is the portId of the parent and the observePort is the position
of the argument. Finally, parameter change corresponds to the type of observa-
tion carried out, and it can have one of the following forms:

– Observe String is generated when we enter in a closure annotated with the
corresponding string. This kind of observation has no parent, actually it has
the general parent, that corresponds with (0, 0). This is the first annotation
generated when we start the evaluation of an annotated closure.

– Enter is generated when the evaluation of a closure starts.
– Cons Int String is generated when the evaluation arrives at a construc-

tor. The integer appearing in the annotation is the arity of the closure, and
the string is the name of the constructor. The children of this closure will be
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annotated with (parentPortId, 0), (parentPortId, 1), . . . (parentPortId,
arity). In this way, it is easy to reconstruct the evaluation tree where
parentPortId is the place where the annotation Cons has been written.

– Fun is generated when the closure evaluation arrives at a lambda expres-
sion. In the observations of Hood, lambdas have only one argument and one
result. When the evaluation finishes, the tree is analyzed to get the list of
all arguments and results. The argument of the lambda is annotated with
the following parent (parentPortId, 0) and the result of the lambda is an-
notated with (parentPortId, 1) where parentPortId is the place where the
annotation Fun has been written.

Therefore, in Hood it is not only possible to observe the normal forms of the
closures, but also when the closures start the evaluation. Using this, it is easy
to observe which closures are demanded by another one. These annotations are
processed and are shown in a pretty way to the user.

4.2 Hood Semantics

Let us consider now how to introduce Hood-like observations in the semantics.
Let us remind that Hood users can annotate their programs to mark which
structures are to be observed. Thus, in our case we also have to be able to
annotate any structure. Besides we need to write these annotations in a file in
order to post-process it.

To achieve this, the judgments will have the form Γ : e�f ⇓ Δ : w�f ′. As in
the previous section, that means that expression e is evaluated in the heap Γ , we
obtain as result the expression w and the new heap is Δ. The difference is that
now we have added the file f where we write the annotations. The information
in the file is added sequentially. Thus, we will write f ◦ 〈ann〉 to indicate that
we add the annotation ann at the end of the file f . The annotations that we
will make will have the same form as the ones of Hood shown in the previous
subsection: (portId, parent, change). In our case, the portId component will
make reference to a line in the file; typically it will be the line where a function
or a pointer is observed. To handle this we will need the function length f that
returns the length of the file f . We will consider that the first line in the file is
the 0 line.

We also have to be able to annotate any structure. This can be trivially
done by allowing to annotate as observable any variable. Thus, we only need
to slightly modify the language to include an extra construction as shown in
Figure 3. The expression x@str is the equivalent to the Hood expression observe
str x. Note that, according to the syntax, these observations cannot appear
directly in applications or constructor applications. However, this is not a draw-
back, since they may appear in a recursive let. Once the language allows to
include observations, we have to deal with them in the rules. Besides we need a
new kind of normal form λ@(r,s)x.e: an observed lambda expression; and a new
kind of observed pointers p@(r,s): pointers that are observed and refer to their
parents. It is important to note that the programmer is not allowed to write
these kind of expressions, as they only appear as auxiliary expressions in the
rules.
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Γ : p@(length f,0)
�f ◦ 〈0 0Observe str〉 ⇓ Δ : w�f ′

Γ : p@str
�f ⇓ Δ : w�f ′ Var@S

Γ : p�f ◦ 〈r s Enter〉 ⇓ Δ : C pi
k
�f ′

Γ : p@(r,s)
�f ⇓ Δ ∪ [qi �→ p

@(length f ′,i)
i ] : C qi �f ′ ◦ 〈r s Cons k C〉

qi fresh
Var@C

Γ : p�f ◦ 〈r s Enter〉 ⇓ Δ : λx.e�f ′

Γ : p@(r,s)
�f ⇓ Δ : λ@(r,s)x.e�f ′ Var@F

Γ : λ@(r,s)x.e�f ⇓ Γ : λ@(r,s)x.e�f Lam@

Γ : e�f ⇓ Δ : λ@(r,s)x.e′�f ′

Δ ∪

»
q �→ e′[q′/x],
q′ �→ p@(length f ′,0)

–
: q@(length f ′,1)

�f ′ ◦ 〈r s Fun〉 ⇓ Θ : w�f ′′

where q, q′ fresh

Γ : e p�f ⇓ Θ : w�f ′′ App@

Fig. 4. Hood’s natural semantics

The rules in the original Sestoft’s natural semantics (Figure 2) do not deal
with observations so they are rewritten with the natural modification to include
the annotation file. For instance our new Case rule is

Γ : e�f ⇓ Δ : Ck pj �f ′ Δ : ek[pj/xkj ]�f ′ ⇓ Θ : w�f ′′

Γ : case e of Ci xij → ei �f ⇓ Θ : w�f ′′

The rest of the rules in Figure 2 should be modified in a similar way. However,
in addition to rewriting these rules, it is also necessary to write completely new
rules to deal with the new constructions. The new rules we add to the system
are those shown in Figure 4. Let us briefly describe their meaning:

– Rule Var@S . When we have to evaluate a closure annotated with the string
str, we have to generate an annotation in the file 〈0 0 Observe str〉 and we
have to continue to evaluate that closure but with an annotation that indi-
cates its parent, in this case p@(n,0) (n = length f is the length of the file at
that point of the evaluation).

– Rule Var@C . When evaluating an expression such as p@(r,s), a new annota-
tion 〈r sEnter〉 is generated indicating that we enter to evaluate that closure.
Then p@(r,s) evaluates to a constructor, so the observation 〈r sCons k C〉 is
generated. This indicates that the closure whose parent is (r, s) has been
reduced to the constructor C (whose arity is k). New clousures pointing to
each argument of that constructor are generated. These closures are anno-
tated to indicate that they are being observed. Moreover, in this annotation
we must indicate its position in the constructor an that its parent is in the
corresponding line in the file.
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– Rule Var@F . Now we have to evaluate p@(r,s). As in the previous case, we
generate the annotation 〈r sEnter〉, but in this case p reduces to a function.
Now we have to continue to evaluate a new kind of normal form λ@(r,s)x.e.
A lambda whose parent is (r, s) and that it is being observed.

– Rule Lam@ establishes that λ@(r,s)x.e is actually a normal form.
– Rule App@ is the fundamental part of the new semantics. We are evaluat-

ing the application of an observed function. First, we generate the annota-
tion in the file indicating that we are applying an observed function (note
that length f ′ is the line where the annotation is made). Then we mark
its argument as observable, and we use (length f ′, 0) as their parent. In or-
der to observe the result we create a new observed closure whose parent is
(length f ′, 1). The ports are different to remember that one is the argument
and the other is the result of the lambda.

Note that it is not necessary to specify the application to an observed
pointer e p@(r,s). The reason is that, in the syntax, we have restricted the
places where an observed variable may appear, and in the rules we never
substitute a variable by an observed pointer.

4.3 Correctness and Equivalences

One important thing we must prove is that the observation marks do not change
the meaning of an expression. That is, if we evaluate a marked expression and
the equivalent one without marks we should obtain the same normal form. Let
us remark that this property must be satisfied because Hood observations do
not modify the normal computation of Haskell programs.

The first difference of our semantics with respect to the original one consists
in the observation marks. Thus, in order to compare them we need to provide
a function to remove the observations. Thus, we define the following simple
function that transforms any Sestoft’s expression with observations, that we call
Sestoft@, into an expression without observations.

Definition 1. We define the function that erase the observations R : Sestoft@
→ Sestoft. It is recursively defined, and all cases are trivial but the case
of observed expressions:

R x@str def
= x

R p@(r,s) def
= p

R λ@(r,s)x.e
def
= λx.R e

This function is extended to work with heaps, and configurations. Basically,
R Γ corresponds with {p �→ R e | (p �→ e) ∈ Γ} and R (Γ : e) = R Γ : R e.

But the most difficult problem is that in our rules we introduce new pointers and
the expressions appearing in the rules contain pointers. Thus, we have to prove
that the expressions appearing in both formalisms are essentially the same.
The pointers are kept in a heap; our new rules Var@C and App@ add new
pointers to the heap. These pointers points to the original ones, but they are
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marked remembering that they are under observation. We would like to define
Γ : w 
 Γ ′ : w′ if w in Γ has the same value as w′ in Γ ′, that is, if we obtain the
same expressions by following the pointers. We can do that as follows: if p is a
pointer in w and (p �→ e) ∈ Γ , let us substitute the occurrences of p in w by e.
By doing so, we obtain new expressions that may have pointers; in that case, we
iterate the process. Analogously, we perform the same process to deal with w′. If
both processes end then we look at the final expressions: if both expressions are
the same we can say that w and w′ has the same value. The problem appears
when one of the processes does not end. In that case we have to take the limit of
both sequences: w and w′ have the same value if one sequence is a subsequence
of the other.

Definition 2. Let e be an expression and Γ be a heap.

– We denote by rp e the substitution of all pointers in e by the symbol ⊥.
– We denote Γ e as the application of Γ to the expression e. It is recursively

defined, and all cases are trivial but the case of a pointer:

Γ p
def
= rp e if (p �→ e) ∈ Γ

Γ p
def
= ⊥ if (p �→ e) /∈ Γ

Definition 3. Let e, e′ be expressions and Γ, Γ ′ be heaps. Let us consider the
possibly infinite sequences

s = [rp e, Γ e, Γ 2 e, Γ 3 e, . . .] and s′ = [rp e′, Γ ′ e′, Γ ′2 e′, Γ ′3 e′, . . .]

We say that:

– Γ : e 
 Γ ′ : e′ if
• rp e = rp e′
• ∀i ∃j ≥ i, rp Γ i e = rp Γ ′j e′
• ∀j, rp Γ ′j e′ �= rp Γ ′j+1 e′ ⇒ ∃i ≤ j, rp Γ i e = rp Γ ′j e′

– Γ : e 
R Γ ′ : e′ if Γ : e 
 R (Γ ′ : e′)

According to the previous definition, if Γ : e 
 Γ ′ : e′ we have that e and e′

are essentially the same, and the only differences may appear in the pointers.
First we require that rp e = rp e′: if e is a lambda expression, an application, a
recursive let, a constructor or a case expression, so must be e′, and vice versa;
the constructors and variables appearing at the top level must be the same. We
do not require that the pointers are the same or that they point to the same
expressions; what we require is that whenever there is a pointer in e, (p �→ e1) ∈
Γ , then there must be a sequence of pointers [q1 �→ q2, . . . qn �→ en] ⊆ Γ ′ such
that q1 appears in e′, and if we apply all the corresponding substitutions in e
and e′ and then remove the pointers, we obtain the same expression.

Now we need to prove the equivalence between the evaluation of a marked
expression and the corresponding one without marks. The following theorem
proves that:

Theorem 1. For all e ∈ Sestoft and all e@ ∈ Sestoft@ such that e = R e@

then { } : e@ �〈 〉 ⇓ Δ@ : w@ �f iff { } : e ⇓ Δ : w and Δ : w 
R Δ@ : w@
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In order to prove this theorem we need to take into account some considerations.
We have to substitute the rule Var with this one:

Γ : e ⇓ Δ : w

Γ [p �→ e] : p ⇓ Δ � [p �→ w] : w Var ′

The equivalence between the evaluation is maintained. The only differences with
the original one is that now we do not remove the closure (p �→ e), that is
under evaluation, to evaluate the expression e. Besides, in this case Δ � [p �→ w]
means to update in Δ the expression corresponding with the pointer p with the
expression w. It is very easy to prove the equivalences between the rules. In
the evaluation of Γ : e the closure (p �→ e) has not been used, otherwise we
would have entered in a “black hole”, as we need p to evaluate p. In that case,
evaluation would not have finished.

Proposition 1. Γ : e ⇓ Δ : w iff Γ : e ⇓ Δ : w with the rule Var ′.

From now on, in the rest of this section we will consider that we use the rule Var ′

instead of rule Var . We also need to observe some properties that are invariant
during the evaluation.

Definition 4. Γ : e is a good configuration if all the reachable pointers from e
are bound in the heap.

Proposition 2. Let Γ : e be a good configuration. If Γ : e ⇓ Δ : w then Δ : w
and Δ : e are good configurations.

Finally we prove a proposition that is more general than the original Theorem 1.

Proposition 3. Let be e, e′ ∈ Sestoft, all e@, e′@ ∈ Sestoft@, Γ : e, Γ@ : e@,
Γ : e′ and Γ@ : e′@ good configurations, such that Γ : e 
R Γ@ : e@ and
Γ : e′ 
R Γ@ : e′@ then:
Γ@ : e@ �f ⇓ Δ@ : w@ �f ′ iff Γ : e ⇓ Δ : w, Δ : w 
R Δ@ : w@ and
Δ : e′ 
R Δ@ : e′@

Proof. The proof is made by rule induction. In order to make the proof easier to
read, we will drop the observation file from the rules since it does not participate
in the evaluation of the expressions. This file is only a side effect of the evaluation.
Notice that, if configurations are good, the last case considered in Definition 2
( (p �→ e) /∈ Γ ) cannot occur. However, the definition must take the case into
account for the sake of completeness.

As a corollary of the previous proposition, we have that Theorem 1 holds. Due
to lack of space, we do not show the details of the proofs. However, the inter-
ested reader can find all the details of the proofs in the extended version of this
paper [2].

5 Towards Obtaining an Abstract Machine

Once we have extended the natural semantics to deal with observations, the next
step is to define an abstract machine equivalent to our new semantics. By doing
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so, we will be able to derive an implementation, and we will also be able to proof
the correctness of such implementation.

Sestoft introduced in [21] several abstract machines in sequence, respectively
called Mark-1, Mark-2 and Mark-3. We will use the machine Mark-2 for deriving
the new rules for our semantics because it is close enough to reality and it does
not have many low level details.

The main theorem proved by Sestoft, is that successful derivations of the ma-
chine are exactly the same as those of the semantics. The reason why the environ-
ments are needed is because control expressions, lambda expressions and alterna-
tives keep their original variables and in executionwe need to know their associated
pointers. Basically, the machine consists in a flattening of the semantic tree.

Following the same ideas we have derived new rules for the new semantic rules.
These new rules are presented in the extended version of this paper. To include
observations in our machine we need to add some modifications to the original
machine. First we need a new column of side effects for the rules containing the
observations. We would have to rewrite all the rules appearing in the original
machine to add a side effect column. Second, we need to add a new type of
objects in the stack, where this kind of objects @(r, s) corresponds to pending
observations.

Following the same approach as Sestoft, it is easy to prove that the semantic
rules and the machine rules are equivalent. The details of the proof can be found
in the extended version of this paper [2]. The proof is based on the concept
of balanced computations. A balanced trace is a computation where the initial
and final stack are the same, and in which every intermediate stack extends the
initial one.

6 Conclusions and Future Work

In this paper we have provided a formal semantics for the Hood debugger. In
particular, we have described how to embed Hood inside Sestoft’s natural se-
mantics. The main aim of our work is to clarify the formal foundations of the
debugger, but we also provide an alternative method for implementing it. Let
us also remark that the approach we have followed to codify Hood inside the
natural semantics can also be used to provide a formal foundation for any other
Haskell debugger. In this sense, it could be used as a common framework for
describing (and also implementing) all of them.

In order to obtain an implementation of our modified semantics, we have
used the abstract machine commented in the previous section. To derive an
implementation of it, we have reused the work done in [4]. We would like to point
out that in our programming environment (see Figure 5) we do not only generate
plain text as observations. In fact, the user can choose between observing the
output of the observations by using plain text (with the same style as in Hood)
or by using the GHood[20] graphical environment. By using GHood, we do not
only observe the degree of evaluation of the observed structures, but also the
order of evaluation of it (see Figure 5 right).
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Fig. 5. Debugging environment: Produces text output (left) or graphical output (right)

We are currently working on an extension of our semantics to deal with de-
bugging issues in parallel dialects of Haskell. As a first case study, now we are
working with the language Eden[12,17]. In fact, in [5] we have already imple-
mented a parallel extension of Hood to deal with Eden programs. Our extension
includes a parallelization of the basic Hood library and also a set of tools to
allow checking the amount of speculative work that the parallel programs are
performing. However we have not provided yet a semantics for our parallel ob-
servations. In this sense, we plan to extend the work done in the present paper
to deal with parallel semantics. In order to do that, the best choice is to try to
embed the debugging method inside the Jauja language[9], a very simple parallel
functional language whose semantics are clearly defined in terms of an extension
of Launchbury’s natural semantics.
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15. H. Nilsson. How to look busy while being as lazy as ever: The implementation of a
lazy functional debugger. Journal of Functional Programming, 11(6):629–671,2001.

16. C. Pareja, R. Peña, F. Rubio, and C. Segura. Adding traces to a lazy functional
evaluator. In Eurocast 2001, LNCS 2178, pages 627–641. Springer-Verlag, 2001.

17. R. Peña and F. Rubio. Parallel functional programming at two levels of abstraction.
In Principles and Practice of Declarative Programming (PPDP’01), pages 187–198.
ACM, 2001.

18. S. Peyton Jones and J. Hughes, editors. Report on the Programming Language
Haskell 98. http://www.haskell.org, February 1999.

19. B. Pope and L. Naish. Practical aspects of declarative debugging in Haskell 98. In
Principles and Practice of Declarative Programming (PPDP’03), pages 230–240.
ACM, 2003.

20. C. Reinke. GHood — graphical visualization and animation of Haskell object
observations. In Proceedings of the 5th Haskell Workshop, volume 59 of ENTCS.
Elsevier Science, 2001.

21. P. Sestoft. Deriving a Lazy Abstract Machine. Journal of Functional Programming,
7(3):231–264, May 1997.

22. J. Sparud and C. Runciman. Tracing lazy functional computations using re-
dex trails. In Programming Languages, Implementations, Logics and Programs
(PLILP’97), LNCS 1292, pages 291–308. Springer-Verlag, 1997.

23. P. Wadler. Functional programming: Why no one uses functional languages. SIG-
PLAN Notices, 33(8):23–27, August 1998. Functional Programming Column.

24. M. Wallace, O. Chitil, T. Brehm, and C. Runciman. Multipleview tracing for
Haskell: a new Hat. In Proc. of the 5th Haskell Workshop, pages 151–170, 2001.



Solution Strategies for Multi-domain
Constraint Logic Programs

Stephan Frank, Petra Hofstedt, Peter Pepper, and Dirk Reckmann

Berlin University of Technology, Germany
{sfrank,ph,pepper,reckmann}@cs.tu-berlin.de

Abstract. We integrated a logic programming language into Meta-S, a
flexible and extendable constraint solver cooperation system, by treat-
ing the language evaluation mechanism resolution as constraint solver.
This new approach easily yields a CLP language with support for solver
cooperation that fits nicely into our cooperation framework.

Applying the strategy definition framework of Meta-S we define classi-
cal search strategies and more sophisticated ones and discuss their effects
on an efficient evaluation of multi-domain constraint logic programs by
illustrating examples.

1 Introduction

To allow an efficient processing, in constraint programming the constraint
solving algorithms are limited to restricted domains, e.g. linear or non-linear
arithmetics, boolean constraints, finite domain constraints etc. However, many
interesting problems are intuitively expressed as multi-domain descriptions. In
multi-domain constraint problems every constraint may come from a different
constraint domain and as well can be built itself using symbols of different do-
mains. The cost and time for developing new constraint solvers that are able
to handle such problems are significant. A different approach that has been
researched actively during recent years is the collaboration of a number of indi-
vidual (preexisting) constraint solvers managed by some meta mechanism which
enables the cooperative solution of multi-domain constraint problems.

Meta-S [3] is a solver cooperation system embodying this approach. It allows
the integration of arbitrary black box constraint solvers and provides the user
with a flexible strategy definition framework. In [5,6] we theoretically discussed
the idea of considering declarative programs (logic and functional logic ones)
together with the associated language evaluation mechanism as constraint solvers
and the integration of these solvers into our system. This yields multi-domain
constraint programming languages and allows the definition of new evaluation
strategies for them.

The present paper elaborates on this approach in practice. It is structured
as follows: Section 2 briefly sketches our approach on solver cooperation. The
integration of a logic language into our framework is explained in Sect.3. Using
the strategy definition framework of Meta-S we define classical search strategies
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problem solutionmeta-solver

strategies and heuristics

solver 1 solver 2 · · · solver n

(t)

(p)

(t)

(p)

(t)

(p)

Fig. 1. Structure of Meta-S

as well as new ones in Sect.4. Section 5 is dedicated to the evaluation and in-
terpretation of experiments using these strategies. Finally, we draw a conclusion
and discuss related work.

2 Constraint Solver Cooperation

Formally, a constraint solver CS consists of a solving algorithm associated to a
constraint store. The solving algorithm is usually able to handle constraints of a
particular constraint domain, e.g. linear constraints or finite domain constraints.
The constraint store is a set of constraints which is initially empty, more precisely
it contains the constraint true only. By constraint propagation the constraint
solver adds constraints to its store. At this the set of possible solutions for
the constraint conjunction of the store is successively narrowed, while ensuring
its satisfiability. If the solver detects an inconsistency then the constraint for
propagation is rejected.

Our solver cooperation system Meta-S (for a detailed description see [3]) en-
ables the cooperative solving of mixed-domain constraint problems using several
specialized solvers, none of which would be able to handle the problem on its
own. Such solvers can be traditional solvers as mentioned above, but as well
language evaluation mechanisms, like reduction or resolution as we will see in
the following.

Fig.1 shows the structure of Meta-S. A coordination mechanism – the meta-
solver – treats the different applied solvers as black boxes. It receives the problem
to solve in form of mixed-domain constraints, analyzes them and splits them up
into single-domain ones processable by the individual solvers. These problem
constraints are held in a global pool, which is managed by the meta-solver. Con-
straints are taken from this pool and they are propagated to the individual
solvers. These collect the constraints in their constraint stores ensuring at this
their satisfiability. In return the solvers are requested to provide newly gained
information (i.e. constraints) back to the meta-solver to be added to the pool
and propagated to other solvers during the following computation. This com-
munication is handled via the solver interface functions tell and project. These
are based on typical solver functions, which for most preexisting solvers already
exist or can be implemented by very little glue code, hence allowing a simple
integration into our system. Their formal definitions are given e.g. in [6].
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– The function tell (denoted by (t) in the figure) for constraint propagation
allows an individual solver to add constraints taken from the global pool to
its store narrowing the solution set of the store’s constraints.

– The projection function project (denoted by (p)) provides constraints im-
plied by a solvers store for information interchange between the solvers. They
are added to the pool of the solver cooperation system to be propagated later
to another solver.

The meta-solver repeats the overall tell–projection cycle until a failure oc-
curs or the global pool is emptied. Problem solutions can then be retrieved by
projection.

In [4] we give requirements which allow the integration of solvers into the
framework and, at the same time, ensure a well-defined behaviour of the overall
system. Furthermore, we discuss termination, confluency, soundness and com-
pleteness. The soundness and completeness results do not depend on the partic-
ular cooperation strategy of the solvers. This was an important precondition for
the versatility of our solver cooperation system.

Meta-S provides a flexible framework for strategy definitions (including a
strategy definition language) such that the user can formulate choice heuris-
tics for constraints with respect to their structure and their domains, prescribe
the order of propagation and projection, use constraint rewriting facilities and
so forth.

We discuss the impact of the cooperation strategy in connection with the
structure of the constraint problem at hand on the effort of the solving process
in Sect.5.

3 Considering a Logic Language as Constraint Solver

In [5] we presented a generalized method for the integration of arbitrary declar-
ative languages and multi-domain constraints, we discussed this approach the-
oretically in detail in [6]. The idea is to consider declarative programs together
with the associated language evaluation mechanism as constraint solver and to
integrate this solver into our solver cooperation system.

It is widely accepted that logic programming can be interpreted as constraint
programming over the Herbrand universe. Thus, by considering a logic language
as constraint solver CSL, we can identify the goals according to a given logic
program as the constraints handled by our new solver. Resolution as the language
evaluation mechanism provides the constraint solving ability.

Besides this, the overall framework requires an equality relation for every
solver such that the set of constraints of our logic language solver must include
furthermore equality constraints between terms. For an actual integration of a
language with constraints it is of course necessary to extend the language itself
by constraints of other domains. In case of a logic language this yields the typical
CLP syntax (cf. e.g. [7]).

Furthermore one needs to extend the existing language evaluation mechanism
with respect to this syntactical extension, i.e. treating the constraints of other
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domains. This approach finally yields a CLP like language, where the constraints
of other domains are collected by CSL to be treated later by corresponding
solvers within the Meta-S framework.

Let us consider the logic language solver CSL in detail. For its integration
into Meta-S we just need to define its interface functions tell and project.

Since it simplifies our presentation considerably, we write substitutions as
special equations, e.g. σ = {x1 = t1, . . . , xm = tm} with variables xi and terms
ti. Furthermore we make use of the usual notions, like the application σ(e) of a
substitution σ to a term e or the parallel composition (σ ↑ φ) = mgu(φ, σ) of
idempotent substitutions, where mgu denotes the most general unifier (cf. [6]).

tell. Resolution steps on goals correspond to constraint propagations. The
thereby computed substitutions are collected in the constraint store CL of CSL.
Consider Fig.2. Our presentation of substitutions allows to consider the con-
straint store CL of the solver CSL directly as a substitution, which is written in
the form of equations and thus can be treated like constraints.

Case 1a represents a successful resolution step. The result is a tuple of three
values: First, the value true indicates success. The second value is a conjunction
of constraints representing the constraint store after propagation (which remains
unchanged). The third value is a disjunction of the instantiated bodies of the
matching rules together with the computed substitutions σp which are returned
back to the constraint pool for following propagations. If there is no applicable
rule for a resolution step then the goal is rejected, indicating a contradiction by
the first value false (Case 1b).

Substitutions computed by resolution steps are given back to the pool (as
equality constraints). A substitution φ = {Y = t} is propagated to CL by parallel
composition (φ ↑ CL) which may be successful (Case 2a) or failing (Case 2b).

This way the system performs a sequence of resolution steps and forwards the
thereby computed substitutions via the pool to the store CL to be collected.

project. Projection is used for information interchange between the solvers which
are integrated into the cooperation in Meta-S, here between CSL and CSν , ν ∈ L,
where L denotes the solver indices.

The store of CSL contains substitutions (received by resolution steps). Projec-
tion wrt. the domain of another solver CSν , provides an implication of the store
CL, and thus simply generates equality constraints for the variables common to
both solvers (cf. Fig.2).

Example 1. Consider the cooperation of our logic language solver CSL within a
framework of additional solvers, e.g. including an arithmetic solver CSA. A pro-
gram describing electrical circuit problems may contain a rule for the sequential
composition of resistors (=A is the equality provided by CSA):
r(seq(R1,R2),R) :- X + Y =A R, r(R1,X), r(R2,Y).

Let the pool hold the constraint c = r(seq(simple(A),simple(B)),600)
asking for a sequential composition of 600Ω of two simple resistors A and B.
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tell: Let P be a constraint logic program, let CL = φ be the current store of CSL.

1. Let R = p(t1, . . . , tm) be the constraint (goal) which is to be propagated. Let
R̂ = φ(R). We use the following notion: A rule p = (Qp :- rhsp) applies to R̂, if
there is a unifier σp = mgu(R̂, Qp).
(a) If the set PR ⊆ P of applicable rules is nonempty, then

tell(R, CL) = (true, CL,
∨

p∈PR
(σp ∧ σp(rhsp))).

(b) If there is no applicable rule in P , then
tell(R, CL) = (false,CL, false).

2. Let c = (Y = t) be the constraint (i.e. an equality constraint resp. substitution)
which is to be propagated.
(a) If ({Y = t} ↑ CL) �= ∅, then tell(c, CL) = (true, {Y = t} ↑ CL , true).

(b) If ({Y = t} ↑ CL) = ∅, then tell(c, CL) = (false, CL, false).

projectν : The projection of a store CL = φ wrt. another solvers domain ν, ν ∈ L,
and a set of variables X ⊆ XL ∩ Xν makes the substitutions for x ∈ X explicit:

projectν(X, φ) =
{

φ|X if φ �= ∅
true otherwise.

Fig. 2. Interface functions tell and project of CSL

Let the store CL of CSL contain the equality constraint resp. substitution
σ = {B = 200} (computed during precedent resolution steps).

The propagation of c wrt. the store CL by tell is done by performing a reso-
lution step on σ(c) (with most general unifier φ):

tell(c, σ = CL) = (true, CL, φ ∧ c′) with
σ(c) �φ c′ = (X + Y =A 600 ∧ r(simple(A),X) ∧ r(simple(200),Y)).

The constraint store CL does not change. The constraint c is deleted from
the pool and replaced by c′ and φ derived from the resolution. Thus, in the next
step an equality from φ or as well a constraint from c′ could be chosen for propa-
gation, e.g. X + Y =A 600 for the arithmetic solver CSA or r(simple(200),Y)
(representing a logic goal) for a further resolution step. This choice depends on
the cooperation strategy (cf. Sect.4).

Projection of the logic language store wrt. a set of variables means providing
the collected substitution as equality constraints to other solvers. E.g. we project
CL wrt. B and the arithmetic solver: projectA({B}, CL) = (B =A 200).

According to the described method, we plugged a new logic language solver,
called CLL, into Meta-S. It quickly turned out that this method does not only
allow the integration of logic languages1 with multi-domain constraint solving
but besides this the generation and experimentation with very different language
evaluation strategies in an easy way. We consider this in the rest of the paper.
1 and, in general, arbitrary declarative languages.
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4 Solver Cooperation Strategies

We integrated a logic language solver CLL, an arithmetic solver and a finite do-
main constraint solver into our solver cooperation system Meta-S and analysed
evaluation strategies for several constraint logic programs with different charac-
teristics. In this section we discuss the strategies before presenting benchmark
results for the program examples in Section 5.

We considered variations of the classical evaluation strategies depth/breadth
first search for logic languages and two more advanced strategies, i.e. lazy cloning
and heuristic search. Additionally, we examined residuating rules. Other search
strategies like branch-and-bound, best-first, etc. can be easily integrated into
our framework. However, we chose the above strategies to compare the typi-
cal Prolog evaluation with more sophisticated strategies, which already have
been proven to be advantageous in the context of constraint solver cooperation
without language integration [3]. This comparison is instructive, because the dif-
ferences between language evaluation and constraint solving influence the choice
of an appropriate strategy for the problem at hand.

The solving process consists of a sequence of projection and propagation
phases. In each of these phases, disjunctions may be returned by the constraint
solvers, which evoke alternative branches in the search tree and, thus, make a
cloning of the current system status (i.e. the pool and all stores) necessary. To
cushion the exponential behaviour, such cloning steps should be avoided as much
as possible. Therefore, our strategies perform weak projections which are only
allowed to produce constraint conjunctions until a fixed point is reached. Then
they switch to strong projection and allow the creation of disjunctions. E.g. for a
store which allows only certain discrete values for a variable X , strong projection
may express this by enumerating all alternatives, like X = 1 ∨ X = 3 ∨ X = 7,
whereas weak projection results in a less precise conjunction 1 ≤ X ∧ X ≤ 7.

Depth/Breadth First Search (dfs and bfs). These strategies are variants of the
classical ones: A propagation phase performing depth/breadth first search until
the pool is emptied alternates with a projection phase, where all solvers are
projected and the results are added into the constraint pool.

For an illustration of the behaviour of these strategies see Fig.3a. To depict
a configuration, we use tables showing the meta solvers pool in the first row,
and the individual solvers’ stores in the second row, separated by vertical bars.
Assuming a pool containing the conjunction A ∧ B and a store containing the
constraint S (further stores are not considered in this example), the next con-
straint propagated is A. Suppose that only a part of this constraint can be
handled by the solver, i.e. A3, and the disjunction A1 ∨ A2 is put back into the
pool. To ensure correctness, A must be equivalent to (A1 ∨A2)∧A3. In the next
step the configuration is cloned. To find all solutions of the constraint problem
both resulting configurations must be processed further. This can be done by
first processing the left one and after that the right one, which results in depth
first search, or by interleaving steps with both configurations, which results in
breadth first search.
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a)
A ∧ B

S · · ·
�

(A1 ∨ A2) ∧ B

S ∧ A3 · · ·
�

A1 ∧ B

S ∧ A3 · · ·
∨

A2 ∧ B

S ∧ A3 · · ·

b)
A ∧ B

S · · ·
�

(A1 ∨ A2) ∧ B

S ∧ A3 · · ·
�

(A1 ∨ A2)

S∧A3∧B · · ·

c)
(A1 ∨ A2 ∨ A3) ∧ (B1 ∨ B2)

S · · ·
�

B1

S · · ·
∨

B2

S · · ·

Fig. 3. Strategies: a) Depth/breadth first search b) Lazy cloning c) Heuristic search

Thereby, it is advantageous wrt. efficiency to abort the projection phase as
soon as a first constraint disjunction is returned by any individual solver, and
then to reenter the propagation phase. This delays (often costly) projections of
stores which could be further restricted by propagating a certain part of the
newly gained disjunction before.

Since depth first search and breadth first search traverse the same search tree,
the measurements of computation steps in Sect.5 correlate; a small management
overhead of breadth first search becomes obvious in the runtime measurements.

Lazy Cloning (lazy). The lazy cloning strategy described in [3] tries to increase
performance by delaying cloning of the system state as much as possible. This
approach is related to the Andorra principle as described in [16,2]. Whenever
a disjunction appears, the current configuration is not cloned at once, instead
the new disjunction is pushed into a queue and all other pending constraints are
propagated first. When the queue of pending constraints is empty, a disjunction
is dequeued and the configuration gets cloned.

The idea behind this strategy is to propagate common constraints only once.
Otherwise, i.e. if configurations were cloned as soon as disjunctions appear, each
clone would need to propagate the pending constraints.

Fig.3b shows an example using the lazy cloning strategy. The first step is
the same as for depth first and breadth first search (cf. Fig.3a), but the next
step differs. The cloning is delayed, and the constraint B is propagated first. In
this example, the entire constraint B is assumed to be put into the store, and
no disjunction is put back into the pool. Obviously, B is propagated only once,
while it had to be propagated twice in Fig.3a.

Like the classical strategies, lazy cloning avoids projection as long as pos-
sible, which means propagating conjunctions first, then breaking disjunctions
and switching to projection only when the constraint pool is completely empty.
However, this avoidance of projection has a tradeoff: It implies a higher number
of clones again, since a projection might disclose inconsistencies between two
solvers before a queued disjunction is split into several clones.
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As already discussed in [3] lazy cloning interferes with the weak/strong-
projection schema which avoids disjunctions as long as possible anyway. There-
fore situations where lazy is beneficial could be rare. However, it turns out, that
lazy cloning is interesting in our language integration nevertheless, because the
CLL solver (in contrast to most other solvers) now returns disjunctions not dur-
ing projection but as a result of propagation, which is not subject to the strong
and weak differentiation.

Heuristic Search (heuristic). The heuristic search strategy is related to the fail
first principle, proposed in [1], which tries to minimize the expanded search
tree size and proved to be beneficial in solving constraint satisfaction problems.
There, the idea is to choose the variable with the smallest domain size for value
assignment. This choice is the one most likely to fail and hence will cut away
failing branches very fast. Furthermore, variables with large domains may get
restricted further such that unnecessary search can be avoided.

The heuristic strategy uses this selection heuristic for choosing between several
queued disjunctions while performing lazy cloning. We dequeue a disjunction
with the least number of constraint conjunctions. As a further optimization we
throw away all other disjunctions. To ensure that no knowledge is lost, all solvers
are marked in order to project them later again. For illustration see Fig.3c. Here,
the disjunction (A1 ∨ A2 ∨ A3) is removed, but can be reproduced later since
it originates from a projection. Of course, this schema can be used only when
propagation does not return disjunctions because they cannot be reproduced in
this way. Thus, in general the heuristic strategy cannot be used in cooperations
with the CLL solver, but in ordinary solver cooperations (cf.[3]).

Residuation. Residuation is a method to cope with indeterminism caused by
insufficiently bound variables, used in concurrent constraint languages. The
concept of residuation, as defined for logic languages in [15], divides all rules
into two groups. Residuating rules may be applied only when their application
is deterministic, i.e. only one rule matches the goal that is subject to resolution.
Generating rules do not need to be deterministic, but may only be used when no
residuating rule is applicable. CLL supports both residuating and generating
rules.

5 Evaluation

We present benchmark results of five illustrating examples (cf. Table 1) to inves-
tigate the effects of different strategies for multi-domain constraint logic prob-
lems with varying extent of logic predicates and multi-domain constraints. In all
these examples we search for all solutions, instead of for example only the first
solution.

The table captures the numbers of clones generated during the computation,
of propagations and of projections. The propagations cover resolution steps and
the propagation of equality constraints resulting from substitutions computed
during resolution, both for CLL, as well as constraint propagation steps for other
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Table 1. Experimental results

example strategy clones prop. resol.’s w.proj. s.proj. time in s
dag bfs/dfs 6143 24575 14335 24576 24576 21.74/19.02

lazy 6143 22528 10241 24576 24576 18.05
cgc bfs/dfs 9540 53426 12402 3027 3027 16.59/11.12

lazy 9540 19082 12404 3027 3027 8.43
hamming lazy 148 2141 895 266 266 0.85
smm lazy 135 6550 19 456 148 1.38

bfs/dfs 3 3333 19 902 105 1.34/1.32
nl-csp lazy 35352 109852 0 285 192 55.33

bfs/dfs 493 118751 0 34758 2614 49.38/47.82
heuristic 345 109121 0 31485 4944 45.76

incorporated solvers. For a better discussion, the number of resolution steps is,
however, pointed out in an extra column again. Projections are divided into
weak and strong projections. Run time measurements are given merely as further
additional information. Our solvers are proof-of-concept implementations and,
their performance is, of course, not comparable to advanced solvers of modern
systems like ECLiPSe

Prolog. Nevertheless, transferring our strategies to such
systems might improve their efficiency even further.

A Directed Acyclic Graph (dag). Our first example concentrates on logic lan-
guage evaluation. It does not contain additional constraints of other domains.
The program describes a directed acyclic graph (dag) which consists of 13 nodes,
labelled from a to m. There is an edge between two nodes if and only if the label
of the first node appears before the label of the second node in the alphabet.
Thus, we have twelve edges starting from node a, eleven edges starting from b
and so on. The 78 edges are described by 78 logic CLL facts. Furthermore, the
program contains the rules shown in Fig. 4 for traversal and path finding. Given
this program, we search for all paths from node a to node m.

For better understanding of the benchmark results, let us examine the eval-
uation of a goal path(N, M, X) in detail. Whenever such a goal is propagated,
a disjunction with two alternatives is created, one alternative for each rule def-
inition. The evaluation of the first rule definition is the same for every search
strategy, and yields one further resolution step for the goal edge(N, M), either
with result success if this edge is in the graph, or a failure otherwise.

1 path(N1 N2 [N1, N2]) :-
2 edge(N1, N2).
3

4 path(N1, N2, [N1 | REST]) :-
5 edge(N1, X),
6 path(X, N2, REST).

Fig. 4. Rule definition for paths in directed graphs
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The evaluation of the second rule is more interesting: We gain a conjunction
of two goals, edge(N, X) and path(X, M, REST). The propagation of the goal
edge(N, X) results in a disjunction with as many elements as there are edges start-
ing from N. At this point the strategy lazy differs from depth first and breadth
first search. While the strategies dfs and bfs break the disjunction at once, creat-
ing clones of the meta solver configuration and propagating the path goal after
that once for every clone, lazy cloning propagates the path goal first, and clones
the configuration afterwards. Thus the lazy strategy saves a number of resolution
steps and propagations (as obvious from Table 1). At this, the number of propaga-
tions is the sum of the resolution steps and the propagation of equality constraints
resulting from substitutions computed while unifying goals with rule heads.

Since all strategies create (sooner or later) all the clones for the possible edges,
the number of clones does not differ between the strategies.

Even if only one solver (the CLL solver) is used in this example, a projection
of the solver on each variable is necessary before successful termination, since
solvers in the Meta-S framework are allowed to delay costly operations until the
projection phase, and hence unsatisfiability of a problem may be noticed during
projection (instead of during propagation as usually).

The wanted effect of the lazy strategy first to propagate pending constraints
of a conjunction before cloning stores (due to disjunctions produced by propaga-
tions), yields an explicitly smaller number of resolution steps (and thus propaga-
tions) here, and explains why lazy search is the fastest strategy in this scenario.

Path Costs in a Complete Graph (cgc). In example cgc a complete graph (i.e.
a graph with edges between every pair of nodes, including the reflexive cases)
with nodes labelled a to j is traversed.

Again, the graph is described by logic facts, but this time each edge is an-
notated with random costs between 1 and 100. We are looking for all paths
from a to b with the additional constraint that for the accumulated costs C of
the whole path 50 ≤ C ≤ 80 holds. With our particular cost annotations, 93
solutions exist.

The structure of this problem is similar to our last example, as well as the
results. The only remarkable difference is the number of resolution steps, being
nearly the same now for all strategies, although the number of overall propaga-
tions is lower for the lazy strategy.

On the one hand, lazy search saves some resolution steps because goals are
propagated before cloning a configuration. Concurrently, a corresponding num-
ber of goals is propagated in the leaf nodes of the search tree which propagation
is avoided by breadth first search and depth first search: In depth/breadth first
search, the propagation of the arithmetic constraints in Lines 3-5, Fig. 5, encoun-
ters a contradiction, thus, the resolution of the last recursive goal (in Line 6) is
avoided. In lazy search, the arithmetic constraints cannot fail at once, because
the disjunction of the edges in Line 2 has not been split, and thus the concrete
costs of the edge currently considered are not known yet. So the goal in Line 6
is propagated, after that the disjunction is split, and afterwards the arithmetic
constraints fail.
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This “stepping over a disjunction”, what looks like a handicap for the lazy
strategies at first, can turn into an advantage, too. Consider a modification of
the rule from Fig. 5 such that the recursive goal in Line 6 is placed before the
arithmetic constraints. In this case, depth first and breadth first search will
never terminate, but the lazy strategy “steps over” the disjunction of both logic
goals and propagates the arithmetic constraints first. Hence, only lazy search
terminates in this case (and has exactly the same benchmark results as cgc in
Table 1).

In the original formulation of cgc, although the number of resolution steps
does not evoke any difference for the performance of the solving process, the
number of propagations is significant smaller for lazy search due to the arithmetic
constraints being propagated before the cloning operation. So the lazy cloning
strategy is the fastest, again.

The Hamming Numbers (hamming). This example was chosen to show that
Meta-S allows the combination of residuating and nonresiduating rules. A resid-
uating CLL rule computes (in cooperation with an arithmetic solver) multiples
of 2, 3 and 5; its results are requested by nonresiduating CLL rules and merged
into a common list of hamming numbers. Table 1 shows the results of the com-
putation of the first 20 hamming numbers.

In the table we only give the results for the lazy strategy. The other strategies
behave similar because of the highly deterministic nature of the rule choice here.

Send-More-Money (smm). While it is well known that this problem can be solved
by a usual finite domain solver providing arithmetics, we nevertheless found it
appropriate as a short and simple example to illustrate general strategy effects
for a solver cooperation of different solvers and domains.

The problem is constructed by a CLL predicate describing the composi-
tion of letters to words and constructing the respective equality constraint,
e.g. S*1000+E*100+N*10+D=SEND. This is done in a few deterministic evalua-
tion steps, where only one rule definition at a time matches the goals to solve.
Thus, the influence of language evaluation is surpassed by constraint solving.
Besides the CLL solver two other solvers cooperate in this example. A linear
arithmetic solver is supported by a finite domain solver. These two solvers rely
on information exchange by projection, and hence the overall effort is greatly
affected by the timing when switching from propagation to projection.

1 path(N1, N2, [N1 | REST], COST) :-
2 edge(N1, X, EDGE_COST),
3 EDGE_COST > 0,
4 REST_COST > 0,
5 COST = EDGE_COST + REST_COST,
6 path(X, N2, REST, REST_COST).

Fig. 5. Rule definition for paths with edge costs in directed graphs
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The tradeoff of projection avoidance for the lazy strategy which results in
a higher cloning rate (as discussed in Sect.4) becomes obvious and hindering
here. This shows, that mainly problems with an larger portion (and allowing
alternative steps) of language evaluation than smm profit from lazy cloning.

It is well known that the variable order for projection makes an impact on
the effort needed to find solutions for this kind of problems. The influences of
the portrayed search strategies, however, have been proved to be representative.

A Nonlinear Constraint Satisfaction Problem (nl-csp). Another crypto-
arithmetic puzzle: We want to replace different letters by different digits, s.t.
ABC * DEF = GHIJ holds. This problem is given without any CLL rules.

The effect of an increased cloning rate for the lazy strategy gets enormous
here. However, since the CLL solver is not used in this example, we may use
the heuristic strategy, and the reordering of disjunctions is decisive in this case.
This result corresponds to our observations in [3], where the heuristic strategy
proved to be very efficient in many cases.

Overall Evaluation. Our examples show that in problems with a large extent of
logic language evaluation, the strategy lazy gives the best results. This strategy
reorders goals in favour of deterministic ones and thus prevents a lot of prop-
agations. An evaluation using the lazy strategy may even terminate in circum-
stances where depth/breadth first search produce infinite resolution derivations.
In problems predominated by constraint solving most disjunctions are already
avoided by the weak/strong projection schema. Hence the overhead of the lazy
strategy outweighs its advantages here and depth/breath first search are more
appropriate. Problems that can be easily described without CLL constraints may
benefit from the heuristic strategy, which gives almost optimal results in many
situations.

6 Conclusion and Related Work

We presented the integration of the logic language CLL into the solver coop-
eration framework Meta-S and the usage of its strategy definition framework
to define very different evaluation strategies for the CLP language gained by
this approach. We discussed implications and recommendations concerning the
appropriateness of different cooperation strategies for the evaluation of multi-
domain constraint logic programs of different form.

The development and application of solver cooperation systems has become
an interesting research topic during the last years.

Besides systems with fixed solvers and fixed cooperation strategies, e.g. [13],
there are systems which allow a more flexible strategy handling (e.g. BALI [10]
or CFLP [8]) up to the definition of problem specific solver cooperation strategies
and the integration of new solvers, like the approach in [11] or our system Meta-S.

Flexible solver cooperation systems enable us to take advantage of existing
solvers (implementing solvers is a time consuming and tedious work) and to
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design appropriate solving mechanisms customized for particular application
problems in a simple way.

Meta-S differs from other systems wrt. its choices of languages and language
constructs for the strategy definition. Meta-S provides a set of typical predefined
constructs but finally offers the user all normal Common Lisp constructs as well
as abstraction features like macros. Meta-S already provides a set of predefined
typical strategies.

Furthermore, our system explicitly distinguishes between propagation and
projection in contrast to other approaches which do not separate these steps.
However, this separation turned out to be useful and certainly important for
defining efficient strategies, as can be seen in the nl-csp problem, where the
avoidance of projections during depth first or breadth first search results in an
approximately 15% faster solving process.

In [12] Prosser considers search in constraint satisfaction algorithms, e.g. back-
marking, backjumping, forward checking and hybrids of them. These strategies
cannot be applied directly in our architecture since it combines black box solvers
which may work on miscellaneous domains. However, the strategy which we
named dfs here, is in fact closely related to forward checking which results from
interlocking depth first search and constraint propagation/satisfiability checking.
Differences issue from solver cooperation features like the explicit separation of
the constraint treatment into a propagation and a projection phase. Our lazy
strategy delays disjunction splitting and, thus, allows to consider (and to cut)
a number of subtrees of the original search tree at once. Even though very far,
it is related to the backmarking strategy of [12] which is based on a completely
different concept.

Another concept for solver cooperation are computation spaces, described in
detail in [14]. Computation spaces are the underlying mechanism of the con-
straint solving features of the multi paradigm programming language Oz. Here,
a constraint store contains only basic constraints that are simple enough to be
understood by all participating solvers of one domain. These basic constraints
are manipulated by propagators that are responsible for the satisfiability of more
complex constraints. However, this system relies on all solvers sharing the same
store format, and hence is not satisfying for the main goal of Meta-S, i.e. coop-
eration of black box solvers independent of their implementation. On the other
hand, the sharing of a common store format allows a tighter communication and
in many cases a faster solving process.

Our approach of considering programming languages themselves as constraint
solvers and integrating them into a system of cooperating solvers [5,6] is new.
Meta-S allows this integration, further distinguishing our system from other
solver cooperation approaches which usually provide a fixed host language (often
a logic one). Using our cooperation approach, we achieve a covering of the well
known scheme CLP(X) and as well CFLP(X) [9] for constraint functional logic
programming.
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Abstract. Two formal models for description of timing attacks are pre-
sented, studied and compared with other security concepts. The models
are based on a timed process algebra and on a concept of observations
which make visible only a part of a system behaviour. An intruder tries
to deduce some private system activities from this partial information
which contains also timing of actions. To obtain realistic security char-
acterizations some limitations on observational power of the intruder are
applied. It is assumed that the intruder has only limited time window to
perform the attack or time of action occurrences can be measured only
with a given limited precision.

Keywords: process algebras, timing attacks, information flow.

1 Introduction

Several formulations of a system security can be found in the literature. Many
of them are based on a concept of non-interference (see [12]) which assumes the
absence of any information flow between private and public systems activities.
More precisely, systems are considered to be secure if from observations of their
public activities no information about private activities can be deduced. This ap-
proach has found many reformulations for different formalisms, computational
models and nature or “quality” of observations. They try to capture some im-
portant aspects of systems behaviour with respect to possible attacks against
systems security, often they are tailored to some types of specific attacks. An
overview of language-based approaches to information flow based security can
be found in [21].

Timing attacks have a particular position among attacks against systems se-
curity. They represent a powerful tool for “breaking” “unbreakable” systems,
algorithms, protocols, etc. For example, by carefully measuring the amount of
time required to perform private key operations, attackers may be able to find
fixed Diffie-Hellman exponents, factor RSA keys, and break other cryptosystems
(see [19]). This idea was developed in [6] where a timing attack against smart
card implementation of RSA was conducted. In [18], a timing attack on the RC5
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block encryption algorithm, in [22] the one against the popular SSH protocol
and in [7] the one against web privacy are described.

In the literature several papers on formalizations of timing attacks can be
found. Papers [9], [10], [11] express the timing attacks in a framework of (timed)
process algebras. In all these papers system actions are divided into private and
public ones and it is required that there is not an interference between them.
More precisely, in [9,10] it is required that on a level of system traces which
do not contain internal actions one cannot distinguish between system which
cannot perform private actions and system which can perform them but all of
them are reduced to internal actions. In paper [11] a concept of public channels
is elaborated. In the above mentioned papers also a slightly different approach
to system security is presented — the system behaviour must be invariant with
respect to composition with an attacker which can perform only private actions
([9], [10]) or with an attacker which can see only public communications ([11]).

In the presented approach actions are not divided to private and public ones
on a system description level. Instead of this we work with a concept of observa-
tions. These are mappings on the set of actions which can hide some of actions
(for example, internal actions, communications via encrypted channels, actions
hidden by a firewall etc) but not elapsing of time. Since many of timing attacks
described in the literature are based on observations of “internal” actions we
work also with this information what is not the case of the above mentioned
papers. Moreover we will study two (realistic) restrictions of an observational
power of an intruder. First we will assume that the intruder has only a limited
time window for observation, i.e. system to be attacked can be observed only for
some (finite) time interval (we will call this limited access attacks). In the second
case we will assume that the intruder can measure time of action occurrences
only with some given precision (limited precision attacks). In this way we can
consider timing attacks which could not be taken into account otherwise. More-
over, the resulting security properties are more adequate for real applications for
which standard non-information flow security property is too restrictive.

The paper is organized as follows. In Section 2 we describe the timed process
algebra which will be used as a basic formalism. In Section 3 we present the
notion of non-information flow property in the case of unlimited, limited access
and limited precision (timing) attacks for both passive and active cases. The
presented formalism is compared with other security concepts described in the
literature and it is shown that it is more general and stronger in the sense that
it can describe attacks which are not captured by the other concepts.

2 Timed Process Algebra

In this section we introduce the Timed Process Algebra, TPA for short. It is
based on Milner’s CCS (see [20]) but the special time action t which expresses
elapsing of (discrete) time is added. The presented language is a slight simpli-
fication of the Timed Security Process Algebra introduced in [9]. We omit the
explicit idling operator ι used in tSPA and instead of this we use an alternative
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approach known in the literature and we allow implicit idling of processes. Hence
processes can perform either “enforced idling” by performing t actions which are
explicitly expressed in their descriptions or “voluntary idling”. But in the both
situations internal communications have priority to actions t in the case of the
parallel operator. Moreover we do not divide actions into private and public
ones as it is in tSPA. TPA differs also from the tCryptoSPA (see [11]) besides
absence of value passing, by semantics of choice operator + which in some cases
abandons time determinacy which is strictly preserved in TPA.

To define the language TPA, we first assume a set of atomic action symbols
A not containing symbols τ and t, and such that for every a ∈ A there exists
a ∈ A and a = a. We define Act = A ∪ {τ}, Actt = Act ∪ {t}. We assume that
a, b, . . . range over A, u, v, . . . range over Act, and x, y . . . range over Actt. The
set of TPA terms over the signature Σ is defined by the following BNF notation:

P ::= X | op(P1, P2, . . . Pn) | μXP

where X ∈ V ar, V ar is a set of process variables, P, P1, . . . Pn are TPA terms,
μX− is the binding construct, op ∈ Σ. Assume the signature Σ =

⋃
n∈{0,1,2} Σn,

where
Σ0 = {Nil}
Σ1 = {x. | x ∈ A ∪ {t}} ∪ {[S] | S is a relabeling function}

∪{\M | M ⊆ A}
Σ2 = {|, +}

with the agreement to write unary action operators in prefix form, the unary
operators [S], \M in postfix form, and the rest of operators in infix form. Rela-
beling functions, S : Actt → Actt are such that S(a) = S(ā) for a ∈ A, S(τ) = τ
and S(t) = t. The set of CCS terms consists of TPA terms without t action. We
will use an usual definition of opened and closed terms where μX is the only
binding operator. Closed terms are called processes. Note that Nil will be often
omitted from processes descriptions and hence, for example, instead of a.b.Nil
we will write just a.b.

We give a structural operational semantics of terms by means of labeled tran-
sition systems. The set of terms represents a set of states, labels are actions
from Actt. The transition relation → is a subset of TPA×Actt×TPA. We write
P

x→ P ′ instead of (P, x, P ′) ∈ → and P � x→ if there is no P ′ such that P
x→ P ′.

The meaning of the expression P
x→ P ′ is that the term P can evolve to P ′ by

performing action x, by P
x→ we will denote that there exists a term P ′ such

that P
x→ P ′. We define the transition relation as the least relation satisfying

the following inference rules:

x.P
x→ P

A1
u.P

t→ u.P
A2

Nil
t→ Nil

A3
P

u→ P ′

P | Q
u→ P ′ | Q

Pa1
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P
u→ P ′

Q | P
u→ Q | P ′

Pa2
P

a→ P ′, Q
a→ Q′

P | Q
τ→ P ′ | Q′

Pa3

P
t→ P ′, Q

t→ Q′, P | Q � τ→
P | Q

t→ P ′ | Q′
Pa4

P
u→ P ′

P + Q
u→ P ′

S1

P
u→ P ′

Q + P
u→ P ′

S2
P

t→ P ′, Q
t→ Q′

P + Q
t→ P ′ + Q′

S3

P
x→ P ′

P \ M
x→ P ′ \ M

, (x, x �∈ M) Res
P [μXP/X] x→ P ′

μXP
x→ P ′

Rec

P
x→ P ′

P [S]
S(x)→ P ′[S]

Rl

Here we mention rules that are new with respect to CCS. Axioms A2, A3 allow
arbitrary idling. Concurrent processes can idle only if there is no possibility of
an internal communication (Pa4). A run of time is deterministic (S3). In the
definition of the labeled transition system we have used negative premises (see
Pa4). In general this may lead to problems, for example with consistency of the
defined system. We avoid these dangers by making derivations of τ independent
of derivations of t. For an explanation and details see [13]. Regarding behavioral
relations we will work with the timed version of weak trace equivalence. Note
that here we will use also a concept of observations which contain complete
information which includes also τ actions and not just actions from A and t
action as it is in [9]. For s = x1.x2. . . . .xn, xi ∈ Actt we write P

s→ instead of
P

x1→x2→ . . .
xn→ and we say that s is a trace of P . The set of all traces of P will

be denoted by Tr(P ). We will write P
x⇒ P ′ iff P ( τ→)∗ x→ ( τ→)∗P ′ and P

s⇒
instead of P

x1⇒x2⇒ . . .
xn⇒. By ε we will denote the empty sequence of actions, by

Succ(P ) we will denote the set of all successors of P and Sort(P ) = {x|P s.x−→
for some s ∈ Actt�}. If the set Succ(P ) is finite we say that P is finite state.

Definition 1. The set of timed traces of a process P is defined as
Trt(P ) = {s ∈ (A ∪ {t})�|∃P ′.P s⇒ P ′}. Two process P and Q are weakly
timed trace equivalent (P ≈w Q) iff Trt(P ) = Trt(Q).

3 Information Flow

In this section we will formalize a notion of timing attacks based on an informa-
tion flow between invisible (private) and visible (public) activities of a system.
At the beginning we assume that an attacker is just an eavesdropper who can
see a (public) part of the system behaviour and who tries to deduce from this
information some private information. In the case of timing attacks time of oc-
currences of observed events plays a crucial role i.e. timing of actions represents
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a fundamental information. First we will not put any restrictions on intruder’s
capability. Later we will model two restricted or limited intruders.

To formalize the attacks we do not divide actions to public and private ones
on the level of process description as it is done for example in [11,5] but instead
of this we use more general concept of observations. This concept was recently
exploited in [2], [16] and [3] in a framework of Petri Nets, process algebras and
transition systems, respectively, where a concept of opacity is defined with the
help of the observations.

Definition 2. An observation O is a mapping O : Actt → Actt ∪ {ε} such that
O(t) = t and for every u ∈ Act, O(u) ∈ {u, τ, ε}.
An observation expresses what can an observer - eavesdropper see from a system
behaviour. It cannot rename actions but only hide them completely (O(u) = ε)
or indicate just a performance of some action but its name cannot be observed
(O(u) = τ). Observations can be naturally generalized to sequences of actions.
Let s = x1.x2. . . . .xn, xi ∈ Actt then O(s) = O(x1).O(x2). . . . .O(xn). Since the
observation expresses what an observer can see we will alternatively use both
terms (observation - observer) with the same meaning.

In general, systems respect the property of privacy if there is no leaking of
private information, namely there is no information flow from the private level
to the public level. This means that the secret behavior cannot influence the ob-
servable one, or, equivalently, no information on the observable behavior permits
to infer information on the secret one. Moreover, in the case of timing attacks,
timing of actions plays a crucial role. In the presented setting private actions are
those that are hidden by the observation O, i.e. such actions a that O(a) ∈ {τ, ε}
and for public actions we have O(a) = a i.e the observer can see them. Now we
are ready to define Non-Information Flow property (NIF) for TPA processes,
but first some notations are needed. An occurrence of action x (or of sequence
s′) in a sequence of actions s we will indicate by x ∈ s (s′ ∈ s) i.e. x ∈ s (s′ ∈ s)
iff s = s1.x.s2 (s = s1.s

′.s2) for some s1, s2 ∈ Actt� and for S ⊆ Actt we indicate
S ∩ s �= ∅ iff x ∈ s for some x ∈ S otherwise we write S ∩ s = ∅. By s|M we
will denote a sequence obtained from s by removing all elements not belonging
to the set M .

Clearly, NIF property has to be parameterized by observation O and by set
of private actions S which occurrence is of interest. In other words, process P
has NIF property if from the observation of its behaviour (given by O) it cannot
be deduced that some of given private actions (S) were performed. We expect
a consistency between O and S in the sense that the observation does not see
actions from S. The formal definition follows.

Definition 3. Let O be an observation and S ⊆ A such that O(a) ∈ {τ, ε}
for a ∈ S. We say that process P has NIFS

O property (we will denote this by
P ∈ NIFS

O) iff whenever S ∩ s1 �= ∅ for some s1 ∈ Tr(P ) then there exists
s2 ∈ Tr(P ) such that S ∩ s2 = ∅ and O(s1) = O(s2).

Informally, process P has NIFS
O property if the observer given by O (note

that (s)he can always see timing of actions) cannot deduce that process P has
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performed a sequence of actions which includes some private (secrete) actions
from S. In other words, P ∈ NIFS

O means that observer O cannot deduce any-
thing about execution of actions from S and hence P is robust against attacks
which try to deduce that some private action from S was performed. By NIFS

O
we will denote also the set of processes which have NIFS

O property.

Example 1. Let P = ((b.t.c̄ + a.c̄)|c) \ {c} and O(a) = O(b) = ε, O(τ) = τ .
The observer given by O can detect occurrence of the action a but not b i.e.
P ∈ NIF

{b}
O but P �∈ NIF

{a}
O since from observing just τ action (without any

delay) it is clear that action a was performed. �


Now we compare NIF property with another security concept known in the
literature, with Strong Nondeterministic Non-Interference, SNNI, for short (see
[9]). We recall its definition . Suppose that all actions are divided in two groups,
namely public (low level) actions L and private (high level) actions H i.e. A =
L ∪ H, L ∩ H = ∅. Then process P has SNNI property if P \ H behaves like
P for which all high level actions are hidden for an observer. To express this
hiding we introduce hiding operator P/M, M ⊆ A, for which if P

a→ P ′ then
P/M

a→ P ′/M whenever a �∈ M ∪ M̄ and P/M
τ→ P ′/M whenever a ∈ M ∪ M̄ .

Formal definition of SNNI follows.

Definition 4. Let P ∈ TPA. Then P ∈ SNNI iff P \ H ≈w P/H.

Relationship between NIFS
O and SNNI express the following theorem (see [16]).

Note that it is clear from this theorem that SNNI property is just a special case
of NIFS

O property.

Theorem 1. P ∈ SNNI iff P ∈ NIFH
O for O(h) = τ , h ∈ H and O(x) = x,

x �∈ H.

3.1 Passive Attacks with Limited Access

Now we will assume that an intruder can observe system behaviour only for a
limited amount of time, what is more realistic than unlimited access to system to
be attacked. First some notation is needed. Let s ∈ Actt, by time length we will
mean the number of t actions occurring in s, and we will denote it by |s|t. Now
we can define non-information flow under the condition that an intruder can
observe system behaviour for time n (this property will be denoted by NIFS

On
).

Definition 5. Let O be an observation and S ⊆ A such that O(a) ∈ {τ, ε}
for a ∈ S. We say that process P has NIFS

On
property (we will denote this by

P ∈ NIFS
On

) iff whenever S ∩ s′1 �= ∅ for some s′1 ∈ s1, s1 ∈ Tr(P ) then there
exists s′2 ∈ s2, s2 ∈ Tr(P ) such that S ∩ s′2 = ∅ and |s′1|t = |s′2|t = n and it holds
O(s′1) = O(s′2).

Example 2. Let P = l1.t.t.t.h.l2 + l1.t.t.l2 and O(h) = ε, O(li) = li. It is easy
to check that P ∈ NIF

{h}
O2

but P �∈ NIF
{h}
O . In other words, the “unlimited”
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observer given by O can detect occurrence of the action h but it cannot be
performed if only time window of length 2 is at disposal. If a time window of
length 3 (and more) is at disposal, then P �∈ NIF

{h}
O3

. �


The relationship between NIFS
O and NIFS

On
states the following theorem.

Theorem 2. NIFS
O ⊂ NIFS

On
for every n and NIFS

Om
⊂ NIFS

On
for m > n.

Proof. The main idea. Clearly NIFS
Om

⊆ NIFS
On

for m > n. The rest follows
from Example 2 and its generalization. �


In many cases it seems to be sufficient to check occurrence of only one private
action instead of a bigger set, i.e. the cases S = {a} for some a ∈ A. In these cases
an observer tries to deduce whether confident action a was or was not performed.
But even in this simplest possible case the NIF properties are undecidable, but
in general they are decidable for finite state processes.

Theorem 3. NIF
{a}
On

property is undecidable but NIFS
On

is decidable for finite
state processes if O(x) �= ε for every x ∈ Actt and n ≥ 1.

Proof. The main idea. Let Ti is i-th Turing machine (according to some order-
ing). Let machine T accept a sequence ai and also τ i but this only in the case
that Ti halts with the empty tape as an input. Let O(a) = τ . The rest of the
proof follows from undecidability of the halting problem. Note that CCS process
and so TPA process as well have power of Turing machines.

Regarding the second part of the theorem, we construct from a finite labeled
transition system which corresponds to P a finite state automaton A with all
sates treated as final. From this automaton we construct a new automaton A′

in such a way that transitions labeled by actions which are seen as τ action are
labeled by τ and again all sates treated as final. The rest of the proof follows
from decidability properties for finite automata. �


Even if NIFS
On

is decidable the corresponding algorithms are of exponential
complexity. On way how to overcome this disadvantage is a bottom-up design of
processes. Hence compositionality of NIFS

On
plays an important role. We have

the following property.

Theorem 4. (Compositionality) Let P, Q ∈ NIFS
On

. Then

x.P ∈ NIFS
On

if x �∈ S ∪ {t}
P + Q ∈ NIFS

On

P |Q ∈ NIFS
On

P [f ] ∈ NIFS
On

for any f such that f(S) ⊆ S

P \ M ∈ NIFS
On

for any M, M ⊆ S.

Proof. We will prove the first three cases which are the most interesting.
(1) Let P ∈ NIFS

On
and S ∩ s′1 �= ∅ for some s′1 ∈ s1, s1 ∈ Tr(x.P ). If

s1 = x then since x �∈ S the NIF condition holds. Hence let s1 = x.s′′1 , s′1 ∈ s′′1 ,
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s′′1 ∈ Tr(x.P ). Since P ∈ NIFS
On

there exists s′2 ∈ s2, s2 ∈ Tr(P ) such that
S ∩ s′2 = ∅ and |s′1|t = |s′2|t = n and it holds O(s′1) = O(s′2). Hence for
s2, s2 = x.s′2 we have s2 ∈ Tr(x.P ) and hence x.P ∈ NIFS

On
.

(2) Let P, Q ∈ NIFS
O and S ∩ s′1 �= ∅ for some s′1 ∈ s1, s1 ∈ Tr(P + Q).

Without lost of generality we can assume that s1 ∈ Tr(P ). Since P ∈ NIFS
On

there exists s′2 ∈ s2, s2 ∈ Tr(P ) such that S ∩ s′2 = ∅ and |s′1|t = |s′2|t = n and
it holds O(s′1) = O(s′2). But since s2 ∈ Tr(P + Q) we have P + Q ∈ NIFS

On
.

(3) Let P, Q ∈ NIFS
On

but P |Q �∈ NIFS
On

. Let s1 is the shortest trace of
P |Q such that S ∩ s′1 �= ∅ for some s′1 ∈ s1 and since P |Q �∈ NIFS

On
then

for every trace s′2 ∈ s2, s2 ∈ Tr(P |Q) such that |s′1|t = |s′2|t = n and it holds
O(s′1) = O(s′2) it holds S ∩ s′2 �= ∅. Since s1 is the shortest trace clearly only
its last element belong to S. This element was performed either by P or by
Q. By case analysis and structural induction we came to a contention with the
assumption that P, Q ∈ NIFS

On
. �


3.2 Passive Attacks with Limited Precision

Till know we have considered the situation when an intruder has only a limited
access to a system to be attacked i.e. (s)he has only a limited time for which
the system behaviour can be observed. Now we investigate a different situation.
We assume that the intruder can observe the system behaviour only with lim-
ited time precision. Say, than the intruder has unprecise stop-watch at disposal
when time of occurrence of actions is observed. This models situations when the
system to be attacked is remote and interconnection network properties (mainly
throughput) cannot be predicted. Now we define non-information flow for the
case that the intruder can measure time with precision k.

Definition 6. Let O be an observation and S ⊆ A such that O(a) ∈ {τ, ε}
for a ∈ S. We say that process P has NIFS

Opk
property (we will denote this by

P ∈ NIFS
Opk

) iff whenever S∩s1 �= ∅ for some s1 ∈ Tr(P ) then there exists s2 ∈
Tr(P ) such that S ∩ s2 = ∅, ||s1|t − |s2|t| ≤ k and it holds
O(s1|Act) = O(s2|Act).

Example 3. Let P = l1.t.t.t.h.l2 + l1.t.t.l2,P ′ = l1.t.t.t.t.h.l2 + l1.t.t.l2 and
O(h) = ε, O(li) = li. It is easy to check that P ∈ NIF

{h}
Op1

but P ′ �∈ NIF
{h}
Op1

.

Note that P, P ′ ∈ NIF
{h}
O1

. �


By generalization of this example we get the following relationships among
NIF

{h}
On

and NIF
{h}
Opk

properties.

Theorem 5. NIFS
On

�⊆ NIFS
Opk

and NIFS
Opk

�⊆ NIFS
On

.

The relationship between NIFS
O and NIFS

Opk
states the following theorem.

Theorem 6. NIFS
O ⊂ NIFS

Opk
for every k and NIFS

Opk
⊂ NIFS

Opl
for k < l.



Information-Flow Attacks Based on Limited Observations 231

Proof. The main idea. Clearly NIFS
Opk

⊆ NIFS
Opl

for k < l. The rest follows
from Example 2 and its generalization obtained by appropriate choice of an
amount of t actions between actions l1 and l2. �


Combining Theorems 2 and 6 we get a hierarchy of NIF properties (see Fig. 1).
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Fig. 1. NIF Hierarchy

For the NIFS
Opk

properties can be similar theorems as for NIFS
On

(see Theo-
rem 3 and 4) formulated. But for the lack of space, instead of this, we turn our
attention from passive to active attacks.

3.3 Active Attacks

Up to now we have considered so called passive attacks. An intruder could only
observe system behaviour. Now we will consider more powerful intruders which
can employ some auxiliary processes to perform attacks. There is a natural re-
striction for such processes (see [8]), in the presented context this means that
such the processes could perform only actions u for which O(u) = ε. We for-
mulate the concept of active attacks (we will denote them by index a) in the
framework of NIF property. A process which is considered to be safe also repre-
sents a safe context for the auxiliary private processes.

Definition 7. (Active NIF) P ∈ NIFa
S
On

(NIFa
S
Opk

) iff (P |A) ∈ NIFS
On

(NIFS
Opk

) for every A, Sort(A) ⊆ S ∪ {τ, t} and for every x ∈ Sort(A), x �= t it
holds O(x) = ε.

Active attacks are really more powerful than passive ones for both limited access
and limited precision attacks.

Theorem 7. NIFa
S
On

⊂ NIFS
On

and NIFa
S
Opk

⊂ NIFS
Opk

.
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Proof. Sketch. Clearly NIFa
S
On

⊆ NIFS
On

and NIFa
S
Opk

⊆ NIFS
Opk

. For the
rest of the proof we construct processes P, A such that P ∈ NIFS

On
but

(P |A) �∈ NIFS
On

and P ∈ NIFS
Opk

but (P |A) �∈ NIFS
Opk

, respectively. For ex-
ample we can consider processes P = h1.t

i.l + h2.t
j .l and A = t.h̄1. By choosing

appropriate values for i and j we get counterexamples which shows that both
the inclusions are proper. �

The definition of active NIF properties contain two universal quantifications
(over all possible intruders and over all possible traces). To avoid them we could
exploit an idea of generalized unwinding introduced by Bossi, Focardi, Piazza
and Rossi (see [4,1]) and in this way we can obtain decidability results for active
NIF for finite state systems.

Note that also for NIFa
S
On

and NIFa
S
Opk

similar properties as for NIFS
On

(see Theorem 3 and 4) can be formulated.

4 Conclusions and Further Work

Timing attacks can “break” systems which are often considered to be “unbreak-
able”. More precisely, the attacks usually do not break system algorithms them-
selves but rather their bad, from security point of view, implementations. For
example, such implementations, due to different optimizations, could result in
dependency between time of computation and data to be processed, and as a
consequence systems might become open to timing attacks. An attacker can de-
duce from time information also some information about private data, despite
the fact that safe algorithms were used.

In real applications an intruder very often has not full and complete access
to systems to be attacked. In this case non-information flow property as it is
known in the literature is too restrictive. There are systems which exhibit some
information flow but only in case of an ”ideal” condition for the intruder, i.e.
when the intruder has unlimited access to system and when time of action occur-
rences can be measured with absolute precision. In both these cases the standard
non-information flow property is rather strong and for many applications too re-
strictive.

In this paper we have presented two formal models which model two different
types of intruders. The first one has access to a system to be attacked only
within some time window, i.e. (s)he can see its behaviour only during some
time interval. The second one can measure time of actions occurrences only with
some given precision. The presented formalisms are studied and compared with
other concepts described in the literature and it is shown that they are more
general and stronger in the sense that they can describe attacks which are not
captured by the other concepts. With the help of presented models we can check
systems with respect to more adequate security requirements. In this paper we
have studied these requirements and we have obtained some decidability and
undecidability results for them.

We see our work as a first step towards an analysis of timing attacks. Fur-
ther study will concern on more efficient decision algorithms, modeling of more
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elaborated active time attacks where an attacker can implement some less re-
stricted processes to the system to be attacked (for example in the style of
Trojan horse) to deduce some private activities. To have better described sys-
tem activities (particularly to be able to perform traffic analysis), we consider to
use formalism which can express also some network properties in style of [14,17].
This approach was used in [15] to study Bisimulation-based Non-deducibility on
Composition which is an (stronger) alternative to SNNI. Since many of timing
attacks are based on statistic behaviour it seems to be reasonable to exploit also
some features of probabilistic process algebras.

References

1. Bossi A., D. Macedonio, C. Piazza and S. Rossi. Information Flow in Secure Con-
texts. Journal of Computer Security, Volume 13, Number 3, 2005

2. Bryans J., M. Koutny and P. Ryan: Modelling non-deducibility using Petri Nets.
Proc. of the 2nd International Workshop on Security Issues with Petri Nets and
other Computational Models, 2004.

3. Bryans J., M. Koutny, L. Mazare and P. Ryan: Opacity Generalised to Transition
Systems. CS-TR-868, University of Newcastle upon Tyne, 2004.

4. Bossi A., R. Focardi, C. Piazza and S. Rossi. Refinement Operators and Informa-
tion Flow Security. Proc. of SEFM’03, IEEE Computer Society Press, 2003.

5. Busi N. and R. Gorrieri: Positive Non-interference in Elementary and Trace Nets.
Proc. of Application and Theory of Petri Nets 2004, LNCS 3099, Springer, Berlin,
2004.

6. Dhem J.-F., F. Koeune, P.-A. Leroux, P. Mestre, J.-J. Quisquater and J.-L.
Willems: A practical implementation of the timing attack. Proc. of the Third Work-
ing Conference on Smart Card Research and Advanced Applications (CARDIS
1998), LNCS 1820, Springer, Berlin, 1998.

7. Felten, E.W., and M.A. Schneider: Timing attacks on web privacy. Proc. of the 7th

ACM Conference on Computer and Communications Security, 2000.
8. Focardi, R. and R. Gorrieri: Classification of security properties. Part I: Information

Flow. Proc. of Foundations of Security Analysis and Design, LNCS 2171, Springer,
Berlin, 2001.

9. Focardi, R., R. Gorrieri, and F. Martinelli: Information flow analysis in a discrete-
time process algebra. Proc. of the 13th Computer Security Foundation Workshop,
IEEE Computer Society Press, 2000.

10. Focardi, R., R. Gorrieri, and F. Martinelli: Real-Time information flow analysis.
IEEE Journal on Selected Areas in Communications 21 (2003).

11. Gorrieri R. and F. Martinelli: A simple framework for real-time cryptographic
protocol analysis with compositional proof rules. Science of Computer Programing,
Volume 50, Issue 1-3, 2004.

12. Goguen J.A. and J. Meseguer: Security Policies and Security Models. Proc. of the
IEEE Symposium on Security and Privacy, 1982.

13. Groote, J. F.: “Transition Systems Specification with Negative Premises”. Proc. of
CONCUR’90, Springer Verlag, Berlin, LNCS 458, 1990.

14. Gruska D.P. and A. Maggiolo-Schettini: Process algebra for network communica-
tion. Fundamenta Informaticae 45(2001).

15. Gruska, D., Maggiolo-Schettini, A.: Nested Timing Attacks, Proc. of FAST 2003,
2003.



234 D.P. Gruska

16. Gruska D.P.: Information Flow in Timing Attacks. Proc. of CS&P’04, 2004.
17. Gruska D.P.: Network Information Flow, Fundamenta Informaticae 72 (2006).
18. Handschuh H. and Howard M. Heys: A timing attack on RC5. Proc. of the Selected

Areas in Cryptography, LNCS 1556, Springer, Berlin, 1999.
19. Kocher P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS and

other systems. Proc. of the Advances in Cryptology - CRYPTO’96, LNCS 1109,
Springer, Berlin, 1996.

20. Milner, R.: Communication and concurrency. Prentice-Hall International, New
York,1989.

21. Sabelfeld A. and A.C. Myers: Language-Based Information Flow Security. IEEE
Journal on Selected Areas in Communication, 21(1), 2003.

22. Song. D., D. Wagner, and X. Tian: Timing analysis of Keystrokes and SSH timing
attacks. Proc. of the 10th USENIX Security Symposium, 2001.



Verifying Generalized Soundness
of Workflow Nets

Kees van Hee, Olivia Oanea�, Natalia Sidorova, and Marc Voorhoeve

Department of Mathematics and Computer Science
Eindhoven University of Technology

P.O. Box 513, 5600 MB Eindhoven, The Netherlands
{k.m.v.hee, o.i.oanea, n.sidorova, m.voorhoeve}@tue.nl

Abstract. We improve the decision procedure from [10] for the problem
of generalized soundness of workflow nets. A workflow net is generalized
sound iff every marking reachable from an initial marking with k tokens
on the initial place terminates properly, i.e. it can reach a marking with
k tokens on the final place, for an arbitrary natural number k. Our new
decision procedure not only reports whether the net is sound or not, but
also returns a counterexample in case the workflow net is not generalized
sound. We report on experimental results obtained with the prototype
we made and explain how the procedure can be used for the composi-
tional verification of large workflows.
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1 Introduction

Petri nets are intensively used in workflow modeling [1,2]. Workflow management
systems are modeled by workflow nets (WF-nets), i.e. Petri nets with one initial
and one final place and every place or transition being on a directed path from
the initial to the final place. The execution of a case is represented as a firing
sequence that starts from the initial marking consisting of a single token on the
initial place. The token on the final place with no garbage (tokens) left on the
other places indicates the proper termination of the case execution. A model is
called sound iff every reachable marking can terminate properly.

In [9] we showed that the traditional notion of soundness from [1] is not
compositional, and moreover, it does not allow for handling of multiple cases in
the WF-net. We introduced there a notion of generalized soundness that amounts
to the proper termination of all markings obtained from markings with multiple
tokens on the initial place, which corresponds to the processing of batches of
cases in the WF-net. We proved that generalized soundness is compositional
w.r.t. refinement, which allows the verification of soundness in a compositional
way.

� Supported by the NWO Open Competitie project “Modeling and Verification of
Business Processes” (MoveBP), project number 612.000.315.

I. Virbitskaite and A. Voronkov (Eds.): PSI 2006, LNCS 4378, pp. 235–247, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



236 K. van Hee et al.

The generalized soundness problem is decidable and [10] gives a decision pro-
cedure for it. The problem of generalized soundness is reduced to two checks.
First, some linear equations for the incidence matrix are checked. Secondly, the
proper termination of a finite set of markings is checked. This finite set of mark-
ings is computed from an over-approximation of the set of reachable markings
that has a regular algebraic structure. In practice, this set turns out to be very
large, which seriously limits the applicability of the decision procedure from [10].

In this paper we show that the check of generalized soundness can be reduced
to checking proper termination for a much smaller set of markings, namely min-
imal markings of the set from [10]. We describe a new decision procedure for
soundness. Additionally, our procedure produces a counterexample in case a
WF-net turns out to be unsound, showing a reachable marking that cannot
terminate properly and a trace leading to it.

We implemented our decision procedure in a prototype tool and performed a
series of experiments with it. The experimental results confirmed that the new
procedure is considerably more effective than the old one. When applied together
with standard reduction techniques in a compositional way, it allows us to check
soundness of real-life examples.

Related work. For some subclasses of workflow nets (e.g. well-handled, free-
choice, extended free-choice, asymmetric choice where every siphon includes at
least one trap, extended non-self controlling workflow nets), 1-soundness implies
generalized soundness (see [13]). A different decision procedure for generalized
soundness was presented in [17], where the generalized soundness problem is re-
duced to the home marking problem in an extension of the workflow net, which
is an unbounded net. The home marking problem is shown to be decidable in [7]
by reducing it to the reachability problem for a finite set of markings. Check-
ing generalized soundness in this way can however hardly be done in practice,
since the complexity of the reachability problem for unbounded nets is still an
open question, and the procedure for checking reachability, though known from
1981 [11], has never been implemented due to its complexity (the known algo-
rithms require non-primitive recursive space) [15]. In our procedure we also check
reachability for a finite set of markings, but reachability is checked on bounded
nets only.

The paper is structured as follows. Section 2 introduces basic notions. Sec-
tion 3 presents the new decision procedure, and Section 4 provides details about
the implementation and experimental results. Section 5 covers conclusions and
directions for future work.

2 Preliminaries

We denote the set of natural numbers by N, the set of non-zero natural numbers
by N

+ = N \ {0}, the set of integers by Z, the set of rational numbers by Q and
the set of non-negative rational numbers by Q

+. We denote the set of all finite
words over a finite set S by S∗. The empty word is denoted by ε.
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A Petri net is a tuple N = (P, T, F+, F−), where

– P and T are two disjoint non-empty finite sets of places and transitions
respectively;

– F+ and F− are mappings (P × T ) → N that are flow functions from transi-
tions to places and from places to transitions respectively.

F = F+ − F− is the incidence matrix of net N .
We denote the set of output transitions of a place p by p•, i.e. p• def= {t |

F+(p, t) > 0, t ∈ T }, and the set of output transitions of Q ⊆ P by Q•, i.e.
Q• def=

⋃
p∈Q p•. Similarly, •p def= {t | F−(p, t) > 0, t ∈ T } denotes the set of input

transitions of a place p and •Q def=
⋃

p∈Q
•p the set of input transitions of Q ⊆ P .

A place p with •p = ∅ is called a source place and a place q with q• = ∅ is called
a sink place.

Markings, the states (configurations) of a net, represent the distribution of
tokens in the places are interpreted as vectors m : P → N. We denote by 0̄ the
zero marking (vector) of an arbitrary (defined by the context) dimension and by
p̄, for some p ∈ P , the vector such that p̄(p) = 1 and p̄(p′) = 0 for all p′ ∈ P
such that p′ �= p. A marked net is a tuple (N, m), where N is a net and m is a
marking.

A transition t ∈ T is enabled in a marking m if F−(p, t) ≤ m(p), for all p ∈ P .
If t is enabled in a marking m (denoted by m

t−→), t may fire yielding a new
marking m′, denoted by m

t−→ m′, where m′(p) = m(p) − F−(p, t) + F+(p, t),
for all p ∈ P . We extend this homomorphically to the firing sequences σ ∈ T ∗,
denoted by m

σ−→ m′. We say that m′ is reachable from m and write m
∗−→ m′

when there exists σ ∈ T ∗ such that m
σ−→ m′. We denote the set of all markings

reachable from m by R(m). Similarly, S(m) denotes the set of markings that
can reach m. A marked net (N, m0) is bounded iff there exists n ∈ N such that
for all m ∈ R(m0), m(p) < n for all p ∈ P . A marked net (N, m0) is t-live iff
for all markings m ∈ R(m0) there exists a marking m′ such that m

∗−→ m′ and
m

t−→.
Let σ be a sequence of transitions. The Parikh vector −→σ maps every transition

t of σ to the number of occurrences of t in σ. Let m
σ−→ m′. Then the marking

equation [8] holds: m′ = m + F · −→σ . Note that the reverse is not true: not every
marking m′ that can be represented as m + F · x, for some x ∈ N

T , is reachable
from the marking m.

A subset of places Q is called a trap if Q• ⊆ •Q. A subset Q ⊆ P is called a
siphon if •Q ⊆ Q•. A trap or a siphon is called proper iff it is nonempty. Traps
have the property that once marked they remain marked, whereas unmarked
siphons remain unmarked whatever transition sequence occurs [6].

A place invariant is a row vector I : P → Q such that I · F = 0. We denote a
matrix that consists of basis place invariants as rows by I. We say that markings
m and m′ agree on a place invariant I if I ·m = I ·m′ (see [8]). The main property
of place invariants is that any two markings m, m′ such that m

∗−→ m′ agree on
all place invariants, i.e. I · m = I · m′.
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Batch Workflow Nets. Workflow nets are used to model the processing of
tasks in workflow processes. The initial and final nodes indicate respectively the
initial and final states of cases flowing through the process.

Definition 1. A Petri net N is a Workflow net (WF-net) iff:

1. N has two special places: i and f . The initial place i is a source place, i.e.
•i = ∅, and the final place f is a sink place, i.e. f• = ∅.

2. For any node n ∈ (P ∪ T ) there exists a path from i to n and a path from n
to f (path property of WF-nets.)

In [10], we introduced two structural correctness criteria for WF-nets based on
siphons and traps:

non-redundancy. Every place can be marked and every transition can fire,
provided there are enough tokens in the initial place.

non-persistency. All places can become empty again.

As proven in [10], non-redundancy and non-persistency are behavioral prop-
erties which imply restrictions on the structure of the net: all proper siphons of
the net should contain i and all proper traps should contain f .

Following [10], we define a class of nets called batch workflow nets (BWF-nets).
Actually, BWF-nets are WF-nets without redundant and persistent places, i.e.
workflow nets that satisfy minimal correctness requirements.

Definition 2. A Batch Workflow net (BWF-net) N is a Petri net having the
following properties:

1. N has a single source place i and a single sink place f .
2. Every transition of N has at least one input and one output place.
3. Every proper siphon of N contains i.
4. Every proper trap of N contains f .

Workflow nets were originally used to model the execution of one case. In [10], we
defined a generalized notion of soundness for modeling the execution of batches
of cases in WF-nets.

Definition 3. A WF-net N is called k-sound for some k ∈ N iff

R(k · ī) ⊆ S(k · f̄).

A WF-net N is called generalized sound iff

∀k ∈ N : R(k · ī) ⊆ S(k · f̄).

For the sake of brevity, we omit the word “generalized” in the rest of the paper. In
[10], it has been shown that a WF-net N is sound iff a certain derived BWF-net
N ′ is sound. The derivation is straightforward and only uses structural analysis
of the net.

We assume that the reader is familiar with the basics of convexity theory (see
e.g. [16]). A convex polyhedral cone H over Q

m can be defined by its finite set
of generators E ⊆ Q

m, i.e. H = {Σe∈Eλe · e | λe ∈ Q
+}. A generator e is called

trivial if e = j̄, for some 1 ≤ j ≤ m.
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3 Decision Procedure of Soundness for BWF-Nets

In this section, we describe our decision procedure for checking generalized
soundness of BWF-nets. Our decision procedure improves the one from [10]
since we check proper termination for a much smaller set of markings. We give
an algorithm for computing this set of markings and enhance the procedure
with a backward reachability algorithm that checks whether these markings are
backward reachable from some final marking. If not, our procedure returns a
counterexample.

We start by briefly discussing the decision procedure from [10]. We first give
some necessary conditions of soundness:

Lemma 4. [10] Let N be a sound BWF-net. Then,

1. I · ī = I · f̄ (i and f agree on the basis place invariants);
2. I · x = 0̄ for x ∈ (Q+)P iff x = 0̄.

The conditions of Lemma 4 can be easily checked by standard algebraic tech-
niques. Further on, we we consider only nets that meet these two conditions.

The set of all markings reachable from some initial marking of N is given
by R =

⋃
k∈N

R(k · ī). Due to the marking equation, R(k · ī) is a subset of
Gk = {k · ī + F · v | v ∈ Z

T } ∩ N
P . Note that the reverse is not true.

Let m ∈ Gk, for some k ∈ N. Then I · m = I · (k · ī). Since condition 2 of
Lemma 4 holds, Gk ∩ G� = ∅ for all k, � ∈ N, with k �= l, and we can define
the i-weight function w(m) for m as k. Now consider the set G =

⋃
k∈N

Gk, i.e.
G = {k · ī + F · v | k ∈ N ∧ v ∈ Z

T } ∩ N
P . We will say that a marking m ∈ G

terminates properly if m
∗−→ w(m) · f̄ .

Lemma 5. [10] Let m1, m2 ∈ G be markings that terminate properly and m =
λ1 · m1 + λ2 · m2 for some λ1, λ2 ∈ N. Then m ∈ G and it terminates properly.

Theorem 6. [10] Let N be a BWF-net. Then N is sound iff for any m ∈ G,
m

∗−→ w(m) · f̄ .

G is an infinite set, but unlike R it has a regular algebraic structure, which allows
to reduce the check of proper termination to a check on a finite set of markings.

The following lemma is proved by using convexity analysis [16], notably the
Farkas-Minkowski-Weyl theorem.

Lemma 7. [10] Let H def= {a · ī + F · v | a ∈ Q
+ ∧ v ∈ Q

T } ∩ (Q+)P . Then there
exist a finite set EG ⊆ G of generators of H, i.e. H = {Σe∈EGλe · e | λe ∈ Q

+}.

The soundness check can now be reduced to the check of proper termination for
a finite set of markings:

Theorem 8. [10] Let N be a BWF-net such that the conditions of Lemma 4
hold and let Γ

def= {
∑

e∈EG
αe · e | 0 ≤ αe ≤ 1 ∧ e ∈ EG} ∩ G, where EG ⊆ G

is a finite set of generators. Then N is sound iff all markings in Γ terminate
properly.
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Fig. 1. Example of a BWF-net

In fact, Γ represents the set of integer points of the bounded convex polyhedral
cone (also called polytope) having the set EG as generators.

The decision procedure from [10] comprises the following steps:

1. Find an invariant matrix I and check whether I · ī = I · f̄ and whether
I · x = 0̄ has only the trivial solution on N

P ;
2. Find a set EG ⊂ G of generators of H;
3. Compute the set of markings Γ ;
4. Check for all markings m ∈ Γ that m

∗−→ w(m) · f̄ .

Example 9. We illustrate the main steps of the algorithm on the BWF-net in
Figure 1. First we compute I = (4, 1, 1, 4). The first two conditions are satisfied:
(4, 1, 1, 4) · ī = (4, 1, 1, 4) · f̄ and (4, 1, 1, 4) · x = 0̄ implies x = 0̄. Further we
compute H = {a·̄i+F ·v|a ∈ Q

+, v ∈ Q
T }∩(Q+)P = (A+B)∩C, where A, B and

C are polyhedra having the generators {ī}, {±(3·ā+b̄− ī),±(ā+b̄), ±(̄i−ā−3·b̄)}
and {ī, f̄ , ā, b̄}, respectively. Next we compute the generators of the polytope:
EG = {ī, f̄ , 8 · ā, 8 · b̄}. The markings of Γ have the following form:

Γ = {m′|(m′ =
∑

m∈EG∪{3·ā+b̄,ā+3·b̄};αm∈N

αm · m) ∧ (0̄ ≤ m′ ≤
∑

e∈EG

e)}

The size of Γ is very large compared to the size of the net: |Γ | = 44. Furthermore
in order to check whether all markings of Γ terminate properly, we need to build
the backward reachability sets S(k · ī) for 0 ≤ k ≤ maxm∈Γ w(m) = 6 and check
whether they include all markings of Γ . We observe that 8 · b̄ /∈ S(2 · f̄) and
therefore the net is not sound.

Steps 1 − 2 are not computationally costly. The set of markings Γ turns out to
be very large in practice, and Step 3 and 4 are thus very expensive for real-life
examples. We shall reduce the check of proper terminations of markings from Γ
to a check of a smaller set of markings by replacing the last two steps with the
following steps:

3’. Compute the set Υ of minimal markings of G+ def=
⋃

k∈N+ G(k · ī), i.e.

Υ
def= {m | ∀m′ ∈ G+ : m′ ≤ m ⇒ m′ = m}.
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4’. Check that for all markings m ∈ Υ , m
∗−→ w(m)·f̄ . In case this does not hold,

give a counterexample, i.e. a trace σ such that w(m′) · ī
σ−→ m′ � ∗−→ w(m′) · f̄ ,

for some m′.

To show that Υ can be used instead of Γ , we first prove an auxiliary lemma.

Lemma 10. Let N be a BWF-net, m1 ∈ Gk1 , m2 ∈ Gk2 , for some k1, k2 ∈ N,
and m2 > m1. Then k2 > k1.

Proof. Since m2 ∈ Gk2 and m1 ∈ Gk1 , m1 = k1 · ī + F · v and m2 = k2 · ī + F · v2
for some v1 and v2. Hence, I · m1 = I · k1 · ī and I · m2 = I · k2 · ī and by
linearity I(m2 − m1 + (k1 − k2)̄i) = 0̄. Since condition 2 of Lemma 4 holds for
N , m2 − m1 + (k1 − k2) · ī /∈ (Q+)P \ {0̄}. Since m2 − m1 and ī are in (Q+)P ,
we deduce that k1 − k2 < 0. ��

The set of markings Υ has the following properties:

– Let EG ⊆ G be a set of minimal generators of H in G (i.e. for any e ∈ EG
and e′ ∈ G, e′ ≤ e implies e = e′). Then EG ⊆ Υ . Note that in particular ī,
f̄ ∈ EG ⊆ Υ .

– G1 ⊆ Υ . Suppose that there is an m ∈ G1 such that m /∈ Υ . Then there is
m′ ∈ Υ such that m′ < m. By Lemma 10, w(m′) < w(m) = 1, contradiction.

We now formulate our theorem.

Theorem 11. Let N be a BWF-net such that I · ī = I · f̄ , I · x = 0̄ has only
the trivial solution in (Q+)P , G+ def= {k · ī + F · v | k ∈ N

+ ∧ v ∈ Z
T } ∩ N

P ,
H = {a · ī + F · v | a ∈ Q

+, v ∈ Q
T } ∩ (Q+)P , EG ⊆ G+ be a set of minimal

generators of H in G+, Γ = {
∑

e∈EG
αe · e | 0 ≤ αe ≤ 1 ∧ e ∈ EG} ∩ G, and Υ be

the set of minimal markings of G+. Then:

1. N is sound iff for any marking m ∈ Υ , m
∗−→ w(m) · f̄ .

2. Each marking m ∈ Υ satisfies m < M , where M(p) = maxe∈EG e(p), for
every p ∈ P .

3. Υ ⊂ Γ .

Proof. (1) (⇒) Since N is sound, all markings of G terminate properly (by
Theorem 6). Since Υ ⊆ G, all markings of Υ terminate properly.
(⇐) Let m

∗−→ w(m) · f̄ for every marking m from Υ . We will prove that
m

∗−→ w(m) · f̄ for every marking m from Γ , which implies then that N is sound
(by Theorem 8).

Let m ∈ Γ . We have two cases: m ∈ Υ and m ∈ Γ \ Υ . If m ∈ Υ , then
m

∗−→ w(m) · f̄ . If m ∈ (Γ \ Υ ), m > Δ0 for some Δ0 ∈ Υ and by Lemma 10,
w(m) > w(Δ0), which also implies that (m − Δ0) ∈ G+.

Set m0 = m − Δ0. In case m0 ∈ Υ , m0 ∗−→ w(m0) · f̄ . By Lemma 5, since
Δ0 ∗−→ w(Δ0) · f̄ , m

∗−→ w(m) · f̄ . In case m0 /∈ Υ , m0 can be further written
as m0 = Δ1 + m1, where Δ1 ∈ Υ and m1 ∈ G+.
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We continue until we reach an ml−1 = ml + Δl with Δl ∈ Υ and ml ∈ Υ .
Note that the process is finite since 0 < mi+1 < mi, for 0 ≤ i ≤ l. Therefore
m =

∑l
i=0 Δi + ml, where ml ∈ Υ and Δi ∈ Υ for all i = 0 . . . l. Since the

markings of Υ terminate properly, we can apply Lemma 5 to
∑l

i=0 Δl + m0. As
a result, m

∗−→ w(m) · f̄ .
(2) Suppose that there is a marking m ∈ Υ such that m ≥ M . Since M ≥ e for
every generator e ∈ EG , we have ∀e ∈ EG : m ≥ e. That means that m and e are
comparable, which contradicts the hypothesis.
(3) Υ ⊆ Γ follows trivially from (2) and the definition of Γ . Furthermore, M̄ =∑

e∈EG
e ∈ Γ . However M̄ > M and from (2), we have that M̄ /∈ Υ , hence

Υ ⊂ Γ . ��

Now we can describe the implementation the steps 2, 3′, 4′.

Computing the generators of the convex polyhedral cone H. H is given
as the intersection of two polyhedra: A with the set of generators {ī} ∪ {±F (t) |
t ∈ T } (column vectors of the matrices F and −F ) and B with the set of
generators {p̄ | p ∈ P} (trivial generators). Let E be a (minimal) set of generators
of the convex polyhedral cone H = {a · ī + F · v | a ∈ Q

+, v ∈ Q
T } ∩ (Q+)P . All

generators of H can be represented as a · ī + F · v, where a ∈ Q and v ∈ Q
T can

be found by solving linear equations. In order to find the set of generators that
are in G (EG), the generators of H need to be rescaled. The rescaling factor of
each generator is the lcm of the denominators of a and vt, for all t ∈ T divided
by the gcd of the numerators of them. ī and f̄ are generators of H with rescaling
factor 1.

Computing Υ . The next step is to find Υ — the set of minimal markings of
G. Note that the markings of Υ are smaller than the marking M whose compo-
nents are the maxima of the respective components of the rescaled generators
(statement 2 of Theorem 11).

We compute Υ by an optimized enumeration of all vectors m from N
P which

are smaller than M and checking whether m = k · ī + F · v has a solution in
N

+, i.e. whether m ∈ G. The optimization is due to avoiding the consideration
of markings which are greater than some markings already added to Υ .

Checking proper termination for markings of Υ . We need to check that
m

∗−→ w(m) · f̄ for all m ∈ Υ . Since condition 2 of Lemma 4 holds, we con-
clude that S(k · f̄) is a finite set for any k. Therefore we employ a backward
reachability algorithm to check proper termination of markings in Υ . Let J be
the (finite) set of weights of markings from Υ . The backward reachability algo-
rithm constructs for each i-weight j ∈ J , starting from weight 1, the backward
reachability set Bj . We start from the marking j · f̄ and continue by adding the
markings {m − Ft | m ∈ Bj ∧ m − F+

t ≥ 0̄ ∧ t ∈ T }, where Ft is column of F
corresponding to transition t, until Bj contains all markings from Υj or we reach
the fixpoint S(j · f̄). In the first case all markings of Υj terminate properly; as a
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Algorithm 1. Backward reachability check
Input: N = (P, T, F ), Υ , J = {w(m) | m ∈ Υ}
Output: “the BWF-net is sound” or “the BWF-net is not sound, m, k” where

m ∈ Gk and m � ∗−→ k · f̄ .

for j ∈ J do
Bj = {j · f̄};
repeat

Bj = Bj ∪ {m − Ft | ∀p ∈ P : m(p) ≥ F (p, t) ∧ m ∈ Bj ∧ t ∈ T}
until a fixpoint is reached or Υj ⊆ Bj ;
if Υj �⊆ Bj then

pick m ∈ Υj \ Bj ;
return (“the BWF-net is not sound”, m, j)

end
end
return (“the BWF-net is sound”)

result the BWF-net is sound. In the latter case the markings in Υj do not termi-
nate properly; therefore the net is not sound. Note that the backward reachability
sets Bj are distinct (since Gk ∩ G� = ∅ for any k �= �).

This check results either in verdict “sound” (if all markings from Υ terminate
properly), or “unsound” together with some marking that does not terminate
properly in the contrary case.

Finding a counterexample. Let m be a marking from Υj returned by the
check above as non-properly terminating. Like all markings from Υj , m does
not necessarily belong to R(j · ī). To give a counterexample, we search through
R(k · i) (k ≥ w(m)) to find a marking m′ reachable from w(m′) · ī and not
terminating properly and show a trace σ such that w(m′) · ī σ−→ m′.

Example 9 continued. We compute Υ for the example from Figure 1:

Υ = {ī, f̄ , 8 · a, 8 · b, a + 3 · b, 3 · a + b}

Note that |Υ | = 6, while |Γ | = 44. Moreover, the maximal i-weight of the
markings of Υ is a lot smaller than that of the markings of Γ : maxm∈Υ w(m) =
2 < maxm∈Γ w(m) = 6. Hence, we need to compute only S(f̄) and S(2 · f̄)
instead of S(k · f̄) for k = 1 . . . 6. We find a counterexample 8 · b̄ ∈ R(2 · ī):
2 · ī

tt−→ 6 · a + 2 · b
uuu−→ 8 · b and conclude that the net is not sound. Figure 1

shows the dead marking.

Example 12. Figure 2 shows a Petri net which is 1-sound, but not 2-sound. In this
case Υ = Υ1 = {ī, f̄ , a, b, c} = EG . Using the backward reachability algorithm, we
find that the net is not sound and b ∈ Υ1 such that b � ∗−→ f̄ . However, b /∈ R(̄i).
We find 2 · b + f̄ > b such that 2 · ī

tvy−→ 2 · b + f̄ � ∗−→ 2 · f̄ .
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Fig. 2. A net for which Υ = Υ1 �⊆ R(̄i)

4 Practical Application of the Decision Procedure

In this section, we we give some details on the implementation of the proce-
dure and experimental results and discuss how to check soundness for large nets
compositionally and by using reduction techniques.

Implementation and experimental results. The decision procedure de-
scribed in Section 3 has been implemented in a prototype tool. The tool uses
the Yasper editor [14] for input of batch workflow nets and gives as output the
conclusion on soundness and a counterexample in case the net is not sound. The
prototype is written in C++ and uses the Parma Polyhedra Library [3,4] for the
computation of the minimal set of generators of the convex polyhedral cone H.

The complexity of the procedure is dominated by the complexity of the reach-
ability problem (which is still not known, all known algorithms are non-primitive
recursive); however, for BWF-nets modelling real-life business processes the per-
formance turned out to be acceptable. We have run our prototype on a series
of examples. The nets were first reduced with the standard reduction rules from
[12], which preserve soundness. Table 1 shows the experimental results compar-
ing the size of Γ with the size of Υ . In most of the experiments Υ turned out
to be equal to the set of rescaled generators. Our experiments showed that our
tool can handle models of business processes of realistic size in reasonable time; a
typical case: for a (reduced) BWF-net with |P | = 18 and |T | = 22, our algorithm
checks soundness within 8 seconds.

Using reduction rules to verify soundness. We can apply our procedure
in combination with reduction techniques that preserve soundness in order to
reduce the size of the net for which we are checking soundness.

We start with introducing the notion of k-closure of a BWF-net, which is the
strongly connected net obtained by adding a transition whose only input place
is the final place, the only output place is the initial place, and the weights of
the arcs equal k.
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Table 1. Experimental results

Net Soundness |P | |T | |Γ |/|Υ | maxm∈Γ w(m) maxm∈Υ w(m) |Υ | Time(ms)
1 sound 23 27 19 75 1 75 (= |EG |) 19909
2 sound 18 22 11 70 1 70 (= |EG |) 8005
3 sound 12 12 46 14 1 14 (= |EG |) 131
4 sound 9 10 57 9 1 9 (= |EG |) 16
5 sound 9 9 18 10 1 10 (= |EG |) 26
6 sound 7 8 18 8 2 7 (= |EG |) 9
7 sound 9 6 8 11 1 11 (= |EG |) 48
8 sound 6 6 6 6 1 6 (= |EG |) 9
9 sound 7 5 5 6 1 6 (= |EG |) 5
10 not 2-sound 5 6 6 5 1 5 (= |EG |) 5
11 sound 5 5 8 5 1 5 7
12 not 2-sound 4 3 7 6 2 6 8

Definition 13. The k-closure of a BWF-net N = (P, T, F+, F−) is a net (P, T∪
{t̄}, F̄+, F̄−), where F̄−(i, t̄) = F̄+(f, t̄) = k, F̄+(i, t̄) = F̄−(f, t̄) = 0, F̄+(p, t) =
F+(p, t) and F̄−(p, t) = F−(p, t) for all (p, t) ∈ P × T .

Lemma 14. The k-closure of a BWF-net N is bounded and t̄-live iff N is k-
sound.

Proof. (⇒) Since the closure of N is t̄-live, for all m ∈ R(k · ī), there exists

an m′ such that m
∗−→ m′ t̄−→ m′′. Boundedness of N implies m′ = k · f̄ and

m′′ = k · ī. Thus, N is sound.
(⇐) Suppose the closure of N is unbounded. Then there exists m ∈ R(k · ī)

such that m
∗−→ m′ and m < m′. Since N is k-sound, m

∗−→ k · f̄ and m′ ∗−→
k · f̄ + m − m′, which contradicts soundness of N . Hence N is bounded. By
k-soundness of N , for all m ∈ R(k · ī), m

∗−→ k · f̄ . Hence, m
∗−→ k · f̄ t̄−→ k · ī.

Thus the closure of N is t̄-live. ��

Thus, natural candidates for preserving soundness are rules that preserve t̄-
liveness and boundedness of the closure of the net in both directions, i.e. the clo-
sure of the BWF-net is t̄-live and bounded iff the reduced closure of the BWF-net
is t̄-live and bounded. Such rules have been intensively investigated; among them,
we recall the place substitution rule and the identical transitions rule of Berth-
elot [5] and the reduction rules Murata [12] (fusion of series places/transitions,
fusion of parallel places/transitions, elimination of self loop transitions).

Let R be a set of transformation rules between two k-closures of a BWF-net
which preserve boundedness and t̄-liveness in both directions (we also assume
that t̄, i and f are not reduced). Note that since the only initially marked place
is i, the transformations from R are applied to unmarked places only.

Soundness is preserved by applying rules from R to the closure a BWF-net:

Theorem 15. A BWF-net is sound iff the BWF-net obtained by applying re-
ductions from the set R is sound.
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Proof. By Lemma 14 soundness of a BWF-net is equivalent to the boundedness
and t̄-liveness of the k-closure of the BWF-net, for all k ∈ N. The latter is
equivalent to the boundedness and t̄-liveness of the k-closure of the reduced
BWF-net, for all k ∈ N. By applying again Lemma 14, this is equivalent to the
soundness of the reduced BWF-net. ��

Compositional verification of soundness. In practice it is often needed
to verify soundness of large workflow nets that cannot be handled by current
verification tools. Therefore, a more efficient approach is needed to handle these
cases. Applying simple reduction rules that preserve soundness, like the ones
from [12], facilitates the task a lot. The reduced net can then be checked using
a compositional approach:

1. Identify BWF-subnets in the original workflow by using classical graph tech-
niques (e.g. by detecting strongly connected components).

2. Check whether the found BWF-subnets are generalized sound using the pro-
cedure described.

3. Reduce every sound BWF-subnet to one place and repeat the procedure
iteratively, till the soundness of the whole net is determined.

Correctness of the reduction part of Step 3 is justified by Theorem 6 from [9].

5 Conclusion and Future Work

In this paper, we have presented an improved procedure for deciding generalized
soundness of BWF-nets. We showed that the problem reduces to checking proper
termination for a set of minimal markings from the set found in [10], which
significantly reduces the number of markings for which proper termination has
to be checked. Further, we described a backwards reachability algorithm for
checking proper termination for the found set of markings.

As discussed in Section 4, soundness of workflow nets can be checked in a com-
positional way. In addition to that, our soundness check can be used for compo-
sitional verification of Petri net properties. By adapting the proof of Theorem 6
from [9], it is easy to prove that if a Petri net has a subnet which is a generalized
sound net whose transitions are labelled by invisible labels, the net obtained by
reducing this subnet to one place is branching bisimilar to the original net. For
future work, we are interested in the verification of temporal logic properties of
Petri nets (not necessarily WF-nets) with using such a reduction technique.

The idea can also be applied to build sound by construction nets in a hierar-
chical way similarly to Vogler’s refinement by modules [18,19].
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Abstract. A specification of a class of specializers for a tiny functional
language in form of natural semantics inference rules is presented. The
specification defines a relation between source and residual programs
with respect to an initial configuration (a set of input data). The specifi-
cation expresses the idea of what is to be a specialized program, avoiding
where possible the details of how a specializer builds it. In particular, it
abstracts from the difference between on-line and off-line specialization.

The class of specializers specified here is limited to monogenetic spe-
cializers, which includes specializers based upon partial evaluation as
well as restricted supercompilation. The specification captures such su-
percompilation notions as configuration, driving, generalization of a con-
figuration, and a simple case of splitting a configuration.

The proposed specification is an intensional definition of equivalence
between source and residual programs. It provides a shorter cut for prov-
ing the correctness and other properties of specializers than usual reduc-
tion to the extensional equivalence of programs does.

Keywords: specialization, partial evaluation, supercompilation, driving,
specification, natural semantics, correctness, program equivalence.

1 Introduction

Program specialization is an equivalence transformation. A specializer spec maps
a source program p to a residual program q, which is equivalent to p on a given
subset D of the domain of the program p: q = spec(p, D). The equivalence of
the source and residual programs is understood extensionally, that is, noncon-
structively: p ≈D q if for all d ∈ D : p(d) = q(d) or both p(d) and q(d) do not
terminate. In this paper we define a constructive, intensional relation of spe-
cialization, that is, a relation of equivalence of source and residual programs,
which many specialization methods satisfy, including partial evaluation [4], and
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k ∈ Atom atomic data
x ∈ Data ground data
y ∈ CData configuration data
a ∈ Arg source arguments
b ∈ Prim source primitives
s ∈ Term source program terms
r ∈ Term residual program terms
v ∈ Var source program variables
u ∈ Var residual program variables

and configuration variables
f ∈ FName function names
p ∈ Prog source programs
q ∈ Prog residual programs
c ∈ Contr contractions

b, s ∈ MConf (monogenetic) configurations

k ::= True | False | Nil | . . .
x ::= k | Cons x x
y ::= k | Cons y y | u
a ::= y | Cons a a | v
b ::= a | fst v | snd v

| cons? v | equ? v a
s ::= b

| if v then s1 else s2

| let v = s1 in s2

| call f {v �→ a, . . .}

Prog = FName → Term
Args = Var → Arg
Contr = Var → CData
MConf = Term

Fig. 1. Object language syntax and semantic domains

restricted (monogenetic) supercompilation [11,12]. The relation is defined by in-
ference rules in style of natural semantics [5], and serves as a specification of a
class of specializers.

For brevity’s sake, in this paper we limit ourselves to monogenetic specializa-
tion [7] where any program point in the residual program is produced from a
single program point of the source program. Generalization of the specification
to the polygenetic case where a residual program point is produced from one or
several source program points, is rather straightforward and will be presented
elsewhere.

The specification is built upon the ideas of supercompilation. The inference
rules model at an abstract level the operational behavior of supercompilers.

2 Basic Notions

2.1 Object Language and Semantic Domains

Figure 1 contains the definition of the abstract syntax of the object language
together with semantic domains for interpretation and specialization. It is a
tiny first-order functional language with call-by-value semantics. It has conven-
tional control constructs if-then-else, let-in, call, adjusted a bit to make the
inference rules simpler. Figure 2 shows an example of a program and an initial
configuration for specialization.

Data. A data domain Data is a constructor-based domain recursively defined
from a set of atoms Atom by applying a binary constructor Cons. The set Atom
contains at least True, False, and Nil.

Any constructor-based domain has the nice property that it can be easily
extended to meta-data without the need for encoding. In particular, a constant
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rev v1 = loop v1 []
loop [] v2 = v2

loop (v4 : v5) v2 = loop v5 (v4 : v2)

— a program in Haskell

p = { rev �→ call loop {v1 �→ v1, v2 �→ Nil},
loop �→ let v3 = cons? v1 in

if v3

then let v4 = fst v1 in
let v5 = snd v1 in
call loop {v1 �→ v5, v2 �→ Cons v4 v2}

else v2

— the same program in
the object language

}

s0 = call rev {v1 �→ Cons A (Cons u1 (Cons B u2))} — an initial configuration

Fig. 2. An example of a program p in the object language and an initial configuration s0

in program code coincides with the value it represents. That is, Data ⊂ Term,
where Term is a domain of program terms.

Configuration data. The second extension of Data originates from the need to
constructively represent sets of data values, sets of program states, in specializers.
The basic method to represent sets is to embed free variables into data. For a
constructor-based domain, position of any constructor argument may be replaced
with a variable, u ∈ Var, which is referred to as a configuration variable. That
is, Data ⊂ CData, where CData is the domain of configuration values.

A characteristic feature of supercompilation, which is preserved in our speci-
fication, is that configuration variables become residual program variables.

Primitives. Data values are analyzed by primitive predicates equ? v a (are
two values equal?) and cons? v (is the value of a variable v a term of form
Cons y1 y2?), which return atoms True or False, and selectors fst v and snd v,
which require the value of v to be a Cons term and return its first and second
argument respectively.

For the sake of specification simplicity, the arguments of primitives are syn-
tactically restricted to variables v or arguments a, which do not contain terms of
general form. We also impose two restrictions on the usage of selectors fst v and
snd v: they must occur, firstly, only in a let binding, e.g., let v1 = fst v2 in s,
and, secondly, only after a check of form cons? v on the positive branch to avoid
dealing with exceptions in the specification.

Control. Control terms if-then-else and let-in are the regular conditional term
and let binding respectively; only notice the restriction of the conditional to
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variable v for simplicity’s sake. Additionally, we require the variable v to be
bound to a conditional primitive equ? or cons? by an enclosing let term.

A function call, which usually looks like f(a1, . . . , an), is coded in our lan-
guage as call f {v1 �→ a1, . . . , vn �→ an}, where v1, . . . vn are the local variable
names occurring in the term that the name f is bound to in a program.

A program is a finite mapping of function names to program terms.

Notation. Vars(t) denotes the set of variables occurring in term t. Dom(m) and
Rng(m) denote the domain and range of mapping m.

2.2 Configuration

While an interpreter runs a program on a particular data, a specializer runs a
source program on a set of data. A representation of a program state in interpre-
tation and that of a set of states in specialization is referred to as a configuration.
We follow the general rule to construct the notion of the specializer configuration
from that of an interpreter configuration that reads as follows: add configuration
variables to the data domain, and allow the variables to occur anywhere where
an ordinary ground value can occur. A configuration represents the set that is
obtained by replacing all configuration variables with all possible values.

For the purpose of the definition of monogenetic specialization, a configuration
is a source program term, in which program variables are replaced with their
values.1

2.3 Substitution

To avoid the ambiguity of traditional postfix notation for substitution tθ when
used in inference rules, we lift up the substitution symbol θ and use a kind of
power notation tθ.

Thus, tθ denotes the replacement of all occurrences of variables v ∈ Dom(θ) in
t with their values from a binding θ. Notation tηθ means sequential application
of substitutions η and θ to t in that order. When the substitution argument is

unclear, it is over-lined, e.g., a b c
θ
d.

The bindings listed in Fig. 1 are used as substitutions as follows:

– fp gets the term bound to a function name f in a program p;
– sa = fpa builds a configuration from a program term s = fa and the argu-

ment binding a of a configuration call f a;
– sc contracts a configuration s by replacing configuration variable u with the

configuration value y bound to u by a contraction c = {u �→ y}.
1 An alternative is to keep program terms untouched and to represent the configura-

tion as a pair consisting of a program term and an environment that binds program
variables to their values. Although this representation is more common in implemen-
tations of interpreters and specializers, we prefer to substitute the environment into
the term for conciseness of inference rules.
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2.4 Contraction

After evaluation of a conditional, the current configuration divides into two sub-
configurations, the initial configurations of the positive and negative branches.
In our specification the subconfigurations represent the subsets precisely, that
is, driving is perfect [2].

There are two Boolean primitives, equ? v a and cons? v, in the object lan-
guage. After substitution of configuration values into the arguments of the primi-
tives, they ultimately reduce (by rules in Fig. 5) to the following checks on config-
uration variables that produce branching in residual code: equ? u k, equ? u u′,
and cons? u, where k is an atom, u and u′ configuration variables.

For each of the primitives, the set of values of u that goes to the positive
branch can be represented by a respective substitution {u �→ k}, {u �→ u′}, and
{u �→ Cons u1 u2}, where u1 and u2 are new configuration variables. Such a
substitution is referred to as a contraction. Being applied to a configuration, it
produces a configuration representing a subset of the original one.

For uniformity’s sake, we represent “negative” information by substitutions
as well. To achieve this, we assume the representation of a configuration variable
contains a negative set : a set of “negative entities” the variable must be unequal
to. The negative entities are atoms, configuration variables, and a word Cons
representing inequality to all terms of form Cons y1 y2.

We denote the operation to add an entity n to the negative set of a configu-
ration variable u by u−n. Thus, the following substitutions are negative contrac-
tions : {u �→ u−k}, {u �→ u−u′}, and {u �→ u−Cons}.

3 Specification of Semantics and Specialization

Figure 3 sums up the judgments used in the specification. Figures 4–6 contain
the inference rules of the specification. The rules marked by an asterisk define
the interpretation semantics of the object language. The unmarked rules extend
it to specialization.

3.1 Interpretation of Primitives

A judgment of form b → y asserts that interpretation of a primitive configura-
tion b (i.e., a source program primitive, in which program variables have been
replaced with their values) produces a value y.

The interpretation rules also define transient driving that is the basic case
of driving where configuration variables do not prevent a specializer from un-
ambiguously performing a step. In this case, b and y may contain configuration
variables.

The unmarked rules in Fig. 4 and 5 that infer judgments of form b → y, define
the cases of transient driving that are not covered by the interpretation rules.
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b → y Interpretation (or transient driving) of a primitive b pro-
duces a (configuration) value y.

b ≺ T (c1, c2) Driving with branching: Driving of a primitive b pro-
duces a branching represented by a residual conditional
term T ( , ) with two free positions for positive and neg-
ative branches. In the right-hand side T (c1, c2) these po-
sitions are occupied by contractions c1 and c2. The con-
tractions being substituted to the configuration before
the branching produce the initial configurations of the
branches.

m � p : s ⇒ q : r Monogenetic specialization: A residual program q with
an initial term r is a specialization of a source program p
with an initial term s with respect to a mapping m of
residual function names to configurations.

{} � p : s ⇒ {} : r Interpretation: In the case where the residual program is
empty and hence m = {} and q = {} the previous judge-
ment denotes interpretation.

Fig. 3. Judgments

I-VALUE∗ y → y

I-FST∗ fst (Cons y1 y2) → y1

I-SND∗ snd (Cons y1 y2) → y2

I-CONS-T∗ cons? (Cons y1 y2) → True

I-CONS-F∗ cons? k → False

I-EQ-T∗ equ? y y → True

I-EQ-F∗ equ? x1 x2 → False if x1 �= x2

D-EQ-CK equ? (Cons y1 y2) k → False

D-EQ-CC
equ? y1i y2i → False

equ? (Cons y11 y12) (Cons y21 y22) → False
i ∈ {1, 2}

Fig. 4. Interpretation and transient driving of primitives
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D-CONS-F cons? u → False u = u−Cons

D-CONS cons? u ≺ let u0 = cons? u in
if u0

then let u1 = fst u in
let u2 = snd u in
{u �→ Cons u1 u2}

else {u �→ u−Cons}

u �= u−Cons

u0, u1, u2 new

D-EQ-COM
equ? u y → T
equ? y u → T

D-EQ-UKF equ? u k → False u = u−k

D-EQ-UK equ? u k ≺ let u0 = equ? u k in
if u0

then {u �→ k}
else {u �→ u−k}

u �= u−k

u0 new

D-EQ-UUF equ? u1 u2 → False u1 = u−u2
1

D-EQ-UU equ? u1 u2 ≺ let u0 = equ? u1 u2 in
if u0

then {u1 �→ u2}
else {u1 �→ u−u2

1 , u2 �→ u−u1
2 }

u1 �= u−u2
1

u0 new

D-EQ-UCF equ? u (Cons y1 y2) → False
u = u−Cons

or u ∈ Vars(y1)
or u ∈ Vars(y2)

D-EQ-UC
cons? u ≺ T

equ? u (Cons y1 y2) ≺ T

u �= u−Cons

u �∈ Vars(y1)
u �∈ Vars(y2)

Fig. 5. Driving of primitives

3.2 Branching

A judgment of form b ≺ T (c1, c2) means driving of a primitive b produces a
branching in residual code represented by a conditional term T ( , ) with two
free positions for positive and negative branches and two contractions c1 and c2.
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The contractions c1 and c2, being applied as substitutions to the configuration b,
divide it into two subconfigurations, which are initial configurations for positive
and negative branches respectively.

For the sake of notation simplicity, the contractions c1 and c2 are placed in
T ( , ) in the positions where the residual terms for the positive and negative
branches will occur in the final residual code. Notice the abstract syntax in Fig. 1
does not take account of such use case of terms and substitutions, since it does
not concern program code and is used only locally in judgments of the form
b ≺ T (c1, c2). Theoretically, this judgment can be excluded at the expense of
multiple instantiations of rule MS-FORK where it is used.

The following cases of T (c1, c2) are used in the specification:

1. if equ? u k then {u �→ k} else {u �→ u−k}
2. if equ? u1 u2 then {u1 �→ u2} else {u1 �→ u−u2

1 }
3. let u0 = equ? u1 u2 in

if u0
then let u1 = fst u in

let u2 = snd u in
{u �→ Cons u1 u2}

else {u �→ u−Cons}
In each of the cases term T ( , ) meets the following property: the value of

T (x1, x2) is either x1 for the configuration obtained by contraction c1, or x2 for
the configuration obtained by contraction c2. The correctness of rule MS-FORK
relies on this property.

3.3 Specialization

Judgments of form m � p : s ⇒ q : r inferred by rules in Fig. 6 assert that a
residual program q with an initial term r is a specialization of a source program p
with an initial term s provided a mapping m establishes a correct correspondence
between source and residual programs p and q. The semantics of the judgment
implies that for all values of configuration variables in the configuration s and in
the term r, the evaluation of the source program p starting from the configuration
s and the evaluation of the term r with the residual program q gives the same
result.

Mapping of residual functions to configurations. The initial state of each residual
function f is equivalent to some configuration expressed in terms of the source
program. The mapping m : Dom(q) → MConf keeps this correspondence. It
must be consistent with programs p and q. Only judgments with a consistent
mapping m define correct specialization. The formal definition of the consistency
is as follows.

Definition 1. A mapping m : Dom(q) → MConf of residual function names
to configurations is consistent with source and residual programs p and q if for
every residual function name f ∈ Dom(q) the following judgment is deducible:

m � p : fm ⇒ q : f q.



256 A. Klimov

MS-PRIM∗
b → y

m � p : b ⇒ q : y

MS-FORK

b ≺ T (c1, c2)

m � p : let v = b in s
c1⇒ q : r1

m � p : let v = b in s
c2⇒ q : r2

m � p : let v = b in s ⇒ q : T (r1, r2)

MS-IF-T∗
m � p : s1 ⇒ q : r

m � p : if a then s1 else s2 ⇒ q : r
a = True

MS-IF-F∗
m � p : s2 ⇒ q : r

m � p : if a then s1 else s2 ⇒ q : r
a = False

MS-LET∗

m � p : s1 ⇒ q : y

m � p : s
{v �→y}
2 ⇒ q : r

m � p : let v = s1 in s2 ⇒ q : r

MS-LET-SPLIT

m � p : s1 ⇒ q : r1

m � p : s
{v �→u}
2 ⇒ q : r2

m � p : let v = s1 in s2 ⇒ q : let u = r1 in r2

r1 �∈ CData
u new

MS-CALL∗
m � p : fpa ⇒ q : r

m � p : call f a ⇒ q : r
Vars(fp) ⊆ Dom(a)

MS-GEN m � p : fma ⇒ q : call f a

Fig. 6. Monogenetic specialization

The reason for the introduction of an auxiliary mapping m is that the inference
of a specialization judgment is actually a proof by induction of the equivalence
of source and residual programs with respect to initial terms, a mapping m
being an induction hypothesis and the definition of consistency describing the
induction step.
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Semantics. The rules marked by an asterisk define usual natural semantics for
the object language when residual program q is empty, q = {} and m = {}, and
transient driving in general case.

The unmarked rules extend the interpretation semantics to specialization.
Notice the correctness of the specification is to be proved with respect to the
semantics, that is, the full set of rules is to be correct with respect to the part.

Fork. Rules MS-IF-T∗ and MS-IF-F∗ define the interpretation of the if term.
The conditional a is compared to True or False without evaluation due to the
syntactic restriction to arguments consisting of constructors and variables only
(see Fig. 1).

Rule MS-FORK uses the result of driving of a Boolean primitive to build a
branching in residual code explained in Section 3.2 above.

Notice the absence of a rule for the case of the if term where the conditional
a is a configuration variable. It is useless due to the syntactic restriction on the
conditional introduced in Section 2.1.

Let. Rule MS-LET∗ defines the call-by-value interpretation of the let term.
Rule MS-LET-SPLIT expresses a simple case of splitting a configuration: a let

configuration splits into two ones, which are specialized separately, and are then
composed into the residual let term.

Call. Rule MS-CALL∗ defines unfolding of a function call. Notation fpa means
extraction of the body fp of function f from the program p and substitution of
arguments supplied in the argument binding a.

Generalization. Rule MS-GEN defines the notion of generalization of a config-
uration together with folding into a residual call term. Reading the judgment
m � p : fma ⇒ q : call f a from left to right along the algorithm of supercom-
pilation, we say that some configuration s1 = fma is decomposed into a configu-
ration s2 and a substitution a such that s1 = sa

2 . The act of such decomposition
is referred to as generalization. Then the configuration s2 is bound to residual
function f in the mapping m or checked that it is there already, and the term
call f a is residualized.

This rule uses the mapping m as an induction hypothesis.

3.4 Correctness

Since the semantics of the object language is represented by a part of the infer-
ence rules, the correctness of the specification with respect to the semantics is
its internal property that can be expressed as follows.

Definition 2. A value x is ground if it does not contain configuration variables,
x ∈ Data. A contraction c is ground if it maps configuration variables to ground
values, Rng(c) ⊆ Data.

Proposition 1. For all m, p, s, q, r such that

m � p : s ⇒ q : r
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it holds that for all ground contractions c and ground values x the following
judgments are both deducible or both non-deducible:

{} � p : sc ⇒ {} : x,
{} � q : rc ⇒ {} : x.

The last two judgments mean interpretation of a source and residual programs
p and q with values supplied to the initial terms s and r respectively by the
contraction c, produces the same result x in both cases.

4 Conclusion and Related Work

This paper presents a method of specifying specializers by inference rules in style
of natural semantics [5] that define a relation between source and residual pro-
grams, which partial evaluation and supercompilation (restricted to monogenetic
case) obey. The specification captures the essential notions of supercompilation:
configuration, driving, generalization of a configuration, and a simple case of
splitting a configuration, while abstracting from algorithmic problems of when,
what and how to generalize and when to terminate. It provides the basis for the
correctness proofs of supercompilers and an alternative to that of partial evalua-
tors [1,3]. By nature of natural semantics, the specification allows for automated
derivation of specializers that satisfy it.

The first version of this specification was presented at the Dagstuhl Seminar
on Partial Evaluation in February 1996, when only abstract [6] was published.
It continues the work started in [2] and aimed at clarifying and formalizing the
ideas of supercompilation.

In Turchin’s original papers ([11,12] and others), the essential ideas of super-
compilation and technical details of algorithms were not separated enough to
give their short formal definition. Later on, several works have been done to fill
this gap, e.g., [2,8,9,10]. All of them formalize the function of the supercompiler,
while our work is, to our knowledge, the first attempt to define an input-output
relation, which specializers satisfy. The closest related work is [8,9] where the
notion of the graph of configurations is formalized by inference rules that deduce
the arcs of the graph.

Future work includes proving various properties of the specification including
the correctness, and constructing supercompilers that obey the specification and
hence are provably correct.
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Abstract. We investigate the behavior of a Pfaffian dynamical system
with respect to viability constraints and invariants. For Pfaffian dynam-
ical systems we construct an algorithm with an elementary (doubly-
exponential) upper complexity bound for checking satisfiability of via-
bility constraints. This algorithm also provides a useful tool for checking
invariance properties of given sets.

1 Introduction

In this paper we study continuous dynamical systems which are called Pfaffian,
and first introduced in [9,10]. These systems are defined by Pfaffian functions,
either implicitly (via triangular systems of ordinary differential equations) or
explicitly (by means of equations and inequalities involving Pfaffian functions).
Such functions naturally arise in applications as real analytic solutions of tri-
angular first order partial differential equations with polynomial coefficients,
and include polynomials, algebraic functions, exponentials, and trigonometric
functions in appropriate domains [8]. Pfaffian functions form the largest natural
class of real analytic functions which have a uniform description and an explicit
characterisation of complexity of their representations in terms of formats.

One of the important problems in the theory of dynamical systems is un-
derstanding of the behavior of a dynamical system with respect to viable and
invariant sets. In this paper we consider this problem for Pfaffian dynamical sys-
tems. Viability constraints and invariants naturally arise when some evolutions of
a dynamical system do not satisfy the imposed requirements. These constraints
include state constraints in control theory and verification of safety-critical sys-
tems, power constraints in game theory, ecological constraint in genetics, etc [1].
Therefore, the goal is to select evolutions which are viable in the sense that they
satisfy these constraints at each point in time.
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In mathematical settings this problem is formalised in the following way. We
consider a continuous dynamical system γ : G1 × T → G2, where G1 ⊆ IRk1 is
a set of control parameters, T is an interval of time and G2 ⊆ IRk2 is a state
space. Let U be a set of control parameters. Viability constraints are described
by subsets of the state space. A subset V is viable under the dynamical system
γ and the control U if there exits at least one evolution of the system which is
viable in the sense that ∀t ∈ Tγx(t) ∈ V, where x ∈ U. We say a subset U ⊆ G1
satisfies the constraint V if V is viable under U and the dynamical system γ.
In this paper we assume that dynamical systems and sets we are interested in
are semi-Pfaffian. Our goal is to characterise the subsets of control parameter
space which satisfy a given viability constraint. In order to achieve our goal
we use encoding trajectories of a Pfaffian dynamical system by finite words
[4,9] and cylindrical cell decomposition for semi-Pfaffian sets [13,5]. Based on
this technique we construct an algorithm for checking satisfiability of viability
constrains with an elementary exponential upper bound.

The outline of the paper is as follows. Section 1 presents a brief overview
of Pfaffian functions, upper bounds on topological complexities of semi- and
sub-Pfaffian sets, and algorithms for computing their closures and cylindrical
cell decompositions. In Section 2 we recall the notion of Pfaffian dynamical
system, viable and invariant sets. We also explain how to associate a word to
a trajectory. Finally, in Section 3 we propose an algorithm (with the usual for
Pfaffian functions theory oracle) for checking satisfiability of viability constrains.
The complexity of the algorithm is doubly exponential in the format of an input
system.

2 Basic Definitions and Notions

2.1 Pfaffian Functions and Related Sets

In this section we overview the theory of Pfaffian functions and sets definable
with Pfaffian functions. The detailed exposition can be found in the survey [5].

Definition 1. A Pfaffian chain of the order r ≥ 0 and degree α ≥ 1 in an open
domain G ⊂ IRn is a sequence of real analytic functions f1, . . . , fr in G satisfying
differential equations

∂fj

∂xi
= gij(x, f1(x), . . . , fj(x)) (1)

for 1 ≤ j ≤ r, 1 ≤ i ≤ n. Here gij(x, y1, . . . , yj) are polynomials in x =
(x1, . . . , xn, y1, . . . , yj) of degrees not exceeding α.

A function
f(x) = P (x, f1(x), . . . , fr(x)),

where P (x, y1, . . . , yr) is a polynomial of a degree not exceeding β ≥ 1, the se-
quence f1, . . . , fr is a Pfaffian chain of order r and degree α, is called a Pfaffian
function of order r and degree (α, β).
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In order to illustrate the definition let us consider several examples of Pfaffian
functions.

(a) Pfaffian functions of order 0 and degree (1, β) are polynomials of degrees
not exceeding β.

(b) The exponential function f(x) = eax is a Pfaffian function of order 1 and
degree (1, 1) in IR, due to the equation df(x) = af(x)dx. More generally, for
i = 1, 2, . . . , r, let Ei(x) := eEi−1(x), E0(x) = ax. Then Er(x) is a Pfaffian
function of order r and degree (r, 1), since dEr(x) = aE1(x) · · · Er(x)dx.

(c) The function f(x) = 1/x is a Pfaffian function of order 1 and degree (2, 1)
in the domain {x ∈ IR| x 	= 0}, due to the equation df(x) = −f2(x)dx.

(d) The logarithmic function f(x) = ln(|x|) is a Pfaffian function of order 2 and
degree (2, 1) in the domain {x ∈ IR|x 	= 0}, due to equations df(x) = g(x)dx
and dg(x) = −g2(x)dx, where g(x) = 1/x.

(e) The polynomial f(x) = xm can be viewed as a Pfaffian function of order 2
and degree (2, 1) in the domain {x ∈ IR| x 	= 0} (but not in IR), due to the
equations df(x) = mf(x)g(x)dx and dg(x) = −g2(x)dx, where g(x) = 1/x.
In some cases a better way to deal with xm is to change the variable x = eu

reducing this case to (b).
(f) The function f(x) = tan(x) is a Pfaffian function of order 1 and degree

(2, 1) in the domain
⋂

k∈Z{x ∈ IR| x 	= π/2 + kπ}, due to the equation
df(x) = (1 + f2(x))dx.

(g) The function cos(x) is a Pfaffian function of order 2 and degree (2, 1) in the
domain

⋂
k∈Z{x ∈ IR| x 	= π + 2kπ}, due to equations cos(x) = 2f(x) − 1,

df(x) = −f(x)g(x)dx, and dg(x) = 1
2 (1 + g2(x))dx, where f(x) = cos2(x/2)

and g(x) = tan(x/2). Also, since cos(x) is a polynomial of degree m of
cos(x/m), the function cos(x) is Pfaffian of order 2 and degree (2, m) in the
domain

⋂
k∈Z{x ∈ IR|x 	= mπ+2kmπ}. The same is true, of course, for any

shift of this domain by a multiple of π. However, cos(x) is not a Pfaffian
function in the whole real line.

As we can see, apart from polynomials, the class of Pfaffian functions includes
real algebraic functions, exponentials, logarithms, trigonometric functions, their
compositions, and other major transcendental functions in appropriate domains
(see [5,6]). Now we introduce classes of sets definable with Pfaffian functions.
In the case of polynomials they reduce to semialgebraic sets whose quantitative
and algorithmic theory is treated in [2].

Definition 2. A set X ⊂ IRn is called semi-Pfaffian in an open domain G ⊂ IRn

if it consists of the points in G satisfying a Boolean combination of some atomic
equations and inequalities f = 0, g > 0, where f, g are Pfaffian functions having
a common Pfaffian chain defined in G. A semi-Pfaffian set X is restricted in G
if its topological closure lies in G.

Definition 3. A set X ⊂ IRn is called sub-Pfaffian in an open domain G ⊂ IRn

if it is the image of a semi-Pfaffian set under a projection into a subspace.
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It is worth noting that according to the Tarski-Seidenberg Theorem, the projec-
tion of a semialgebraic set is again semialgebraic.

In the sequel we will be dealing with the following subclass of sub-Pfaffian sets.

Definition 4. Suppose Ī ⊂ IR is a closed interval. Consider the closed cube
Īm+n in an open domain G ⊂ IRm+n and the projection map π : IRm+n → IRn.
A subset Y ⊂ Īn is called restricted sub-Pfaffian if Y = π(X) for a restricted
semi-Pfaffian set X ⊂ Īm+n.

Note that a restricted sub-Pfaffian set need not be semi-Pfaffian.

Definition 5. Consider a semi-Pfaffian set

X :=
⋃

1≤i≤M

{x ∈ IRn| fi1 = 0, . . . , fili = 0, gi1 > 0, . . . , giji > 0} ⊂ G, (2)

where fis, gis are Pfaffian functions with a common Pfaffian chain of order r and
degree (α, β), defined in an open domain G. Its format is the tuple (r, N, α, β, n),
where N ≥

∑
1≤i≤M (li + ji). For n = m + k and a sub-Pfaffian set Y ⊂ IRk

such that Y = π(X), its format is the format of X.

We will refer to the representation of a semi-Pfaffian set in the form (2) as to
the disjunctive normal form (DNF).

Remark 1. In this paper we are concerned with complexities of computations,
as functions of the format. In the case of Pfaffian dynamical systems these sizes
and complexities also depend on the domain G. So far our definitions imposed
no restrictions on an open set G, thus allowing it to be arbitrarily complex and
to induce this complexity on the corresponding semi- and sub-Pfaffian sets. To
avoid this we will always assume in the context of Pfaffian dynamical systems
that G is “simple”, like IRn, or In for open I ⊆ IR.

Remark 2. In this paper we construct and examine complexities of algorithms
for checking satisfiability of viability constraints. In order to estimate the “effi-
ciency” of a computation we need to specify more precisely a model of compu-
tation. As such we use a real number machine which is an analogy of a classical
Turing machine but allows the exact arithmetic and comparisons on the real
numbers. Since we are interested only in upper complexity bounds for algo-
rithms, there is no need for a formal definition of this model of computation
(it can be found in [3]). In some of our computational problems we will need
to modify the standard real number machine by equipping it with an oracle for
deciding feasibility of any system of Pfaffian equations and inequalities. An or-
acle is a subroutine which can be used by a given algorithm any time the latter
needs to check feasibility. We assume that this procedure always gives a cor-
rect answer (“true” or “false”) though we do not specify how it actually works.
An elementary step of a real number machine is either an arithmetic operation,
or a comparison (branching) operation, or an oracle call. The complexity of a real
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number machine is the number of elementary steps it makes in the worst case
until termination, as a function of the format of the input.

In the special case of semialgebraic sets, the oracle can be replaced by a proper
real number machine, so the algorithm for checking of satisfiability of viability
constraints can be realized as a standard real number machine.

2.2 Cylindrical Cell Decompositions

Now we define cylindrical decompositions of semi- and sub-Pfaffian sets in a
cube Īn, where Ī is a closed interval.

Definition 6. A cylindrical cell in Īn is defined by induction as follows.

1. A cylindrical 0-cell in Īn is an isolated point.
2. A cylindrical 1-cell in Ī is an open interval (a, b) ⊂ Ī.
3. For n ≥ 2 and 0 ≤ k < n a cylindrical (k+1)-cell in Īn is either a graph of a

continuous bounded function f : C → IR, where C is a cylindrical (k+1)-cell
in Īn−1 and k < n − 1, or else a set of the form

{(x1, . . . , xn) ∈ Īn| (x1, . . . , xn−1) ∈ C and

f(x1, . . . , xn−1) < xn < g(x1, . . . , xn−1)},

where C is a cylindrical k-cell in Īn−1, and f, g : C → Ī are continuous
bounded functions such that f(x1, . . . , xn−1) < g(x1, . . . , xn−1) for all points
(x1, . . . , xn−1) ∈ C.

Definition 7. A cylindrical cell decomposition D of a subset A ⊂ Īn with re-
spect to the variables x1, . . . , xn is defined by induction as follows.

1. If n = 1, then D is a finite family of pair-wise disjoint cylindrical cells (i.e.,
isolated points and intervals) whose union is A.

2. If n ≥ 2, then D is a finite family of pair-wise disjoint cylindrical cells in Īn

whose union is A and there is a cylindrical cell decomposition of π(A) such
that π(C) is its cell for each C ∈ D, where π : IRn → IRn−1 is the projection
map onto the coordinate subspace of x1, . . . , xn−1.

Definition 8. Let B ⊂ A ⊂ Īn and D be a cylindrical cell decomposition of
A. Then D is compatible with B if for any C ∈ D we have either C ⊂ B or
C ∩ B = ∅ (i.e., some subset D′ ⊂ D is a cylindrical cell decomposition of B).

Definition 9. For a given finite family f1, . . . , fN of Pfaffian functions in an
open domain G we define its consistent sign assignment as a non-empty semi-
Pfaffian set in G of the kind

{x ∈ G | fi1 = 0, . . . , fiN1
= 0, fiN1+1 > 0 . . . , fiN2

> 0, fiN2+1 < 0, . . . , fiN < 0},

where i1, . . . , iN1, . . . , iN2 , . . . , iN is a permutation of 1, . . . , N .
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Theorem 1. [6,12] Let f1, . . . , fN be a family of Pfaffian functions in an open
domain G ⊂ IRn, G ⊃ Īn having a common Pfaffian chain of order r, and degrees
(α, β). Then there is an algorithm (with the oracle) producing a cylindrical cell
decomposition of Īn which is compatible with each consistent sign assignment of
f1, . . . , fN . Each cell is a sub-Pfaffian set represented as a projection of a semi-
Pfaffian set in DNF. The number of cells, the components of their formats and
the complexity of the algorithm are less than

N (r+n)O(n)
(α + β)(r+n)O(n3)

.

We summarize main properties of Pfaffian functions in the following propositions.

• Pfaffian functions can be considered as generalisation of algebraic functions.
• Pfaffian functions have the uniform description and the explicit characteri-

zation of complexity of their representations.
• The class of Pfaffian functions includes exp, trigonometrical functions defined

in appropriate domains, and more generally solutions of a large class of
differential equations.

• The structure IR = 〈IR, +, ∗, 0, 1, <, {f1, . . . , fN}〉 is o-minimal, i.e. definable
sets have only a finite number of connected components, in the other words,
it has finiteness property.

3 Pfaffian Dynamical Systems

3.1 Pfaffian Dynamics and Related Sets

We now recall definitions concerning Pfaffian dynamical systems.

Definition 10. Let G1 ⊂ IRk1 and G2 ⊂ IRk2 be open domains. A Pfaffian
dynamical system is a map

γ : G1 × (−T, T ) → G2

with a semi-Pfaffian graph, where G1 is a set of control parameters, (−T, T ) is
an interval of time, and G2 is a state space.

For a given x ∈ G1 the set

Γx = {y|∃t ∈ (−T, T ) (γ(x, t) = y)} ⊂ G2

is called the trajectory (or evolution) determined by x, and the graph

Γ̂x = {(t,y)| γ(x, t) = y} ⊂ (−T, T ) × G2

is called the integral curve determined by x.

Definition 11. Let U ⊆ G1. A set V ⊆ G2 is called viable under the dynamical
system γ and the control U if there exists x ∈ U such that for all t ∈ T , γx(t) ∈
V . We say a subset U ⊆ G1 satisfies the constraint V if V is viable under U
and the dynamical system γ.
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Definition 12. Let U ⊆ G1. A set Inv ⊆ G2 is invariant under the dynamical
system γ and the control U if for all x ∈ U and for all t ∈ T , γx(t) ∈ Inv.

In the next sections we investigate the behavior of a Pfaffian dynamical system
with respect to a given semi-Pfaffian viability constraint.

3.2 Encoding Trajectories by Words

We now introduce, following [4,9], a technique of encoding trajectories of dynam-
ical systems by words. Consider a Pfaffian dynamical system γ : G1 ×(−T, T ) →
G2, where G1 ⊂ IRk1 and G2 ⊂ IRk2 are open domains, and a partition P :=
{P1, . . . , Ps} of G2 into s semi-Pfaffian sets Pj . Let the graph of γ and each set
Pj have a format (r, N, α, β, n), where n ≥ k1 +k2 +1, and all Pfaffian functions
involved have a common Pfaffian chain. Fix x ∈ G1. Define the set of points and
open intervals in IR:

Fx := {J | J is a point or an interval in (−T, T) maximal w.r.t. inclusion for the

property ∃i ∈ {1, . . . , s}∀t ∈ J (γ(x, t) ∈ Pi)}.

Let the cardinality |Fx| = r and y1 < · · · < yr be the set of representatives of Fx

such that γ(x, yj) ∈ Pij . Then define the word ω := Pi1 · · · Pir in the alphabet
P . Informally, ω is the list of names of elements of the partition in the order they
are visited by the trajectory Γx. In our setting ω is called the type of trajectory
Γx. Introduce the set of words Ω := {ω| x ∈ G1}.

Theorem 2. [4,9] The set Ω is finite and the number of different trajectory
types of γ with respect to the partition P is less than

(sN)(r+n)O(n)
(α + β)(r+n)O(n3)

(3)

Theorem 3. There is a cell decomposition of the control parameter space G1
such that if x1 and x2 belong to the same cell then Γx1 and Γx2 are labelled by
the same word.

Proof. Consider the family F = {f1, . . . , fk} of Pfaffian functions in the domain
G1 × (−T, T ) × G2 consisting of all functions in variables x, t,y involved in
the defining formulas for the graph of the map γ : (x, t) �→ y, and for all
sets Pj . According to Theorem 1, there is a cylindrical decomposition D of
G1 × (−T, T ) × G2 with respect to the variables x, t,y having the following
properties.

1) D is compatible with each consistent sigh assignment of f1, . . . , fk.
2) There are at most (3) cylindrical cells.
3) Each of these cells is sub-Pfaffian.
4) D induces a cylindrical decomposition on G1 which we denote by E .
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We claim that for any cell C ∈ E and any two points x1,x2 ∈ C the trajectories
Γx1 , Γx2 ∈ G2 are intersecting sets P1, . . . , Ps in the same order (i.e., are encoded
by the same word from Ω). Indeed, let π : G1 × (−T, T ) × G2 → G1 be the
projection on G1. The decomposition D induces cylindrical decompositions D1
and D2 on π−1(x1) and π−1(x2) respectively. In particular, each of the integral
curves Γ̂x1 and Γ̂x2 is decomposed into a sequence of alternating points and open
intervals. Due to basic properties of cylindrical decomposition, there is a natural
bijection ψ : D1 → D2 such that

(i) the restriction of ψ to the set of all cells in Γ̂x1 is a bijection onto the set
of all cells in Γ̂x2 ;

(ii) for each 1 ≤ j ≤ s the restriction of ψ to the set of all cells in (−T, T ) ×
Pj ∩π−1(x1) is a bijection onto the set of all cells in (−T, T )×Pj ∩π−1(x2).

(iii) the bijection ψ preserves the order in which cells appear in the trajectories.

It follows that if a cell B ∈ D1 is a subset of Γ̂x1 ∩((−T, T )×Pj) for some 1 ≤ j ≤
s, then ψ(B) ⊂ Γ̂x2∩((−T, T )×Pj). Moreover, if for cells B1, B2 ∈ D1 there exist
t1, t2 ∈ (−T, T ) such that t1 < t2 and γ(x1, t1) ∈ B1 ∧ γ(x1, t2) ∈ B2 then there
exist t′1, t′2 ∈ (−T, T ) such that t′1 < t′2 and γ(x2, t

′
1) ∈ ψ(B1)∧γ(x2, t

′
2) ∈ ψ(B2).

The claim is proved.
It follows that the cardinality of Ω does not exceed the cardinality of E which

does not exceed the cardinality of D which in turn is at most (3).

4 An Algorithm for Checking Satisfiability of Viability
Constraints

Consider a Pfaffian dynamical system γ : G1 × (−T, T ) → G2 and semi-Pfaffian
sets: a subset of control parameters U ⊆ G1, and a subset of the state space
V ⊆ G2. Let the graph of γ and the sets U , V have a format (r, N, α, β, n), and
all Pfaffian functions involved have a common Pfaffian chain. Let us note that
the set V̄ = G1 \ V is semi-Pfaffian and has the same format.

Theorem 4. There is an algorithm which checks whether the control U satisfies
the viability constraint V . The complexity of this algorithm does not exceed

(2N)(r+n)O(n)
(α + β)(r+n)O(n3)

(4)

Proof. We are going to show the main steps of our algorithm. First the algorithm
produces the set of words Ω corresponding to the Pfaffian dynamical system γ :
G1×(−T, T ) → G2 and the partition P := {P1, P2}, where P1 := V and P2 := V̄ .
Consider the family of Pfaffian functions in the domain G1 × (−T, T ) × G2
consisting of all functions in variables x, t,y involved in the defining formulas
for the graph of the map γ : (x, t) �→ y, and for the set V . According to
Theorem 1, there is a cylindrical decomposition D with respect to (x, t,y) which
is compatible with this family and consists of at most (4) cylindrical cells.



268 M. Korovina and N. Vorobjov

This cell decomposition D induces the cell decomposition E (see the proof of
Theorem 3). Using the oracle, which decides feasibility of any system of Pfaffian
equations and inequalities, the algorithm selects the cells from D which are sub-
sets of {(x, t,y)|y = γ(x, t)}. Denote the set of the selected cells by B. Observe
that for any fixed x′ ∈ G1 the set

⋃
B∈B B ∩{(x, t,y)|x = x′} coincides with the

integral curve Γ̂x′ . Then the algorithm determines the order in which the cells
B ∈ B intersected with {(x, t,y)| x = x′} appear in the trajectory Γx′ .

More precisely, for each pair of distinct cells B1, B2 ∈ B the algorithm decides,
using the oracle, whether

∃x∃t1∃t2∃y1∃y2 ((x, t1,y1) ∈ B1 ∧ (x, t2,y2) ∈ B2 ∧ (t1 < t2)).

For a given C ∈ E , after all pairs of cells are processed we get the ordered set of
cells B1, . . . , Bk in D such that for any 1 ≤ i ≤ k and any x′ ∈ C the sequence
of points and intervals

B1 ∩ {(x, t,y)| x = x′}, . . . , Bk ∩ {(x, t,y)| x = x′}

forms the integral curve Γ̂x′ . By the definition of cylindrical decomposition, for
any pair Bi, Pj either Bi ⊂ (C × (−T, T ) × Pj) or Bi ∩ (C × (−T, T ) × Pj) = ∅.
The algorithm uses the oracle to decide for every pair which of these two cases
takes place. As the result, the sequence B1, . . . , Bk becomes partitioned into
subsequences of the kind

(B1, . . . , Bk1), (Bk1+1, . . . , Bk2), . . . , (Bk�−1+1, . . . , Bk),

where for any i, 0 ≤ i ≤ �− 1, the cells Bki+1, . . . , Bki+1 lie in C × (−T, T )×Pji

for some ji, while Bki ∩C×(−T, T )×Pji = ∅ and Bki+1+1∩C×(−T, T )×Pji = ∅.
Then the word ω := Pj0 · · · Pj�−1 corresponds to the cell C. Considering all cells
in E the algorithm finds Ω.

Then the algorithm collects all cells from E which correspond to the word
ω = P1. Final step is to check intersections of these cells with the given set U . If
at least one of them is nonempty then the set U satisfies the viability constraint
V . This completes the description of the algorithm.

A straightforward analysis shows that the complexity of the algorithm does
not exceed (4), taking into account the bounds from Theorem 1.

Corollary 1. There is an algorithm checking viability and invariant properties
of a set of state space V under the dynamics γ and the control U . The complexity
of this algorithm does not exceed (2N)(r+n)O(n)

(α + β)(r+n)O(n3)
.

5 Conclusion and Future Research

We have proposed an algorithm for checking satisfiability of viability constraints
on the control of a Pfaffian dynamical system. This research has been motivated
by verification problems of safety-critical large scale continuous and hybrid sys-
tems. First step in the suggested procedure is to construct a cylindrical cell
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decomposition which is compatible with each sign assignment of the Pfaffian
functions involved in the definitions of a continuous dynamic and a viability
constraint. In the second step we encode trajectories of the Pfaffian dynamical
system by finite words. By the construction of cylindrical cell decomposition,
the space of parameters is decomposed to cells in such way that each cell cor-
responds to one word. In other words, if x1 and x2 belong to the same cell the
trajectories Γx1 and Γx2 ∈ G2 are encoded by the same word. This induces a
natural marking the cells of parameters by the words. In the final step we check
intersections of a given set of control parameters and the cells of parameters
which marked by the special word. If at least one of them is nonempty then the
given set of control parameters satisfies the viability constraint. This algorithm
is based on the cylindrical cell decomposition technique and, accordingly, has a
double exponential upper complexity bound. It seems feasible to construct an
algorithm with single exponential complexity using the approach employed in
the paper [10].
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Abstract. Text Categorization algorithms have a large number of pa-
rameters that determine their behaviour, whose effect is not easily pre-
dicted objectively or intuitively and may very well depend on the corpus
or on the document representation. Their values are usually taken over
from previously published results, which may lead to less than optimal
accuracy in experimenting on particular corpora.

In this paper we investigate the effect of parameter tuning on the ac-
curacy of two Text Categorization algorithms: the well-known Rocchio
algorithm and the lesser-known Winnow. We show that the optimal pa-
rameter values for a specific corpus are sometimes very different from
those found in literature. We show that the effect of individual parame-
ters is corpus-dependent, and that parameter tuning can greatly improve
the accuracy of both Winnow and Rocchio.

We argue that the dependence of the categorization algorithms on
experimentally established parameter values makes it hard to compare
the outcomes of different experiments and propose the automatic deter-
mination of optimal parameters on the train set as a solution.

Keywords: Text Categorization, automatic classification, Winnow,
Rocchio, parameter tuning.

1 Introduction

Information Retrieval is an interdisciplinary subject with a long history. Re-
cently, it has been much influenced by theory and methods from Machine Learn-
ing (automatic Text Categorization) and Language and Speech technology (Lan-
guage Modelling, Linguistic Techniques). It has a proud history of strict experi-
mental methodology, exemplified by a sequence of TREC and SIGIR conferences,
and a steady progress in its theory.

Text Categorization (for a recent overview see [17]) is a perfect area for ex-
perimentation in Information Retrieval, because the abundance of documents
labeled with categories provides a solution for the otherwise vexing problem of
computing Recall.

An automatic Text Categorization algorithm learns from examples, train doc-
uments tagged with the categories to which they belong. It determines from the
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examples which are characteristic of the categories learned. But these algorithms
are to some extent based on formulae that include empirical constants whose
value depends on the document set but can not easily be predicted objectively
or intuitively, like

– the Term Selection criterion, and the number of terms selected
– the Term Weighting technique (e.g. Boolean, linear, square root, logarithmic,

ltc)
– the document length normalization technique
– some parameters typical for the algorithm used (the number of neighbours

in Knn, the choice of Kernel Function in SVM, . . . ), and
– parameters that determine the kind of classification desired (mono- or multi-,

the Utility Function to use, the thresholding technique) and others.

These parameters influence to a large extent either the accuracy of the classi-
fication algorithm or its speed, or both. When comparing various classification
algorithms on the same task, the differences in performance found may well be
attributable to a large extent to differences in tuning, rather than to inherent
qualities of the algorithms, falsifying the experiment (see also [6]).

In principle, given enough train documents the optimal choice of a technique
or parameter value can be computed from the train set by brute force, but
this is time-consuming and difficult to repeat for every new train set. Therefore
researchers tend to reuse choices and parameter values which have been reported
in literature.

The ideal Text Categorization system should have only parameters whose ef-
fect is intuitively clear and predictable, and as few of them as possible. Otherwise
the user of the system might well feel lost in a high-dimensional parameter space
(like the Nuclear Physicist of the late sixties, trying to manually fit the Optical
Model to his data by twiddling 16 parameters).

In this note we’ll investigate the typical parameters of the Rocchio and Win-
now Text Categorization algorithms and their interaction with Term Selection
and propose a technique to make these algorithms self-tuning.

2 Experimental Setup

In our investigations we made use of the LCS classification engine, which imple-
ments the Winnow and Rocchio algorithms (see the next sections), automatically
learns class thresholds from the train data and has a choice of Term Selection
algorithms [15].

Our experimental approach is as follows: we shall first tune each algorithm on a
variety of corpora, i.e. determine the optimal values of their parameters, without
performing any Term Selection. Then we shall determine the effect of optimal
Term Selection on the same corpora with and without tuning, and interpret the
results.

Our experimental approach is as follows: we shall tune each algorithm on a
variety of corpora, and determine optimal values for their parameters on each
corpus, maximizing the accuracy (measured by the micro-averaged F1 value).
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2.1 The Corpora

We have experimented with many different corpora, exemplifying different doc-
ument representations and classification tasks, in order to make the results more
general. In this publication we shall use three:

– ModApte – The well-known Apté subset of the Reuters 21578 corpus, con-
sisting of 12902 newspaper stories in 135 TOPICS categories, with an average
length of 116 words [1].

– The EPO1A corpus consists of 16000 abstracts of patent applications in
English from the European Patent Office, with an average length of 143
words (see [11,13]). For this corpus, we shall also show results using a bag-
of-phrases representation (EPO1Afr, see [12]) besides the customary bag-of-
words representation (EPO1A kw).

– EPO1F – These are the full-text patent applications corresponding to the
EPO1A abstracts, of about 2000 words each; The total collection has a size
of 4611 M-bytes.

All these corpora are in English, but they differ in other properties, as shown in
table 1, representing different classification tasks.

Table 1. Some quantitative differences between the corpora

Corpus doc size classes nmb docs/class
ModApte corpus short 135 multi widely varying
EPO1A abstracts short 16 mono 1000 documents
EPO1F full-text long 16 mono 1000 documents

The ModApte corpus has been used (in slightly different subsets) in many ex-
periments reported in literature, allowing comparison with other work.

2.2 The Experiments

In each experiment, the corpus used was split into 4 subsets of equal size, chosen
at random, in a four-fold cross-validation (training on one subset while using
the union of the other three as test set). In each run, 25% of the documents
were used as train documents and 75% as test documents. The relatively large
number of test documents was chosen in order to reduce variance (and because
testing is much faster than training). As a Measure of Accuracy we used the
micro-averaged F1 value. The train sets were kept small, since the goal was to
make many comparisons, rather than to achieve the highest possible accuracy. In
testing we made no use of the information that the EPO1A/F corpora are mono-
classified, allowing 0-3 classifications per document, and 0-16 for the ModApte
corpus, so that the results are also applicable to multi-classification. We used the
same term weighting (ltc) and the same document length normalisation (cosine)
in all experiments.
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For the keyword representation, no pre-processing was applied, apart from
de-capitalization and the removal of some special characters. For the phrase
representation, the EPO1A corpus was parsed and translated to Head/Modifier
pairs and unnested as in [12].

In the graphs we shall usually not indicate the variance, because this would
make the graphs illegible, but the amount of variance in the measurement results
is mostly obvious from the irregularity in the graphs.

3 Tuning Rocchio

In origin [16], the Rocchio algorithm was conceived for retrieval with relevance
feedback [18]

Qnew = α × Qorig + β × 1
R

∑

D∈Rel

D − γ × 1
N − R

∑

D/∈Rel

D

in which each document is represented by a vector of term frequencies. In the
Rocchio classification algorithm a class profile is computed as the centroid of the
documents relevant to the class, subtracting the irrelevant documents (there is
no original document).

A more sophisticated form of the Rocchio algorithm [4] assigns to each indi-
vidual term t a weight for the class c, according to the formula

w(t, c) = max(0,
β

|Dc|
∑

d∈Dc

s(t, d) − γ

|Dc|
∑

d∈Dc

s(t, d))

where

– s(t, d) is the normalized strength of the term t in the document d, using
some sub-linear function of the frequency of the term and compensating in
some way for variations in document length

– Dc is the set of documents that are labeled with class c and Dc the set of
non-c documents.

The score of a document for a class is the inproduct of the weights of its terms
times their strength, and a document is assigned to class c if its score for c
exceeds a class threshold which is computed from the train set.

Notice also that terms that would yield a negative contribution are eliminated
in the above formula. This contradicts the original intuition of the centroid
computation. We shall therefore investigate both variants.

3.1 Choice of Beta and Gamma

The Rocchio formula contains two parameters β and γ, whose values are well-
known to be 16 and 4, respectively (according to many publications, including
very recent ones like [5,3]). Why 16 and 4? The reason for these curious values
is that there was originally also a factor α, which is zero in the present formula.
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Fig. 1. Varying Rocchio’s beta parameter

Obviously, dividing both parameters by the same factor makes no difference,
apart from a shift of the threshold, so we can fix γ at 1, leaving only one pa-
rameter, which can be interpreted as the relative weight attributed to positive
examples. The standard value of β is 4; but is this optimal?

3.2 Symmetric Rocchio and Positive Rocchio

We shall now try to find optimal values of β for various corpora, without Term
Selection, i.e. without discarding any of the terms, keeping γ = 1 and distinguish-
ing between a variant in which negative term weights are allowed (“symmetric
Rocchio”) and one in which negative term weights are omitted (“positive Roc-
chio”). Figure 1 shows the the result of varying β in classifying the EPO1A
corpus (without Term Selection).

The left graph shows that the optimum β-value for symmetric Rocchio is not
4 but 0.7; the middle one shows that positive Rocchio reaches an even higher
Accuracy at β = 0.1. The elimination of negative terms pays off. The rightmost
graph (which is hard to interpret) shows the trajectory followed by Precision
and Recall when reducing the β-value, for both variants. When β becomes too
small, positive Rocchio fails catastrophically through loss of Recall and symmet-
ric Rocchio through loss of Precision.

Figure 2 compares the accuracy achieved by the two Rocchio variants at
various β-values for the EPO1A corpus and the ModApte and EPO1F corpora.

They show roughly the same behaviour, and practically the same optimal
parameter values. In all cases, positive Rocchio performs better than symmetric
Rocchio, with an optimum near β = 0.1.

3.3 Interaction with Term Selection

Next, we investigate the interaction between parameter tuning and term selec-
tion, by showing the Accuracy on EPO1A as a function of the number of terms
per class, selected by the Simplified χ2 criterion. The results are shown in Fig. 3
for both versions of Rocchio at optimal tuning and only one version at standard
tuning (where they are indistinguishable).
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As was found in our earlier experiments, (cf. [15]), at standard parameter
values Rocchio reaches its optimal Accuracy when 100 terms per class are se-
lected. After tuning, the Accuracy (which is much higher) is no longer improved
by Term Selection, although selecting at most 1000 terms/category may still
be useful for performance reasons. An optimal choice of β/γ has much more
effect than optimal Term Selection. At optimal parameter values, Rocchio itself
eliminates the noisy terms.

3.4 Discussion

The positive Rocchio variant in each case reaches a higher accuracy than the
symmetric one, at a much lower β value. It is surprising to see that the β pa-
rameter must be smaller (or even much smaller) than the γ parameter, so that a
greater weight is given to negative examples, even though there are many more
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of them than positive examples. A plausible explanation of the behaviour of pos-
itive Rocchio is that, as β gets smaller, more noisy terms are eliminated (because
their weight becomes negative) and the Accuracy is improved, until eventually
too many terms are eliminated to achieve Recall.

Similarly, for symmetric Rocchio the effect of giving more weight to negative
examples is initially beneficial, but when β gets too small, documents tend to get
classified on the non-occurrence of negative terms, rather than on the occurrence
of positive ones (keep in mind that the threshold will shift automatically with
the sinking document scores).

At the traditional value β = 4 the contribution of negative terms is very
small and the two Rocchio variants behave indistinguishably. This is probably
the reason that we found only one article in literature [14] which describes and
explains the superiority of the positive Rocchio variant.

4 Tuning Winnow

The Balanced Winnow algorithm is a child of the Perceptron, as is clear from
the formulation given in [9]:

BalancedWinnow(−→w , −→z , (−→x , y)) :
if sign (−→w · −→x ) �= y then
begin −→z := −→z + αy−→x

−→w := 2−−→
sinh(z)

end

where y = 1 for a relevant document and y = −1 for an irrelevant one, and the
weights are exponentiated by the function sinh.

In the description of Balanced Winnow given in [7], for every class c and for
every term t two weights W+

t and W−
t are kept. The single parameter α of Win-

now has been split into a promotion parameter α and a demotion parameter β.
The score of a document d for a class c is computed as

SCORE(d, c) =
∑

t∈d

(W+
t,c − W−

t,c) × s(t, d)

where s(t, d) is the normalized strength of the term t in d. A document d belongs
to a class c if SCORE(d, c) > θ, where the threshold θ is usually taken to be 1.

Winnow learns multiplicatively, driven by mistakes, one document at a time:
When a train document belonging to some class c scores below θ, the weights of
its terms t in W+

t are multiplied by a constant α > 1 and those in W−
t multiplied

by β < 1; and conversely for documents not belonging to c which score above θ.
Winnow is by origin an on-line algorithm, meaning that the weights are ad-

justed for each incoming train document, but it is also possible to iterate over
a set of train documents. In the following experiments, we shall at first keep
the number of iterations at 5, and later study the effect of different numbers of
iterations.
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Fig. 4. Varying Winnow’s promotion parameters

4.1 The Winnow Promotion Parameters

According to [9] β should be equal to 1/α. The values suggested in [7] are 1.1
and 0.9, whose product is in fact not quite equal to one.

There are good reasons to choose β smaller than 1/α: If β is smaller than
1/α, Winnow learns faster from positive examples than from negative examples,
which may be justified since there are fewer positive examples. Furthermore,
consider a term that is promoted and demoted a large but equal number of
times. When α × β < 1, both W+

t and W−
t will tend to zero: this noisy term is

eliminated. When α × β = 1, they keep their initial values. One would expect a
smaller value of α to lead to slower but more precise convergence.

Measuring the Accuracy as a function of α and β for EPO1A kw and EPO1F
gives the results shown in Fig. 4.

In spite of the four-fold cross-evaluation, there is a lot of variance (especially
for EPO1A kw), which makes it hard to choose an optimal value. From these
graphs (and many others not shown here), it appears that β = 2 − α is a better
choice than 1/α. The optimal choice of α depends on the number of training
documents. For larger numbers of docs it is better to choose a smaller alpha:
On the EPO2F corpus (which is like the EPO1F corpus but with 68418 instead
of 16000 train documents) we found the highest accuracy at α = 1.04 when
training on all train documents and at α = 1.1 when training on a tenth of the
documents [2].

In the following experiments we will stick to Dagan’s choice [7] (1.1/0.9) for
the promotion parameters, which is quite good for all three corpora, and tune
the other parameters accordingly.

4.2 The Thick Threshold Heuristic

Again following [7], the Accuracy of Winnow can be improved by means of
the thick threshold heuristic: In training, we try to force the score of relevant
documents up above θ+ > 1.0 (rather than just 1) and irrelevant documents
below θ− < 1.0. This resembles the “query zoning” [18] heuristic for Rocchio, in
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Fig. 5. Effect of Thick Threshold Heuristic (1)

the sense that documents on the borderline of a class (scoring between θ− and
θ+) receive extra attention.

According to [7] the optimal values for these Thick Threshold parameters are
1.1 and 0.9, respectively (just like the α and β). A heuristical argument suggests
that the best value for θ− might be 1/θ+, since they each represent a number
of steps (multiplications by α or β) away from the threshold 1. Figure 5 shows
the effect of varying the thickness of the threshold for the EPO1A corpus.

The left graph in Fig. 5 plots Precision against Recall. Each line is a trajectory
(going approximately first upwards and then to the right) which represents one
value of θ+ together with values of θ− going down from 0.9 to 0.1. The dotted
line represents Precision = Recall.

The right graph is easier to read. The F1-value fluctuates wildly, but by and
by an increase of θ+ improves the Accuracy, and 3.0/0.7 raises the F1-value over
1.1/0.9 by more than 2 points.

The Thick Threshold graphs in Fig. 6 show roughly similar behaviour on the
different corpora, but it is clear that the optimal values for the Thick Threshold
parameters depend strongly on the corpus. When increasing θ+, the Accuracy
first increases, then falls off again. The curves are rather erratic due to high
variance. The intuition that the best value for θ− is 1/θ+ is not supported by
the measurements.

4.3 Interaction with Term Selection

Figure 7 shows the effect of Term Selection with and without tuning of Winnow.
Again, it appears that optimal parameter tuning removes the noisy terms much
more effectively than Term Selection.

The relation between Winnow training and Term Selection is quite obvious:
given enough promotions and/or demotions of documents belonging to some
class, all terms occurring in the profile for that class will reach one of the following
states:

– positive terms – terms speaking for the category will obtain a relatively
stable positive value for W+ and W− will be (practically) zero
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– negative terms – terms speaking against the category will have a positive
W− while W+ is zero

– noisy terms – terms that are not reliable will have both W+ and W−

(practically) zero.

Experiments not reported here show that omitting the negative terms (positive
Winnow) causes a significant reduction in the Accuracy. Symmetric Winnow is in
all cases better than positive Winnow, in contrast with Rocchio, which appears
to cope well enough with noisy terms, but can not use the information provided
by negative terms. This may explain why, in our experiments, Winnow always
outperforms Rocchio.

4.4 The Number of Iterations

In our previous experiments with Winnow we fixed the number of iterations at
five: every document (in random order) was seen five times by the classification
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algorithm, and only in case the classification computed for it was not correct,
the document was trained.

Training more than once may increase Accuracy, especially when there are few
documents, but training too often may lead to overtraining. The optimal number
of iterations is dependent on the corpus, and on other parameters. We shall now
investigate experimentally the interaction between the number of iterations and
the optimal Thick Threshold values.

Since it is hard to make an understandable graph depicting the relationship
between the three parameters, we fix θ− = 1/θ+ (“geometrical symmetry”), even
though according to Fig. 4 and Fig. 5 this is not optimal.

The two graphs in Fig. 8 show the Accuracy achieved on EPO1A kw as a
function of θ+ and the number of iterations, respectively.

The left graph shows that the Accuracy increases with θ+ at a suitable number
of iterations, and then slowly goes down. The right graph shows that, for a
given value of θ+, the Accuracy increases with the number of iterations, until
it is reduced again by overtraining. The overtraining point increases with the
thickness of the threshold. It appears that choosing 3 to 5 iterations is best, at
appropriate Theta values. The other corpora show similar behaviour.
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Precision/Recall/F-value graphs for θ+ against θ− (like those shown in Fig.
9 for ModApte) show rich details for which no explanatory theory is available.
Notice that the Precision = Recall point is not the optimum, and for θ− < 0 the
severe drop in Precision and the large increase in variance.

5 Discussion

We have experimentally shown the importance of properly tuning the parameters
of the Rocchio and Winnow classification algorithms. The optimal parameter
values found in our experiments were mostly quite different from those found
in literature, and gave a much higher accuracy. The good news is that in many
existing applications the accuracy can be improved with just a little effort. The
bad news is that it is hard to make meaningful comparisons between different
classification algorithms. There is an unvoluntary bias against algorithms not
familiar to the experimenter, caused by the difficulty of choosing parameters for
an unfamiliar algorithm.

In comparing algorithms, the relevant parameter settings should also be pub-
lished. And the comparison can not be fair unless all algorithms have been care-
fully tuned on the train set in order to capture the corpus-dependent aspects.

Since the manual tuning process is difficult and time consuming, every prac-
tical classification system should be made self-tuning. The best way to deal con-
sistently with all those parameters is to tune them automatically, rather than
using default values, for every new corpus or application.

Judging by the graphs in the paper (and the many thousand others we have
seen in other experiments) the Accuracy (F1-value) of Winnow on a given corpus
is a concave function of the parameters with a large noise term added (2 to 3
percent of the Accuracy). We conjecture that use of the Swarm Optimization
technique (based on [8]) might lead to an efficient optimization scheme.

6 Conclusion

We have shed some light on the effect of the most important parameters of these
algorithms, and on some of the interactions between them: Rocchio’s weighting
parameters, Winnow’s promotion parameters and Thick Threshold, and their
interaction with (one form of) Term Selection. Unfortunately these effects are
quite dependent on the corpus. Only when using optimal parameter values, tuned
for the particular corpus, can we claim that the results are really representative
for the algorithm, and can we stop worrying about parameters.

For Rocchio it was found that discarding all terms with a negative score
contribution (positive Rocchio) leads to a better Accuracy than taking them
into account (the symmetric Rocchio algorithm). We have argued that this is an
effect of automatic Term Selection.

We found the optimal values given for the Rocchio and Winnow parameters
in many publications to be wildly wrong, and conjecture that many published
results comparing these with other algorithms are misleading.
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At optimal parameter values, both Rocchio and Winnow show no positive
effect of Term Selection on the Accuracy; at best, performance may be somewhat
improved. When optimally tuned, these algorithms are well capable of selecting
their own terms. Tuning is much more important than term selection.

But many questions remain open: What happens for other forms of Term
Selection? What happens when we use the macro- instead of micro-average (em-
phasizing the accuracy on small categories)? What is the influence of the Term
Weighting and Document Size Normalization technique used? Are the optimal
parameter values the same for larger and smaller subsets of the corpora? In fact,
we are still groping around in high-dimensional space. More theoretical analysis
(in particular of the fascinating Winnow algorithm) is needed.
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Abstract. The current paper presents an extension to the logical language used 
in Structural Synthesis of Programs (SSP) and describes a modified synthesis 
algorithm to handle branching in program synthesis. The origin of the extension 
is from practical experience and introduces statements with preconditions to the 
logical language of SSP. Using these preconditions one can describe variable 
domain restrictions in its domain oriented models and gain higher flexibility 
while doing engineering modeling. 

1   Introduction 

Program Synthesis is a method of software engineering used to generate programs 
automatically. It has long been considered as a core AI task. Generally, we can 
distinguish three approaches to program synthesis: transformational, inductive, and 
deductive. Already in 60’s works of G. Genzten [1], C. Green [2] and R. Waldinger 
[3] were published that put program synthesis on a firm logical basis. 

In this paper we consider a deductive approach of program synthesis, where 
programs are constructed from existing computational units. These units are given by 
equations or pre-programmed functions that can be used for program composition 
without considering their internal behavior [10]. Computational units are described by 
specifications that present their input and output domains using propositional 
variables and during the synthesis process only their structural properties are taken 
into account. Hence, the method is called Structural Synthesis of Programs (SSP). 

The usage of SSP is very practically oriented. By using SSP in a programming 
environment we are able to avoid writing code for each case of execution that we 
need during data processing; instead we rely on run-time synthesis, which provides 
the necessary computational units when necessary.  

Our aim is to introduce some of the properties of functional programming (like 
lazy evaluation) into modern commercially accepted programming languages (e.g. 
Java, C# etc.) by extending their programs with Structural Specifications. In addition 
these specifications help programmers to understand the behavior and purpose of 
written programs more easily. 

Application area of the program synthesis may vary from mobile handheld devices 
where we need to synthesize programs suitable for execution in the local environment 
to large information systems where implementing programs for all possible cases 
appears unfeasible. 



 Preconditions for Structural Synthesis of Programs 285 

In section 2 we explain the rationale of applying SSP to modern programming 
languages. Section 3 gives a short overview of SSP and in section 4 we introduce 
preconditions into the logical language of SSP and define structural synthesis rules to 
handle them during the proof search process. Section 5 presents proof search 
strategies of automatic program synthesis and in section 6 we demonstrate SSP at 
work through a simple example. We provide some concluding remarks and ideas for 
future work in section 7. 

2   Program Synthesis for Modern Programming Languages 

Most of the widely used modern programming languages (like Java or C#) do not 
facilitate automated program synthesis as-is. This is because of a missing semantic 
connection between the components or variables (later referred to as variables) and 
methods or functions (we call them functions in the following).  

The semantics of libraries – the rules of their usage – are usually described in 
comments or in a manual (if they are described at all) that are too difficult to parse 
automatically and it takes much effort to learn them even for a skilled programmer. 
The typing rules applied in the modern programming languages are not sufficient for 
program synthesis. 

We propose an extension to the programming languages in the form of 
specifications that are machine and human readable and enable automated (re)use of 
given functions. These specifications describe which variables can be used in the 
synthesized program and through which functions they are (inter)related, without 
looking at their real values, i.e., we take into account only the structural properties of 
the relations (functions) and hence call them structural specifications. 

The idea is to invoke program synthesis from within a running program, synthesize 
a new program and execute it to perform the needed tasks or calculations and then 
return to the initial program. The whole process is fully automatic and needs no 
human intervention. 

In the proposed structural specifications variables are defined as: 

var Variablenames : Type 
and relations as: 

rel Label : InputParameters -> OutputParameters {FunctionName} 

Label gives a name to the relation that is meaningful for debugging, 
InputParameters is a comma-separated list of arguments to the function called 
FunctionName and OutputParameters are the results (variables) the function returns. 
One function can be referred to in many relation specifications, where the input or 
output parameters vary. 

How structural specifications can be incorporated into programming languages is 
considered in [13] and is not described here. We concentrate on the logics of program 
synthesis to reduce the level of detail and to make the approach applicable to a 
number of imperative and/or object-oriented programming languages. 
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3   Structural Synthesis of Programs in a Nutshell 

In the framework of Structural Synthesis of Programs (SSP), propositional variables 
are used as identifiers for conceptual roles and a propositional logic is applied to solve 
synthesis problems. This allows us to take advantage of the proof-as-programs 
property of intuitionistic logic, where program synthesis is equated to proof search [6]. 

SSP relies on an implicative fragment of intuitionistic propositional calculus, 
which provides an expressive logical language for problem description and feasible 
proof search efficiency.  

In the following we present the logical language and structural synthesis rules used 
for proof search as they are described in [5, 9, 14]. 

3.1   Logical Language 

The logical language (LL) of SSP consists of the following formulae: 

1. Propositional variables: A; B; C … 
The propositional variable A corresponds to an object variable a of a source program, 
and expresses the state of a. A is considered proven if a is evaluated (has a value) or 
there exists a known way for its computation. A propositional variable will be termed 
an atom in the following. 

2. Unconditional computability statements correspond to a relation specification rel 
a1,…,an -> b1,…,bm {f} and are defined in the LL as: 

BA
f

⎯→⎯  

An unconditional computability statement presents the fact that B  is derivable 
from A  (we use an abbreviation X  to denote a conjunction of variables X1∧…∧Xn). 
By this we express the computability of the value of each object variable bi 
corresponding to Bi from values of a1…an corresponding to A1…An. with a single 
computational step f (by executing a predefined module, calling a method or function 
f with arguments a1…an). We refer to such computational units as functions. 

We would like to stress that at the logical level the statement is equivalent to a set 
of statements if

BA
i

⎯→⎯ and f can be considered as a function composed of a set of 

subfunctions fi. 

3. Conditional computability statements 

DcCBA
cgfg

⎯⎯⎯ →⎯∧⎯→⎯
),(

)()(  

A conditional computability statement expresses computability of D  from C  

depending on the derivability of B  from A . We use an abbreviation )( BA →  for 

)()( kk11 BABA →∧∧→ …  also here. In this statement g stands for a function to be 
synthesized (a subtask), which is used by the body of function f to perform the 
necessary computations. In other words function f is usable if C  is proven (c’s are 
evaluated) and g’s are synthesized (subtasks are solved). 
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Such language construction is useful for recursion and loop specification. 

4. Computability statements with disjunction 

BW
f

⎯→⎯  

In computability statement with disjunction the antecedent (W) can be the same as 
in case of unconditional or conditional computability statements. B is an abbreviation 
of a disjunctive normal form n1 BB ∨∨… . Computability statements with disjunction 
allow us to handle possible exceptions thrown by function f or to deal with branching 
that function f may create. 

5. Falsity 

⊥⎯→⎯
f

W  

In this computability statement W can be the same as in case of unconditional or 
conditional computability statements. The right-hand side is the falsity constant. This 
statement enables termination of a synthesized program that may be needed in case of 
exceptions or branching. 

We would like to stress that the formulae of LL represent only the computability of 
object variables, not their particular values. Each formula of LL is used as an axiom 
during the proof search.  

3.2   Structural Synthesis Rules  

The Structural Synthesis Rules (SSR) are the inference rules used to carry out the 
proof search i.e. to build the proof tree. Proof term derivation (the lambda term 
construction) is carried along with the deductions. Every propositional variable used 
in the rules corresponds to an object variable of the programming language and the 
lambda-terms are the programs to compute their values. Hence, provability and 
computability have the same meaning here.  

The corresponding object variable or lambda-term is provided in the parentheses 
after the propositional variable. 

Let us briefly discuss the inference rules of SSR.  

Rule (1) is called Implication Elimination. It permits the application of an axiom to 
the proof and widens the set of computable variables by B. 

( ))(

)()(

afB

aABxA
f

⇒Γ

⇒Γ⎯→⎯
 (1) 

a is a realization of the proof of A out of Γ as a term. The following two notations are 
identical: 

A

A #
Γ

⇒Γ  
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We would like to notice that notation A(a) does not lead us to a first order logic but 
enables the program extraction from the proof. 

Rule (2) is called Implication Introduction. This rule creates a new axiom based on 
an existing proof. The lambda-term shows that in the resulting function ai‘s are bound 
variables. In other words the rule introduces a new function that uses ai’s as inputs 
and computes the value of b out of them. This rule is useful to form realizations of 
subtasks and in case of synthesis of a new function. 

( )
BA

bBaA

ba
⎯⎯ →⎯
⇒

.

)(

λ

 (2) 

Rule (3) is called Double Implication Elimination. Here, computability of D 
depends not only on the set of Ci’s, but also on the solvability of subtasks calculating 
B from Ai’s. The rule is applicable only in the case the terms bi are derivable. 

⎟
⎠
⎞⎜

⎝
⎛⇒ΣΓ

⇒Σ⇒Γ⎯→⎯→

),.(,

)()()(,,)(

cbafD

cCbBaADCBA
f

λ
 (3) 

One can think of the rule consisting of two steps: first introducing an implication 
A→B (application of Rule 2) and then doing the substitution (passing the right 
function(s) as argument(s) to f).  

We can distinguish two kinds of subtasks – dependent and independent. A subtask 
is called independent when Σ ∩ Γ = ∅ and dependent otherwise. In practice 
independent subtasks are often executed on a separate object whereas dependent 
subtasks use the same context as the main function, even if there is no overlap 
between the premises of the subtask and the premises of the main function. 

Rule (4) is called Disjunction Elimination. 

( ) ( ) ( )
( ) ( )( )σσσσ hBtypegAtypematchtypecaseinwfletG

hGBgGAwWBAW
f

66),(,,

,,

=⇒ΔΣΓ

⇒Δ⇒Σ⇒Γ∨⎯→⎯
 (4) 

This rule tells us that depending on the type of the variable that function f returns 
we decide with which branch (continuation) we proceed. The new output G is called 
an innermost goal as it is better to find it such that it is reachable with as few 
computational steps as possible in order to synthesize a compact program. 

At the logical level  
( GBGABAW

hgf
⎯→⎯⎯→⎯∨⎯→⎯ ,, ) 

is transformed to 
( GGBGAW

fhg
⎯→⎯⎯→⎯∧⎯→⎯∧

'
)()( ) 

This gives us instead of an axiom with disjunction a new axiom with as many 
subtasks as many disjuncts we had in the original axiom. Here we present only the 
case with two disjuncts, but the transformation to the case with n (n>2) disjuncts is 
very straightforward. 



 Preconditions for Structural Synthesis of Programs 289 

The call to original function f is encapsulated into the body of a new function f’, 
which contains a case structure to select the subtask to proceed with according to the 
type of the output that ƒ returns. This forms a branching to an executable code. The 
types of the disjuncts must be different; otherwise it is not possible to detect which 
branch was selected during the execution of f. 

Rule (5) is called Falsity Elimination. Falsity is introduced to handle exceptions 
that can be raised during the execution of the synthesized program and yield to the 
need of its abortion. Intuitively we can think of the rule as a way to prove the goal G 
at once. 

( )GabortG⇒Γ
⇒⊥Γ

 ┴
-
 (5) 

Every application of an elimination rule corresponds to a computational step in a 
synthesized program. A problem to be solved is formulated as a theorem to be proved. 
The proofs of soundness and completeness of SSP can be found in [6] and [12] in 
depth study of a complexity of intuitionistic propositional calculus and a similar 
proving system is done in [7] and [8]. 

4   Preconditions for SSP 

It may occur that functions covering the whole variable domain are not available, but 
there are functions meant to work under certain conditions. This could happen for 
example when empirical models are created based on measurements. This is quite 
common practice in engineering modeling. Such models are meant to represent the 
behavior or real world with satisfactory precision in a limited range of variable 
domain and we need a way to restrict the applicability of axioms. For that we extend 
the SSP with preconditions. 

4.1   Preconditions in Specifications and Corresponding Synthesized Program 

In a structural specification a precondition is added to a relation specification as a 
logical expression: 

rel Label : {PreCondition} InputParameters -> OutputParameters {ModuleName} 

PreCondition describes the conditions when the relation is applicable. In principle 
it would be enough to use only one Boolean variable in the PreCondition expression 
and specify it in other statements, but in practice for (human) readability it is much 
better if the whole expression is presented in the specification. 

Some examples of conditional expressions are the following: 

a<3.5 
b!=0 AND a>3.5 
FindValue(a,b)<MaxValue() 

Handling of exceptions that may be thrown during the execution of the logical 
expression cannot be predefined. In such case it is advisable to specify such 
computations in separate relation definitions. For example if FindValue, from the 
example logical expressions, can throw an exception then it is better to introduce a 
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new variable curValue and introduce a new relation changing the original 
precondition as follows: 

rel a,b -> curValue | anException {FindValue} 
rel {curValue<MaxValue} ... 

The aim of using preconditions is to enable automatic construction of if-then-else 
statements in synthesized programs. For example let us consider the following 
relations: 

rel {x<4} a,b -> c {method1} 
rel {x==4} a,b -> c {method2} 
rel {x>4} a,b -> c {method3} 

We would like to synthesize an if-then-else statement: 

if (x<4) then c=method1(a,b) 
else if (x==4) then c=method2(a,b) 
else c=method3(a,b) 

However, this is not possible while using propositional calculus as we do not look 
into the logical expressions and cannot analyze the coverage (whether the whole 
variable domain is covered) of the expressions. We can synthesize the following if-
then-else statement: 

if (x<4) then c=method1(a,b) 
else if (x==4) then c=method2(a,b) 
else if (x>4) then c=method3(a,b) 

There is an issue with the case where we do not have complete coverage of the 
variable domain i.e. for example we do not have the third declaration in our 
specification: 

rel {x<4} a,b -> c {method1} 
rel {x==4} a,b -> c {method2} 

To solve this we have to synthesize a proper program termination for the case a is 
greater than 4 and warn the user about such decision: 

if (x<4) then c=method1(a,b) 
else if (x==4) then c=method2(a,b) 
else abort 

Having this in mind we come to the logical language and structural synthesis rules 
extensions provided in the next two sections. 

4.2   Extended Logical Language 

In the extended LL we keep everything that was presented in section 3.1. In addition 
we define the following formula: 

6. Computability statements with precondition 

DWBoolA
fg

⎯→⎯⎯→⎯  
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The computability of d corresponding to D depends on inputs W and the Boolean 
value function g evaluates to. Function f is applicable only in the case g evaluates to 

true. BoolA
g

⎯→⎯ is not a subtask as it has the function given in the statement and 

needs not to be synthesized. We call it the precondition of function f. W can be 
similarly to statements with disjunction an unconditional or conditional expression.  

We would like to stress that g would become evaluated only during the execution 
of the synthesized program and not during the synthesis process and should be given 
in a form of Boolean expression of the underlying programming language. Hence, we 
still remain in the framework of propositional calculus. 

4.3   Extended Structural Synthesis Rules 

We keep the rules described in section 3.2 and add a new one that handles the 
computability statements with preconditions: 

Rule (6) Precondition elimination.  

( )uelsecfhthenagifG

uGhGDcCaADCBoolA
fg

))(()(,,

)(,,)(,)()(

⇒ΔΓΣ

⇒ΔΓΣ⇒Δ⇒Γ⇒Σ⎯→⎯⎯→⎯
 (6) 

Here we use a branching idea similar to the case of disjunction elimination. The 
axiom can be applied if there exists another possible branch to calculate G. We call 
that branch a supplementary subtask. 

It is advisable to keep the branching local and to collect all possible axioms with 
preconditions together with their continuations that allow us to compute G, into a 
single if-then-else structure of a resulting synthesized program. In order to achieve 
that and still synthesize robust code we need to take care of situations where the 
whole variable domain is not covered by the applicable axioms with preconditions 
(the branching is not complete).  

To ensure the robustness of resulting program it is required that computability 
statements with preconditions have complementary falsity statements. The 
complementary falsity statement should have exactly the same left side (input variables 
and subtask definitions) without the precondition as the statement with precondition has. 
It is not necessary to explicitly specify those falsity statements in the specifications; 
rather the program synthesizer automatically adds them. Complementary falsity 
statement also ensures the solvability of the supplementary subtask.  

5   Proof Search Strategy 

The proof search strategy of SSP relies mostly on ideas of Partial Deduction [9]. 
Proof synthesis algorithm with unconditional and conditional computability 
statements is presented in [4]. The main proof search strategy of SSP is assumption-
driven forward search as well as goal-driven backward search. The assumption-driven 
forward search is used to select unconditional computability statements. The goal-
driven backward search is used to select and solve subtasks if there are no applicable 
unconditional statements left.  
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Additionally an algorithm to handle statements with disjunctions is presented in 
[14]. Some ideas for the proof search distribution are presented in [15]. There are 
several rules of thumb for search tactics and stopping criteria given in [9] and [12]. 

5.1   Assumption-Driven Forward Search 

In principle there are two kinds of synthesis tasks: first, giving some input variables 
we need to reach certain goal where the goal is usually a variable or a set of variables 
we need to calculate. Second, we want to calculate everything possible. The latter is 
common in engineering modeling where we enter the values we know and want to see 
what can be calculated and what remains unknown. 

In the following we denote by saying that “a variable is evaluated” the fact that a 
propositional variable of the LL has been proved and “not evaluated” otherwise. We 
do not refer to object variables here. By saying that a computability statement is 
applicable we mean that all its input variables are evaluated, at least one of its output 
variables is not evaluated and its subtasks are solvable. 

In the assumption-driven forward search we use the following strategy: 

1. Sort the computability statements according to their complexity measure from 
simpler to harder: 1) unconditional computability statements, 2) conditional 
computability statements with independent subtasks, 3) conditional computability 
statements with dependent subtasks, 4) computability statements with disjunctions, 
5) computability statements with preconditions, 6) falsity eliminations. 

2. Spawn proof searches of independent subtasks as parallel threads to the main proof 
search. If proof search of subtask returns “unsolvable” then remove all 
computational statements that have such subtask in their specification from the 
search space. If proof search of a subtask returns “solvable” then mark in all 
computational statements that subtask being “solvable”. 

3. Check whether the goal is achieved, i.e. whether the variables included in the goal 
are evaluated. If so, stop all parallel threads searching for solutions to independent 
subtasks. Continue with minimization (see section 5.3). Otherwise restore all 
“temporarily not applicable” statements to state applicable (if there are any) and 
continue at 4. 

4. Apply simplest applicable computability statement. Evaluate all its output 
variables. Go back to 3. If there is no applicable statement left and if the search for 
independent subtasks solutions is still in progress then wait for solutions, otherwise 
the problem is unsolvable for the first kind of synthesis problems described above. 

When testing the applicability of a conditional computability statement with 
dependent subtasks we have to try solving their subtasks. If any of the subtasks appear 
being unsolvable we mark that statement “temporarily not applicable”. This status is 
changed whenever a new variable becomes evaluated (see step 3 in the strategy). The 
subtasks that were solvable are marked accordingly and we do not need to solve them 
again. 

Applicability of statements that cause branching is also dependent on whether we 
can find proper innermost goal for the branches. In case our synthesis task has a goal 
consisting of a single variable, it may be used initially also as an innermost goal for 
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these statements [14]. However, in case we have our goal composed of a set of 
variables or we try to synthesize a program that calculates everything possible, we 
have to try solving the subtasks for each variable. The latter corresponds to the second 
synthesis task described above. 

In the following we propose a strategy to find an innermost goal: 

1. Form a dependent subtask for each branch. That is, we create a group of copies of 
the search space where a copy is made for each branch. In each search space we 
additionally evaluate variables corresponding to that branch (disjunct or output 
variables of the statement with precondition) and exclude the statement(s) that 
formed the group. In case of computability statement with disjunction the branches 
correspond to the disjuncts, in case of computability statements with preconditions 
the group is formed of all applicable statements with precondition. 

2. Solve each subtask. 

3. Find common patterns in the solutions. A common pattern can be for example a 
common statement that is applied or a common variable that becomes evaluated. 
The variable or the output of the statement that is present in each member of the 
group is declared as an innermost goal. 

4. In the case of statements with preconditions the largest subset is selected from the 
group that has common pattern. The rest of statements are excluded. This is 
because we may search for an if-then-else structure at the moment where several 
are possible and we would like to detect only one of them at the time. 

5. Minimization is used to form the actual solutions of the subtasks. 

6. In the case there is no common pattern the problem is declared unsolvable for the 
first kind of synthesis task and a branching, that cannot be minimized, is 
synthesized in the second kind. 

In order to take advantage of parallel processing in the main proof search process 
we propose an addition to the proof search strategy. 

The main search task is divided into subsets and spawned in separate threads. The 
subsets can be selected based on the object structure of the program for example, i.e, 
we form a separate search space out of each component of the main object. In these 
parallel threads depth-first search is used. In practice there is no need to go deeper 
than 5 levels in the object hierarchy. This gives us additional termination criteria to 
avoid stepping into a well of recursion. 

The main search process uses breadth-first search at the same time. When a thread 
finishes its work it returns its results to the main process that incorporates the 
statements applied to its search space and also evaluates the evaluated variables. 

In the worst case the whole search space must be covered iteratively. This leads us to 
the theoretical PSPACE complexity. However, in practice it is usually much lower [14]. 

5.2   Goal-Driven Backward Search 

The goal-driven backward search is used to solve subtasks. This is done using 
practically the same algorithm as in case of assumption-driven forward search, but it 
starts from the goal and moves toward assumptions. This approach is better for 
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solving subtasks as usually then the goal contains only few variables and narrows the 
initial set of applicable statements. 

5.3   Minimization 

Minimization is used to exclude computability statements from the synthesized 
algorithm that are not needed to reach the goal. Moving in the opposite direction to 
the one used during the search can easily do this. That is, if we used assumption-
driven forward search, then the minimization algorithm should work from the goal 
towards assumptions and in case of goal-driven backward search from assumptions 
toward goal. 

6   An Example of Program Synthesis 

Let us consider a triangle problem as an example. The problem specification is the 
following: 

1. We have a triangle (see Fig. 1) with its side as and its internal angles ca and aa 
given. 

2. Our goal is to calculate the area of the triangle.  

as 
bs

ca

ba 

aacs
 

Fig. 1. Triangle problem 

We create the following problem specification (see Fig. 2) describing its object 
variables and computability statements. We put all our knowledge about triangles into 
the specification. At this point we apologize for our imperfect knowledge on triangle 
geometry. We have implemented two functions calcAreaRA and calcAreaSA, first of 
which is applicable in the case the triangle is right-angled (ba=90°) and the other 
when aa<90°. 

The var statements define object variables of the problem domain. When moving 
to the domain of logical language we define corresponding propositional variables for 
each object variable: AS(as), BS(bs), etc.  

The rel statements specify the computability statements where braces enclose the 
preconditions and the function names. The labels (K:, L:, M:, Q:) on the left side of 
the specifications do not have any affect on proof search process. They are only used 
to simplify the understanding of proof search process below and to improve 
readability of the algorithm synthesized. 
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var as,bs,cs : side 
var aa,ba,ca : angle 
var s : area 
rel K: aa+ba+ca=180 
rel L: {ba==90} as,cs -> s {calcAreaRA} 
rel M: {aa<90} aa,bs,cs -> s {calcAreaSA} 
rel Q: as/sin(aa)=cs/sin(ca) 

Fig. 2. Declarative specification of class Triangle 

The synthesis problem is given in the form [as, aa, ca → s]. That means 
propositional variables AS, AA, CA are evaluated in the beginning of proof search 
process and the goal is S. 

Using the proof search strategies provided above we build a proof tree for the goal 
S and extract a program for its computation: 
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The proof tree above continues from * below. 
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From here (the lambda terms) we can extract the algorithm (a sequence of methods 
and language constructions to be applied) that solves the problem (see Fig. 3). 
Program derivation from the algorithm is straightforward and is not presented here. 

 
K: aa,ca -> ba {K’} 
Q: as,aa,ca -> cs {Q’} 
if (ba==90) 
 then 
  L: as,cs -> s {CalcAreaRA} 
else if (aa<90) 
 then  
  M: aa,bs,cs -> s {CalcAreaSA} 
else 
  abort 
Return s 

Fig. 3. Synthesized algorithm 

7   Concluding Remarks and Future Work 

In this paper we presented an extension to the Structural Synthesis of Programs (SSP) 
in order to better meet the needs on program synthesis for engineering modeling 
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tasks. We introduced computability statements with preconditions to the logical 
language and added a new rule for structural synthesis rules.  

A proof search strategy is presented. The main emphasis is set on handling the 
computability statements that cause branching; the remaining parts remain similar to 
the algorithms described earlier. Some ideas on synthesized program minimization are 
also presented. 

An interesting continuation to the current work would be synthesis of loops. In 
principle we have everything necessary for their specifications available: 
preconditions as guards and other statements for body. However it is unclear whether 
it is doable by using propositional calculus. 

Parallelization of the synthesis process as well as synthesis of parallel programs is 
another promising field for future work. Recent results on Disjunctive Horn Linear 
Logic [16] show availability of efficient methods to synthesize a parallel program for 
fixed number of processors. With some modifications it should be applicable also in 
the framework of SSP. 
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Abstract. In order to deal with the verification of large systems, com-
positional approaches postpone in part the problem of combinatorial
explosion during model exploration. The purpose of the work we present
in this paper is to establish a compositional framework in which the
verification may proceed through a refinement-based specification and a
component-based verification approaches.

First, a constraint synchronised product operator enables us an au-
tomated compositional verification of a component-based system refine-
ment relation. Secondly, safety LTL properties of the whole system are
checked from local safety LTL properties of its components. The main
advantage of our specification and verification approaches is that LTL
properties are preserved through composition and refinement.

Keywords: component-based systems, modules, refinement, LTL
properties, composition, verification.

1 Introduction

Nowadays, formal methods are used in various areas, from avionics and auto-
matic systems to telecommunication, transportation and manufacturing systems.
However, the increasing size and complexity of these systems make their specifi-
cation and verification difficult. Compositional reasoning is a way to master this
problem.

The purpose of the work we present in this paper is to establish a com-
positional framework in which an algorithmic verification of a refinement of
component-based systems by model exploration of components can be associ-
ated with the verification of LTL properties. In our compositional framework,
we give ways (see Fig. 1) to preserve LTL properties through:

1. The composition operator for preserving safety LTL properties, meaning
that a property satisfied by a separate component is also satisfied by a whole
component-based system.
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2. The refinement relation for preserving both safety and liveness LTL prop-
erties, meaning that a property established for an abstract system model is
ensured when the system is refined to a richer level of details.

Fig. 1. Verification Principle

To achieve the goal of compositional veri-
fication and to model synchronous and asyn-
chronous behaviours of components, we define
two operators: a composition of the modules
and a constraint synchronised product of tran-
sition systems.

We show that the modules [12,13,2] – sub-
systems sharing variables – whose composi-
tion is often used in a concurrent setting, are
suitable to compositionally verify a kind of τ -
simulation, called the weak refinement. Unfor-
tunately, this model does not allow analysing
the strict refinement – a divergence-sensitive
completed τ -simulation – from the separate
refinements of its modules. That is why we
introduce a constraint synchronised product

operator. Moreover, the semantics of the component-based systems using this
operator makes it possible to verify the strict refinement more efficiently.

The main result of this paper is the theorem claiming that the strict refine-
ment of a component-based system can be established by checking the weak
refinement of its expanded components viewed as the modules. The main ad-
vantage of the component-based refinement we have been developing is that it
allows us to master the complexity of specifications and verifications with a step
by step development process without building the whole system. All steps of
our compositional approach have been implemented in an analysis tool called
SynCo [9].

Fig. 2. Production Cell

The main concepts of the paper are
illustrated on an example of a simple
controller of a production cell moving
pieces from an input device to an out-
put device. A pictorial representation of
this running example is given in Fig.2.
The cell is composed of an arm hav-
ing horizontal moves, a clip, and an el-
evator moving vertically. Sensors notify
the controller about the production cell
changes.

This paper is organised as follows. Af-
ter giving preliminary notions, we recall in Section 2, the semantics of our
refinement relation and its properties. Then Section 3 presents the modules,
their composition and the weak refinement of the composition of the modules,
called modular refinement. In Section 4, the constraint synchronised product is
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introduced to specify component-based systems, and the modular refinement is
used to establish the strict refinement of component-based systems more effi-
ciently.

2 Preliminaries: LTS Refinement and LTL Properties

We introduce labelled transition systems to specify component behaviours and
properties. We then recall a notion of system top-down refinement preserving
for the refined system the abstract system LTL properties.

2.1 Preliminaries

Transition systems we consider are interpreted over a finite set of variables V .
Let APV be a set of atomic propositions over V .

Definition 1 (Labelled Transition System (LTS)). A LTS S is a tuple
(Q, Q0, E, T, V, l) where
– Q is a set of states,
– E is a finite set of transition labels,
– V is a set of variables, and

– Q0 ⊆ Q is a set of initial states,
– T ⊆ Q × E × Q is a labelled transition

relation,
– l : Q → 2APV is a total function that labels each state with the set of atomic
propositions true in that state; we call l the interpretation.

We consider a (finite or infinite) sequence of states σ = q0, q1, . . .
1 in Q. σ is

a path of S iff ∀i.(i ≥ 0 ⇒ ∃ei.(ei ∈ E ∧ (qi, ei, qi+1) ∈ T ))2. Given a path σ,
we denote by tr(σ) its trace e0, e1, . . . . Σ(S) designates the set of paths of S. A
state qi is reachable from q0 iff there exists a path of the form σ = q0, q1, . . . , qi.

In this paper, dynamic properties of systems are expressed by formulae of
propositional Linear Temporal Logic (LTL) [15] given by the following grammar:
φ,φ′ ::= ap | φ ∨ φ′ | ¬φ | ©φ | φUφ′, where ap ∈ APV .

Definition 2 (LTL semantics). Given LTL properties φ,φ′ and a path σ, we
define φ to be satisfied at i ≥ 0 on a path σ, written (σ, i) |= φ, as follows.
– (σ, i) |= ap iff ap ∈ l((σ, i))
– (σ, i) |= ¬φ iff it is not true that (σ, i) |= φ
– (σ, i) |= φ ∨ φ′ iff (σ, i) |= φ or (σ, i) |= φ′

– (σ, i) |= ©φ iff (σ, i + 1) |= φ
– (σ, i) |= φUφ′ iff ∃j.(j ≥ i ∧ (σ, j) |= φ′ ∧ ∀k.(i ≤ k < j ⇒ (σ, k) |= φ))

We also use the notations �φ ≡ trueUφ, �φ ≡ ¬�¬φ, and φWφ′ ≡ �φ∨φUφ′. A
LTL property φ is satisfied by S when ∀σ.(σ ∈ Σ(S)∧(σ, 0) ∈ Q0 ⇒ (σ, 0) |= φ).

Moreover, we often consider the set SPV
def= {sp, sp1, sp2, . . .} of state propo-

sitions over V defined by sp, sp′ ::= ap | sp ∨ sp′ | ¬sp, where ap ∈ APV . In

1 (σ, i) designates the ith state of σ.
2 An element of T is also denoted q

e→ q′.
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this setting, an invariance property is a proposition sp ∈ SPV satisfied by every
state of S, i.e. ∀q. (q ∈ Q ⇒ q |= sp), written S |= sp.

To handle a product of LTSs, the satisfaction of a state proposition sp by a
state is extended to tuples of states. For example, a formula sp ∈ SPV1∪V2 is
satisfied by (q1, q2) iff either sp ∈ SPV1 and q1 |= sp, or sp ∈ SPV2 and q2 |= sp.

2.2 Refinement

In this paper, we exploit the system top-down refinement relation we have in-
troduced in [5]. Let SA = (QA, Q0A, EA, TA, VA, lA) be an abstract LTS and
SR = (QR, Q0R, ER, TR, VR, lR) a more detailed LTS. The syntactic features of
the refinement are as follows. First, refinement introduces new actions, so EA

⊆ ER. Second, some new variables can be introduced and the old ones are re-
named: VA ∩ VR = ∅. Third, a propositional calculus formula gp over VA ∪ VR,
called gluing predicate, links variables of both LTSs.

Definition 3 (Gluing relation). Let gp ∈ SPVA∪VR be a gluing predicate. The
gluing relation μ ⊆ QR × QA is defined w.r.t. to gp: a state qR ∈ QR is glued to
qA ∈ QA by gp, written qR μ qA, iff (qA, qR) |= gp.

The refinement relation with the semantic features below is a restriction of μ.

1. The transitions of SR, the labels of which are in EA (i.e. labelled by the
”old” labels) are kept.

2. New transitions introduced during the refinement design (i.e. labelled in
ER �EA) are considered as being non-observable; they are labelled by τ and
called τ -transitions in the system SR.

3. Moreover, new transitions should not introduce new deadlocks.
4. Finally, new transitions should not take control forever. So, infinite sequences

of τ -transitions, i.e. τ -cycles, are forbidden.

Definition 4 (Refinement Relation). Let SA and SR be two LTSs, and e ∈
EA. Let μ be the gluing relation. The refinement relation η ⊆ QR ×QA is defined
as the greatest binary relation included in μ and satisfying the following clauses:
1) strict transition refinement (qR η qA ∧ qR

e→ q′R ∈ TR) ⇒ ∃q′A. (qA
e→

q′A ∈ TA ∧ q′R η q′A),
2) stuttering transition refinement (qR η qA ∧ qR

τ→ q′R ∈ TR) ⇒ (q′R η qA),
3) lack of new deadlocks (qR η qA ∧ qR �) ⇒ (qA �)3,
4) lack of τ-cycles qR η qA ⇒ (∀σ. σ ∈ Σ(qR) ⇒ tr(σ) �= τω).

The relation η is a partial order. ¿From now on, we say that SR refines SA,
written SR �η SA, when ∀qR.(qR ∈ QR ⇒ ∃qA. (qA ∈ QA ∧ qR η qA)).

It has been shown in [5] that the refinement relation can be classified as a
divergence stability respecting completed simulation in the van Glabbeek’ spec-
trum [19]. Consequently, it is more expressive than the trace inclusion, and hence
the closed systems refinement [18] by Shankar. An algorithmic verification of the

3 We note q � when ∀q′, e. (q′ ∈ Q ∧ e ∈ E ⇒ q
e→ q′ /∈ T ).
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relation η can be done by model exploration of the refined system which com-
plexity order is O(|SR|) where |SR| = |QR| + |TR|.

Figure 3 gives a refinement of a part of the controller. In the abstract ClipA

system, the sensor has two positions, open and close, whereas in the refined
ClipR system, there are two more positions, toOpen and toClose. The relation
η between ClipR and ClipA is established, so ClipR �η ClipA.

cl=close

cl=openO

C

ClipA ClipRclR=close

clR=toOpen

clR=open

clR=toClose

SO\τ

O
SC\τ

C

η

η

η

η

Fig. 3. ClipR �η ClipA

The refinement relation η being a kind
of τ -simulation, it preserves safety proper-
ties [17,6]. Moreover, we have shown in [8]
that the refinement relation η preserves LTL
– safety and liveness – properties. In other
words, any abstract LTL property satisfied
by an abstract system SA is, modulo gp,
satisfied by a corresponding refined system
SR. Here the satisfaction relation |=gp tak-
ing gp into account, can be defined by in-
duction on the structure of a formula φ like |= in Definition 2. For example,
spA ∈ SPVA is satisfied by a state qR ∈ QR, modulo gp, written qr |=gp spA, iff∧

ap∈lR(qR) ap ∧ gp ⇒ spA.

Theorem 1 (LTL Component-based Preservation [8]). Let SA and SR
be two LTSs. Let gp be their gluing predicate, and φA an abstract LTL property.
If TA is total then

SR �η SA, SA |= φA

SR |=gp φA

otherwise, only safety LTL properties are preserved.

To handle a product of LTSs which brings about new deadlocks and cycles of
τ -transitions, the weak refinement relation is defined by

Definition 5 (Weak Refinement Relation). Let SA and SR be two LTSs,
μ the gluing relation. Let D ⊆ QR be the deadlock set. The weak refinement
ρ ⊆ QR × QA is the greatest binary relation included in μ and satisfying the
following clauses:

1) strict refinement and 2) stuttering refinement from definition 4,
3’) old or new deadlocks ((qR ρ qA ∧ qR �) ⇒ ((qA � ∧qR /∈ D) ∨ (qA →
∧qR ∈ D)))

We say that SR weakly refines SA, written SR �D
ρ SA, when ∀qR.(qR ∈ QR ⇒

∃qA. (qA ∈ QA ∧ qR ρ qA)). Like η, the weak refinement relation ρ is a kind of
τ -simulation too. Consequently, ρ preserves safety LTL properties.

The definition above does not mention the τ -cycles. Let divτ (SR, SA) be a
predicate meaning that SR contains some τ -cycles w.r.t. SA. It is easy to see
that the refinement and the weak refinement are linked by

Property 1 (Refinement vs. Weak Refinement).
SR �η SA iff SR �D

ρ SA et D = ∅ et ¬ divτ (SR, SA).

In the rest of the paper, we use properties proven in [14].
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3 Modular Refinement

3.1 Modules

In a concurrent setting, systems are often modelled using a parallel composition
of subsystems sharing variables, called modules in [12,13,2]. We consider the
modules sharing global variables from the set V . Let M1 and M2 be two modules.
We introduce the parallel composition of M1 and M2, denoted M1‖M2, which
is a module that has exactly the behaviours of M1 and M2. Local behaviours of
M1 (resp. M2) are the transitions labelled in E1

� E2 (resp. E2
� E1), whereas

global behaviours are the transitions labelled in E1 ∪ E2.

Definition 6 (Parallel Composition). Let M1 = (Q1, Q1
0, E

1, T 1, V, l1) and
M2 = (Q2, Q2

0, E
2, T 2, V, l2) be two modules. Their composition is defined by

M1‖M2 = (Q, Q0, E, T, V, l), where
- Q = Q1 ∪ Q2,
- Q0 = Q1

0 ∪ Q2
0,

- E = E1 ∪ E2,

- T = T 1 ∪ T 2,

- ∀q ∈ Q1 ∪ Q2, l(q) =
{

l1(q), if q ∈ Q1

l2(q), if q ∈ Q2

Notice that the above definition contains no procedure to obtain modules M1

and M2; it is used to prove the component-based refinement in Section 4.

cl=close
ar=back

cl=open
ar=back

cl=close
ar=front

cl=open
ar=front

C CFO

(a) MClip

cl=close

ar=back

cl=open

ar=back

cl=close

ar=front

cl=open

ar=front

B

B

FO

(b) MArm

cl=close
ar=back

cl=open
ar=back

cl=close
ar=front

cl=open
ar=front

C C

B

B

FO

(c) MClip‖MArm

Fig. 4. Modules

Figure 4 gives two modules MClip and
MArm of the controller. They interact by
modifying the global variables cl and ar to
give the parallel composition MClip‖MArm.

Property 2 (Commutativity of ‖).
∀M1, M2. M1‖M2 = M2‖M1

Property 3 (Associativity of ‖).
∀M1, M2, M3.(M1‖M2)‖M3=M1‖(M2‖M3)

Property 4 (Invariance Preservation of ‖).
Given sp ∈ SPV , if M1 |= sp and M2 |= sp
then M1‖M2 |= sp.

The above property can be extended to dynamic invariants, that are LTL prop-
erties of the form �(sp1 ⇒ sp2).

3.2 Modules vs. Weak Refinement

Instead of verifying the refinement of the composition of the modules, we pro-
pose verifying the refinement of each module separately reaching a conclusion
about the refinement of their parallel composition automatically. Unfortunately,
the strict refinement relation cannot be compositionally established because of
interleaving of τ -transitions in the modules composition as illustrated in Fig. 5.
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r0 r1

r3

e1

τ

(a) M1

r0 r1

r2r3

τ

τ

e2

(b) M2

r0 r1

r2r3

e1

τ

τ

τ
e2

(c) M1‖M2

Fig. 5. Interleaving of τ -transitions

Let us examine the weak refinement
relation clauses. It is easy to see that
the τ -simulation (the strict transition
refinement and the stuttering transi-
tion refinement) can be compositionally
verified since modules only use shared
global variables in V . For compositional
deadlock checking, the idea is as fol-
lows. Suppose that MR1 �D1

ρ MA1

and MR2 �D2
ρ MA2. A state qr in D1 ∪ D2 is a deadlock in MR1‖MR2 iff

– qr is a deadlock in both modules: qr ∈ D1 ∩ D2;
– qr is a deadlock in a module and not a state in the other one: qr ∈ D1 � Q2

R

or qr ∈ D2 � Q1
R.

This deadlock reduction, denoted D1�D2, can be computed by

D1�D2 = (D1 ∩ D2) ∪ (D1 � Q2
R) ∪ (D2 � Q1

R) (1)

Property 5 (Associativity of �). (D1�D2)�D3 = D1�(D2�D3).

Now we are ready to establish – in a compositional manner – the weak refinement
of the composition of the modules.

Theorem 2 (Modular Refinement). Let MA1‖MA2 and MR1‖MR2 be
modules compositions. One has

MR1 �D1
ρ MA1, MR2 �D2

ρ MA2

MR1‖MR2 �D1�D2
ρ MA1‖MA2

Proof is in Appendix A.1. Theorem 2 can be generalised to n modules thanks
to Property 3 and Property 5.

4 Component-Based Refinement

The model of the modules is not well-adapted to verify the strict refinement in a
compositional way. To this end, a constraint synchronised product is introduced
allowing specifying the synchronised behaviours of components.

4.1 Component-Based System

Let consider independent interacting components. The whole component-based
system is a rearrangement of its separate part, i.e. the components and their
interactions. Let ’−’ denote the fictive action “skip”. To specify interactions
between components, a synchronisation set syn is defined.

Definition 7 (Synchronisation Set). Let S1 and S2 be two components. A
synchronisation set syn is a subset of {(e1, e2)/sp| e1 ∈ E1 ∪ {−} ∧ e2 ∈ E2 ∪
{−} ∧ sp ∈ SPV1∪V2}.
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In words, the set syn contains tuples of labels (e1, e2) with feasibility con-
ditions sp scheduling the behaviours of components. Given the whole system
(S1, S2, syn), the rearrangement of its parts is described by

Definition 8 (Constraint Synchronised Product). Let (S1, S2, syn) be a
component-based system. The constraint synchronised product S1 ×syn S2, is the
tuple (Q, Q0, E, T, V, l) where
- Q ⊆ Q1 × Q2,
- Q0 ⊆ Q1

0 × Q2
0,

- V = V 1 ∪ V 2,

- E = {(e1, e2) | (e1, e2)/sp ∈ syn},
- l((q1, q2)) = l1(q1) ∪ l2(q2),
- T ⊆ Q × E × Q is obtained by :

[8.1] (q1, q2)
(e1,−)−→ (q′

1, q2) ∈ T if (e1, −)/sp ∈ syn, q1
e1→ q′

1 ∈ T 1 and (q1, q2) |= sp,

[8.2] (q1, q2)
(−,e2)−→ (q1, q

′
2) ∈ T if (−, e2)/sp ∈ syn, q2

e2→ q′
2 ∈ T 2 and (q1, q2) |= sp, or

[8.3] (q1, q2)
(e1,e2)−→ (q′

1, q
′
2) ∈ T if (e1, e2)/sp ∈ syn, q1

e1→ q′
1 ∈ T 1, q2

e2→ q′
2 ∈ T 2 and

(q1, q2) |= sp

For our running example, Fig. 6 presents the components ArmA, ClipA and
ElevA, the synchronisation set synA, and the computed entire system ControlA
= (ArmA, ClipA, ElevA, synA).
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U2 D1
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(−, O, −)/(ar = back ∧ el = up)
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(−, C, −)/(ar = front ∧ el = up)
∨(ar = back ∧ el = down),

(F, −, −)/(cl = open ∧ el = up)
∨(cl = close ∧ el = down),

(B, −, −)/(cl = close ∧ el = up)
∨(cl = open ∧ el = down),

(−, −, U1)/cl = close ∧ ar = back,
(−, −, U2)/cl = close ∧ ar = back,
(−, −, D1)/cl = close ∧ ar = back,
(−, −, D2)/cl = close ∧ ar = back,
(F, O, −)/el = up,
(B, C, −)/el = down,
(B, C, U1)/true

(d) synA
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el=down
ar=back
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Fig. 6. (ArmA, ClipA, ElevA, synA): Components and Synchronisation Set

Definition 8 can be easily extended to n components. Notice that the syn-
chronised product above is more expressive than the well-known synchronised
product by Arnold and Nivat [4,3] because of feasibility conditions. Indeed, each
transition of our product operator can involve either joint transitions of compo-
nents or single transition of one component.

Notice that there is a τ -simulation between the whole system and a compo-
nent. Consequently, the constraint synchronised product preserves safety LTL
properties from local components to the component-based system. Furthermore,
the conjunction of local safety LTL properties is ensured for the entire system.
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Property 6 (Safety LTL Component-based Preservation). Let φ1 and φ2 be safety
LTL properties. If S1 |= φ1 and S2 |= φ2 then (S1, S2, syn) |= φ1 ∧ φ2

In addition, every LTL property being the conjunction of a safety property and
a liveness property [1], its safety part is preserved by our product operator.

4.2 Component-Based System vs. Modules

Each component is a context-free component. However, for the compositional
refinement verification, its environment has to be taken into account. For that
purpose, we define an expanded component, that is a component in the context
of the other components.

Definition 9 (Expanded component). Let (S1, S2, syn) be a component-
based system. The expanded component [S1] corresponding to S1 is defined by

[S1] def= S1 ×[syn]S1 S2

where [syn]S1
def= {(e1, e2)/sp | ((e1, e2)/sp) ∈ syn ∧ e1 ∈ E1 ∧ e2 ∈ E2 ∪ {−}}

el=down
ar=front
cl=open

el=down
ar=back
cl=close

el=mid
ar=back
cl=close

el=up
ar=back
cl=close

(-,-,U1) (-,-,D2)

(-,-,U2) (-,-,D1)
(B,C,U1)

Fig. 7. [ElevA]

In the previous definition, the synchronisa-
tion set is restricted to conserve only behaviours
involving the considered component. The ex-
panded component [S2] is similarly defined. No-
tice that both expanded components are mod-
ules (cf. Section 3) defined over the same set of
global variables V 1 ∪ V 2. The parallel compo-
sition of these modules gives rise to the whole
component-based system.

Property7 (Component-based System vs. Mod-
ules). (S1, S2, syn) = S1×synS2 = [S1] ‖ [S2]

Figure 7 gives the expanded component
[EleveA] computed from (ArmA, ClipA,

ElevA, synA). To illustrate Property 7 the other expanded components [ArmA]
and [ClipA] can be built, and we have the whole system [ArmA] ‖ [ClipA] ‖
[ElevA] without building it.

4.3 Component-Based System vs. Refinement

We show now that the constraint synchronised product semantics makes it possi-
ble to compositionally verify the strict refinement relation; notably, by resolving
the interleaving of τ -transitions and reducing deadlocks more efficiently.

Let (SA1, SA2, synA) and (SR1, SR2, synR) be two component-based sys-
tems. The lack of τ -cycles in the whole component-based system can be derived
from its local checking for each component separately.
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Property 8 (Lack of τ-cycles). If ¬ divτ (SR1, SA1) and ¬ divτ (SR2, SA2) then
¬ divτ ((SR1, SR2, synR), (SA1, SA2, synA)).

Proof is by contradiction. There are 3 cases of relabelling by τ to consider, see
Definition 5.7 in [14]. The interested reader can refer to [14] for more detail.

The deadlock reduction can be done more efficiently too. Intuitively, a state
inducing a new deadlock in an expanded component does not induce a deadlock
in the whole system if there exists an expanded component where this state
is not a deadlock state. The checking of whether a state is in an expanded
component state space can be done by studying the synchronisation set. Suppose
[SR1] �D1

ρ [SA1]. The reduced deadlock set RD1 is defined by

RD1
def= D1 � {q | q ∈ D1 ∧ ∃e2. (e2 ∈ E2

R ∧ (−, e2)/sp ∈ synR ∧ q |= sp)} (2)

We want to emphasise that for an expanded component, the deadlock reduction
is independent from the other expanded components. Property ?? allows us
to apply the modular refinement to component-based systems using expanded
components as modules.

Theorem 3 (Component-based Refinement). Let (SA1, SA2, synA) and
(SR1, SR2, synR) be two component-based systems. Then

¬ divτ (SR1, SA1), [SR1] �D1
ρ [SA1], RD1 = ∅,

¬ divτ (SR2, SA2), [SR2] �D2
ρ [SA2], RD2 = ∅

(SR1, SR2, synR) �η (SA1, SA2, synA)

Proof is in Appendix A.2. Theorem 3 can be given for n components. It provides
a compositional refinement verification algorithm based on the computation,
for each refined expanded component [SRi] separately, of the relation ρ. The
complexity order of this refinement verification algorithm is O(

∑n
i=1 |[SRi]|).

However, the greatest memory space used is maxn
i=1|[SRi]|, at most: the ex-

panded component building, the weak refinement verification and the deadlock
reduction can be done sequentially.

5 Conlusion

In areas like telecommunication or manufacturing, complex systems may be de-
rived from initial models by composition and refinement. Composition com-
bines separate parts and refinements add new details for systematically deriving
component-based systems where safety properties are preserved. Furthermore,
the state explosion can be alleviated by considering the components one by one.

Our compositional framework is well-adapted for studying components instead
of the whole system. Indeed, the weak refinement verification of the composition
of the modules can be reduced to the weak refinements of its modules. Further-
more, the constraint synchronised product advocated in this paper allows us to
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establish the strict refinement of the component-based systems by checking the
weak refinements of its expanded components viewed as the modules.

Finally, our compositional framework gives ways to postpone the model-
checking blow-up. Actually, a safety LTL property is 1) preserved from an ab-
stract component to a whole abstract component-based system, and 2) preserved
from that system to a whole refined component-based system (see Fig. 1). The
usefulness of our approach is illustrated by our previous results [10,11] and con-
firmed by the experimental results [14].

Future work concerns reactive systems. We are going to investigate what
model of open systems can be used to obtain a closed system model by adding
an environment specification. At that stage, simulation relations should be es-
tablished again.

Related works. The assume-guarantee paradigm (see for instance [6,7,16]) is
a well-studied framework for compositional verification. The assume-guarantee
paradigm requires the hypotheses on the component environment strong enough
to imply any potential constraint. The way out is the lazy composition approach
by Shankar [18] which works at the level of the specification of component be-
haviour and discharges proof obligations lazily.

In our approach, the component environment is taken into account by increas-
ing a component model to automatically build an expanded component. Like
the lazy composition, the constraint synchronised product allows us to proceed
through a refinement-based specification and a component-based verification ap-
proaches. The strict refinement relation being a divergence-sensitive completed
τ -simulation, we anticipate that it is more expressive than the closed systems
refinement by Shankar.
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A Proofs

A.1 Proof of Theorem 2

Let M
def= {(qR, qA) | qR ∈ Q1

R ∪ Q2
R ∧ qA ∈ Q1

A ∪ Q2
A}. We show that M verifies

all conditions of definition 5 of ρ.

1. Strict refinement: suppose (qR, e, q′R) ∈ TR and e ∈ EA.
We must prove there exist qA ∈ QA and q′A ∈ QA such that (qA, e, q′A) ∈ TA,
qRρqA and q′Rρq′A.

By definition EA = E1
A ∪ E2

A. There are 2 cases for e.
– e ∈ E1

A. We have (qR, e, q′R) ∈ T 1
R. Since MR1 �D1

ρ MA1, there exist
qA ∈ Q1

A and q′A ∈ Q1
A such that qRρqA, (qA, e, q′A) ∈ T 1

A and q′Rρq′A. qA

and q′A belong to QA = Q1
A ∪ Q2

A.
– e ∈ E2

A. We have (qR, e, q′R) ∈ T 2
R. Since MR2 �D2

ρ MA2, there exist
qA ∈ Q2

A and q′A ∈ Q2
A such that qRρqA, (qA, e, q′A) ∈ T 2

A and q′Rρq′A. qA

and q′A belong to QA = Q1
A ∪ Q2

A.
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2. stuttering refinement: suppose (qR, τ, q′R) ∈ TR.
We must prove there exists qA ∈ QA such that qRρqA and q′RρqA.

By definition EA = E1
A ∪ E2

A and ER = E1
R ∪ E2

R. There are 2 cases for
e\τ ∈ ER � EA.
– e ∈ E1

R � E1
A. We have (qR, e\τ, q′R) ∈ T 1

R. Since MR1 �D1
ρ MA1,

there exists qA ∈ Q1
A such that qRρqA and q′RρqA. qA belongs to QA =

Q1
A ∪ Q2

A.
– e ∈ E2

R � E2
A. We have (qR, e\τ, q′R) ∈ T 2

R. Since MR2 �D2
ρ MA2,

there exists qA ∈ Q2
A such that qRρqA and q′RρqA. qA belongs to QA =

Q1
A ∪ Q2

A.
3. old or new deadlocks: suppose qR � and qR ∈ QR.

We must prove there exists qA ∈ QA such that qRρwqA and qA � or qR ∈
D1�D2.

By definition QR = Q1
R ∪ Q2

R = (Q1
R ∩ Q2

R) ∪ (Q1
R � Q2

R) ∪ (Q1
R � Q2

R).
There are 3 cases for qR.
– qR ∈ Q1

R � Q2
R. Since MR1 �D1

ρ MA1, either there exists qA ∈ Q1
A such

that qA � and qRρqA. This implies that qA belongs to QA ; or qR ∈ D1
and qRρqA. As qR ∈ Q1

R � Q2
R and qR ∈ D1, qR ∈ D1 � Q2

R. Then qR

belongs to D1�D2.
– qR ∈ Q2

R � Q1
R. Since MR2 �D2

ρ MA2, either there exists qA ∈ Q2
A such

that qA � and qRρqA. Then qA belongs to QA ; or qR ∈ D2 and qRρqA.
As qR ∈ Q2

R � Q1
R and qR ∈ D2, qR ∈ D2 � Q1

R. Then qR belongs to
D1�D2.

– qR ∈ Q1
R ∩ Q2

R. SinceMR1 �D1
ρ MA1, there exists qA ∈ Q1

A such that
either qA � and qRρqA (1) or qRρqA and qR ∈ D1 (2).
Since MR2 �D2

ρ MA2, there exists qA ∈ Q2
A such that either qA � and

qRρqA (3) or qRρqA and qR ∈ D2 (4).
If (1) and (3), there exists qA ∈ Q1

A ∪ Q2
A such that qA �.

If (1) and (4), there exists qA ∈ Q1
A such that qA �.

If (2) and (3), there exists qA ∈ Q2
A such that qA �.

If (2) and (4), qR ∈ D1 ∩ D2: qR belongs to D1�D2.

A.2 Proof of Theorem 3

– [SR1] �D1
ρ [SA1], [SR2] �D2

ρ [SA2] and Property ?? imply (SR1, SR2, synR)
�D1�D2

ρ (SA1, SA2, synA) by Theorem 2.
– RD1 = ∅ and RD2 = ∅ imply D1�D2 = ∅.
– ¬ divτ (SR1, SA1) and ¬ divτ (SR2, SA2) imply ¬ divτ ((SR1, SR2, synR),

(SA1, SA2, synA)) by Property 8.

Then we have (SR1, SR2, synR) �η (SA1, SA2, synA) by Property 1.
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Abstract. While Abstract State Machines (ASMs) provide a general
purpose development method, it is advantageous to provide extensions
that ease their use in particular application areas. This paper focuses on
such extensions for the benefit of a “refinement calculus” in the area of
data warehouses and on-line analytical processing (OLAP). We show that
providing typed ASMs helps to exploit the existing logical formalisms
used in data-intensive areas to define a ground model and refinement
rules. We also note that the extensions do not increase the expressiveness
of ASMs, as each typed ASM will be equivalent to an “ordinary” one.

1 Introduction

The research reported in this article is part of a project that aims at providing
sound and complete refinement rules for the development of distributed data
warehouses and on-line analytical processing (OLAP) systems [21]. The rationale
is that such a “refinement calculus” would simplify the development task and
at the same time increase the quality of the resulting systems. As outlined in
[14] we base our work on Abstract State Machines (ASMs, [5]), as they have
been already proven their usefulness in many application areas. Furthermore, the
ASM method explicitly supports our view of systems development to start with
an initial specification called ground model [3] that is then subject to refinements
[4]. This is similar to the approach taken in [12], which contains a refinement-
based approach to the development of data-intensive systems using a variant of
the B method [1].

The general idea for the data warehouse ground model is to employ three
interrelated ASMs, one for underlying operational databases, one for the data
warehouse, and one for dialogue types [10] that can be used to integrate views on
the data warehouse with OLAP functionality [18]. For the data warehouse level
the model of multi-dimensional databases [8], which are particular relational
databases, can be adopted. Then a large portion of the refinement work has to
deal with view integration as predicted one of the major challenges in this area
in [19]. The work in [11] discusses a rule-based approach for this task without
reference to any formal method.

However, both the ground model and the refinement rules tend to become
difficult, as well-known database features such as declarative query expressions,
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views, bulk updates, etc. are not well supported. Therefore, we believe it is a
good idea to incorporate such features into the ASM method to make it easier to
use and hence also more acceptable, when applied in an area such as OLAP. This
leads us to typed ASMs (TASMs), for which we focus on the incorporation of
relations and bulk update operations. There are other approaches to introducing
typed versions of ASMs, e.g. [6] following similar ideas, but with different focus,
which lead to using different type systems. The work in [20] presents a very
general approach to combine ASMs with type theory.

In Section 2 we give a brief introduction on ASMs method, in Section 3 we in-
troduce TASMs and define their semantics by runs following the usual approach
used for ASMs. Then in Section 4 we show how TASMs can be used to define
a simple ground model for data warehouses. Finally, in Section 5 we discuss
refinement rules for TASMs.

2 Abstract State Machines in a Nutshell

Abstract State Machines (ASMs, [5]) have been developed as means for high-
level system design and analysis. The general idea is to provide a through-going
uniform formalism with clear mathematical semantics without dropping into the
pitfall of the “formal methods straight-jacket”.

The systems development method itself just presumes to start with the def-
inition of a ground model ASM (or several linked ASMs), while all further sys-
tem development is done by refining the ASMs using quite a general notion
of refinement. So basically the systems development process with ASMs is a
refinement-validation-cycle. That is a given ASM is refined and the result is val-
idated against the requirements. Validation may range from critical inspections
to the usage of test cases and evaluation of executable ASMs as prototypes. This
basic development process may be enriched by rigorous manual or mechanised
formal verification techniques. However, the general philosophy is to design first
and to postpone rigorous verification to a stage, when requirements have be
almost consolidated.

2.1 Simple ASMs

As explained so far, we expect to define for each stage of systems development a
collection M1, . . . , Mn of ASMs. Each ASM Mi consists of a header and a body.
The header of an ASM consists of its name, an import- and export-interface,
and a signature. Thus, a basic ASM can be written in the form

ASM M
IMPORT M1(r11, . . . , r1n1), . . . , Mk(rk1, . . . , rknk

)
EXPORT q1, . . . , q�

SIGNATURE . . .

Here rij are the names of functions and rules imported from the ASM Mi defined
elsewhere. These functions and rules will be defined in the body of Mi — not in
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the body of M — and only used in M . This is only possible for those functions
and rules that have explicitly been exported. So only the functions and rules
q1, . . . , q� can be imported and used by ASMs other than M . As in standard
modular programming languages this mechanism of import- and export-interface
permits ASMs to be developed rather independently from each other leaving the
definition of particular functions and rules to “elsewhere”.

The signature of an ASM is a finite list of function names f1, . . . , fm, each of
which is associated with a non-negative integer ari, the arity of the function fi. In
ASMs each such function is interpreted as a total function fi : Uari → U ∪ {⊥}
with a not further specified set U called super-universe and a special symbol
⊥ /∈ U . As usual, fi can be interpreted as a partial function Uari � U with
domain dom(fi) = {x ∈ Uari | fi(x) �= ⊥}.

The functions defined for an ASM including the static and derived functions,
define the set of states of the ASM.

In addition, functions can be dynamic or not. Only dynamic functions can
be updated, either by and only by the ASM, in which case we get a controlled
function, by the environment, in which case we get a monitored function, or by
none of both, in which case we get a derived function. In particular, a dynamic
function of arity 0 is a variable, whereas a static function of arity 0 is a constant.

2.2 States and Transitions

If fi is a function of arity ari and we have f(x1, . . . , xari) = v, we call the pair
� = (f, x) with x = (x1, . . . , xari) a location and v its value. Thus, each state of
an ASM may be considered as a set of location/value pairs.

If the function is dynamic, the values of its locations may be updated. Thus,
states can be updated, which can be done by an update set, i.e. a set Δ of pairs
(�, v), where � is a location and v is a value. Of course, only consistent update
sets can be taken into account, i.e. we must have

(�, v1) ∈ Δ ∧ (�, v2) ∈ Δ ⇒ v1 = v2.

Each consistent update set Δ defines state transitions in the obvious way. If
we have f(x1, . . . , xari) = v in a given state s and ((f, (x1, . . . , xari)), v

′) ∈ Δ,
then in the successor state s′ we will get f(x1, . . . , xari) = v′.

In ASMs consistent update sets can be obtained from update rules, which can
be defined by the following language:

– the skip rule skip indicates no change;
– the update rule f(t1, . . . , tn) := t with an n-ary function f and terms

t1, . . . , tn, t indicates that the value of the location determined by f and
the terms t1, . . . , tn will be updated to the value of term t;

– the sequence rule r1 seq . . . seq rn indicates that the rules r1, . . . , rn will
be executed sequentially;

– the block rule r1 par . . . par rn indicates that the rules r1, . . . , rn will be
executed in parallel;
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– the conditional rule

if ϕ1 then r1 elsif ϕ2 . . . then rn endif

has the usual meaning that r1 is executed, if ϕ1 evaluates to true, otherwise
r2 is executed, if ϕ2 evaluates to true, etc.;

– the let rule let x = t in r means to assign to the variable x the value
defined by the term t and to use this x in the rule r;

– the forall rule forall x with ϕ do r enddo indicates the parallel execution
of r for all values of x satisfying ϕ;

– the choice rule choose x with ϕ do r enddo indicates the execution of r
for one value of x satisfying ϕ;

– the call rule r(t1, . . . , tn) indicates the execution of rule r with parameters
t1, . . . , tn (call by name).

Instead of seq we simply use ; and instead of par we write ‖. The idea is that
the rules of an ASM are evaluated in parallel. If the resulting update set is con-
sistent, we obtain a state transition. Then a run of an ASM is a finite or infinite
sequence of states s0 → s1 → s2 → . . . such that each si+1 is the successor state
of si with respect to the update set Δi that is defined by evaluating the rules of
the ASM in state si.

We omit the formal details of the definition of update sets from these rules.
These can be found in [5].

The definition of rules by expressions r(x1, . . . , xn) = r′ makes up the body
of an ASM. In addition, we assume to be given an initial state and that one of
these rules is declared as the main rule. This rule must not have parameters.

3 Typed Abstract State Machines

The 3-tier architecture for data warehouses and OLAP systems in [21,22] ba-
sically requires relations on the database and the data warehouse tiers, while
the OLAP tier requires sets of complex values. Therefore, following the line of
research in [13] we start with a type system

t = b | {t} | a : t | t1 × · · · × tn | t1 ⊕ · · · ⊕ tn | 1l

Here b represents a not further specified collection of base types such as CARD ,
INT, DATE , etc. {·} is a set-type constructor, a : t is a type constructor with
label a, which is introduced as attributes used in join operations. × and ⊕ are
constructors for tuple and union types. 1l is a trivial type. With each type t
we associate a domain dom(t) in the usual way, i.e. we have dom({t}) = {x ⊆
dom(t) | |x| < ∞}, dom(a : t) = {a : v | v ∈ dom(t)}, dom(t1 × · · · × tn) =
dom(t1)×· · ·×dom(tn), dom(t1 ⊕· · ·⊕ tn) =

∐n
i=1 dom(ti) (disjoint union), and

dom(1l) = {1}.
For this type systems we obtain the usual notation of subtyping, defined by

the smallest partial order ≤ on types satisfying
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– t ≤ 1l for all types t;
– if t ≤ t′ holds, then also {t} ≤ {t′};
– if t ≤ t′ holds, then also a : t ≤ a : t′;
– if tij ≤ t′ij

hold for j = 1, . . . , k, then t1 × · · · × tn ≤ t′i1 × · · · × t′ik
for

1 ≤ i1 < · · · < ik ≤ n;
– if ti ≤ t′i hold for i = 1, . . . , n, then t1 ⊕ · · · ⊕ tn ≤ t′1 ⊕ · · · ⊕ t′n.

We say that t is a subtype of t′ iff t ≤ t′ holds. Obviously, subtyping t ≤ t′

induces a canonical projection mapping πt
t′ : dom(t) → dom(t′).

The signature of a TASM is defined analogously to the signature of an “or-
dinary” ASM, i.e. by a finite list of function names f1, . . . , fm. However, in a
TASM each function fi now has a kind ti → t′i involving two types ti and t′i. We
interpret each such function by a total function fi : dom(ti) → dom(t′i). Note
that using t′i = t′′i ⊕ 1l we can cover also partial functions. In addition, functions
can be dynamic or not. Only dynamic functions can be updated, either by and
only by the ASM, in which case we get a controlled function, by the environment,
in which case we get a monitored function, or by none of both, in which case we
get a derived function.

The functions defined for a TASM including the static and derived functions,
define the set of states of the TASM. More precisely, each pair � = (fi, x) with
x ∈ dom(ti) defines a location with v = fi(x) as its value. Thus, each state of a
TASM may be considered as a set of location/value pairs.

We call a function R of kind t → {1l} a relation. This generalises the standard
notion of relation, in which case we would further require that t is a tuple type of
a1 : t1×· · ·×an : tn. In particular, as {1l} can be considered as a truth value type,
we may identify R with a subset of dom(t), i.e. R � {x ∈ dom(t) | R(x) �= ∅}.
In this spirit we also write x ∈ R instead of R(x) �= ∅, and x /∈ R instead of
R(x) = ∅.

As with ASMs we define state transitions via update rules, which are defined
by the following language (we deviate from the syntax used in ASMs):

– the skip rule skip, which indicates no change;
– the assignment rule f(τ) := τ ′ with a function f : t → t′ and terms τ, τ ′

of type t and t′, respectively, which indicates that the value of the location
determined by f and τ will be updated to the value of term τ ′;

– the sequence rule r1; . . . ; rn, which indicates that the rules r1, . . . , rn will be
executed sequentially;

– the block rule r1‖ . . . ‖rn, which indicates that the rules r1, . . . , rn will be
executed in parallel;

– the conditional rule ϕ1{r1} � ϕ2{r2} � · · · � ϕn{rn}, which has the usual
meaning that r1 is executed, if ϕ1 evaluates to true, otherwise r2 is executed,
if ϕ2 evaluates to true, etc.;

– the let rule Λx = τ{r}, which means to assign to the variable x the value
defined by the term τ and to use this value in the rule r;

– the forall rule Ax • ϕ{r}, which indicates the parallel execution of r for all
values of x satisfying ϕ;
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– the choice rule @x • ϕ{r} indicates the execution of r for one value of x
satisfying ϕ;

– the call rule r(τ) indicates the execution of rule r with parameters τ .

Each update rule r defines an update set Δ(r) in the same way as for “ordinary”
ASMs [5, p.74]. Such an update set is consistent iff (�, v1) ∈ Δ ∧ (�, v2) ∈ Δ ⇒
v1 = v2 holds for all locations. Then state transitions are defined by consistent
update sets. Then a run of a TASM is a finite or infinite sequence of states s0 →
s1 → s2 → . . . such that each si+1 is the successor state of si with respect to the
update set Δi that is defined by evaluating the rules of the TASM in state si.

What is different in TASMs is that the terms used in the rules are typed, i.e.
for each type t we obtain a set Tt of terms of type t. Then also the formulae ϕ
used in the rules change in that equational atoms τ1 = τ2 can only be built from
terms τ1, τ2 that have the same type. All the rest remains unchanged.

So let us assume that for each type t we are given a set Vt of variables of type
t. Then we should have Vt ⊆ Tt and dom(t) ⊆ Tt, and further terms can be built
as follows:

– For τ ∈ Tt and t ≤ t′ we get πt
t′(τ) ∈ Tt′ .

– For τ ∈ Tt1×···×tn we get πi(τ) ∈ Tti .
– For τi ∈ Tti for i = 1, . . . , n we get (τ1, . . . , τn) ∈ Tt1×···×tn , ιi(τi) ∈

Tt1⊕···⊕tn , and {τi} ∈ T{ti}.
– For τ1, τ2 ∈ T{t} we get τ1 ∪ τ2 ∈ T{t}, τ1 ∩ τ2 ∈ T{t}, and τ1 − τ2 ∈ T{t}.
– For τ ∈ T{t}, a constant e ∈ dom(t′) and static functions f : t → t′ and

g : t′ × t′ → t′ we get src[e, f, g](τ) ∈ Tt′ .
– For τi ∈ T{ti} for i = 1, 2 we get τ1 	
 τ2 ∈ T{t1��t2} using the maximal

common subtype t1 	
 t2 of t1 and t2.
– For x ∈ Vt and a formula ϕ we get Ix.ϕ ∈ Tt.

The last three constructions for terms need some more explanation. Structural
recursion src[e, f, g](τ) is a powerful construct for database queries [17]. It is
defined as follows:

– src[e, f, g](τ) = e, if τ = ∅;
– src[e, f, g](τ) = f(v), if τ = {v};
– src[e, f, g](τ) = g(src[e, f, g](v1), src[e, f, g](v2)), if τ = v1 ∪ v2 ∧ v1 ∩ v2 = ∅.

In order to be uniquely defined, the function g must be associative and
commutative with e as a neutral element.

We can use structural recursion to specify comprehension, which is extremely
important for views. We get {x ∈ τ | ϕ} = src[∅, fτ , ∪](τ) using the static
function fτ with fτ (x) = {x}, if ϕ(x) holds, else fτ (x) = ∅, which can be
composed out of very simple functions [13].

For the join τ1 	
 τ2, using [[·]]s to denote the interpretation in a state s, we
get [[τ1 	
 τ2]]s = {v ∈ dom(t1 	
 t2)

| ∃v1 ∈ [[τ1]]s, v2 ∈ [[τ2]]s.(πt1��t2
t1 (v) = v1 ∧ πt1��t2

t2 (v) = v2)},
which generalises the natural join from relational algebra [13].
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Fig. 1. The general architecture of a data warehouse and OLAP

Ix.ϕ stands for “the unique x satisfying ϕ”. If such an x does not exist,
the term will be undefined, i.e. we have [[Ix.ϕ]]s = v, if [[{x | ϕ}]]s = {v},
otherwise it is undefined. If an undefined term appears in a rule, the rule defines
an inconsistent update set.

For relations R of kind t → {1l} we further permit bulk assignments, which
take one of the following forms R := τ (for replacing), R :+k τ (for inserting),
R :−k τ (for deleting), and R :&k τ (for updating), using each time a term τ of
type {t} and a supertype k of t. This is an old idea adopted from the database
programming language Pascal/R [16]. These constructs are shortcuts for the
following TASM rules:

– R := τ represents Ax • x ∈ τ{R(x) := {1}}‖Ax • x ∈ R ∧ x /∈ τ{R(x) := ∅}
– R :+k τ represents Ax • (x ∈ τ ∧ ∀y(y ∈ R → πt

k(x) �= πt
k(y)){R(x) := {1}}

– R :−k τ represents Ax • (x ∈ R ∧ ∃y(y ∈ τ ∧ πt
k(x) = πt

k(y)){R(x) := ∅}
– R :&k τ represents

Ax • (x ∈ R ∧ ∃y(y ∈ τ ∧ πt
k(x) = πt

k(y)){R(x) := ∅};

Ax • x ∈ τ ∧ ∀y(y ∈ R ∧ y �= x → πt
k(x) �= πt

k(y)){R(x) := {1}}

Up to now we have defined a typed ASM. If we translate a TASM M into an
ASM Φ(M), we have the following theorem:

Theorem 1. For each TASM M there is an equivalent ASM Φ(M).

Of course, this theorem also follows immediately from the main results on the
expressiveness of ASMs in [2,7].

4 A Data Warehouse Ground Model in TASMs

Following the basic ideas in [22], to separate the output from the input, we
get the three-tier architecture of the data warehouse shown in Figure 1. At the
bottom tier, we have the operational database model, which has the control of
the updates to data warehouse. The updates are abstracted as data extraction



Refinements in Typed Abstract State Machines 317

Part Offer Store

Buys Customer

pricedate

cost

kind description sid address

cid name

address

timequantity

pid

Purchase
ShopCustomer

Product

Time

money-sale profit

quantity

address

name

description

pid category

name town state

region phone sid

…

cid

Purchase
ShopCustomer

Product

Time

money-sale profit

quantity

address

name

description

pid category

name town state

region phone sid

…

cid

Fig. 2. The operational database and data warehouse schemata

from the operational database to maintain the freshness of the data warehouse.
In the middle tier, we have the data warehouse which is modelled in star schema
[9]. At the top tier, we have the data marts, which are constructed out of dialogue
objects with OLAP operations. Based on this three-tier architecture, we end up
with three linked ASMs as in [22], or TASMs when we apply typed ASM. In the
following we will use one of them as an example to show the difference between
the ground model in ASM and the one in TASM.

We again use the grocery store as the example. In this case we have a single
operational database with five relation schemata as illustrated in the left hand
HERM diagram in Figure 2, the start schema for the data warehouse in the right
hand of the figure.

We present DB-ASM (in ASM) and DB-TASM (in TASM) in the following,
with our focus on the affected part, i.e. the data extraction for Purchase, the
fact table in the data warehouse star schema:

ASM DB-ASM
IMPORT DW-ASM(Shop, Product, Customer, Time, Purchase)
EXPORT extract purchase
SIGNATURE . . .
BODY

main = . . .
extract purchase =
forall i, p, s, t, p′, c with ∃q.Buys(i, s, p, q, t) �= ⊥ ∧

∃n, a.Customerdb(i, n, a) �= ⊥ ∧∃k, d.Part(p, k, d) �= ⊥ ∧
∃a′.Store(s, a′) �= ⊥ ∧∃d.(Offer(p, s, p′, c, d) �= ⊥ ∧Date(t) = d

do let Q = sum(q | Buys(i, s, p, q, t) �= ⊥), S = Q ∗ p′,
P = Q ∗ (p′ − c)

in Purchase(i, p, s, t, Q, S, P ) := 1
enddo

ASM DB-TASM
IMPORT DW-TASM(Shop, Product, Customer, Time, Purchase)
EXPORT extract purchase
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SIGNATURE . . .
BODY

main = . . .
extract purchase = Purchase :&{cid×pid×sid×time}

{(i, s, p, t, Q, S, P ) | ∃pr, c.((i, s, p, t, pr, c) ∈
πi,s,p,t,pr,c(Buys 	
 Customerdb 	
 Part 	
 Store 	
 Offer 	
 Date(t))
∧ Q = src[0, πq, +]({(i′, s′, p′, q, t′) | (i′, s′, p′, q, t′) ∈ Buys ∧

i′ = i ∧ s′ = s ∧ p′ = p ∧ t′ = t})
∧ S = Q ∗ pr ∧ P = Q ∗ (pr − c))}

As shown above, we have redefined sum function using structural recursion
constructor, and used the bulk update operation in extract purchase in the typed
model DB-TASM.

5 Refinement of Typed ASMs

The general notion of refinement in ASMs relates two ASMs M and M∗ in the
following way:

– a correspondence between some states s of M and some states s∗ of M∗, and
– a correspondence between the runs of M and M∗ involving states s and s∗,

respectively.

Keeping in mind that we are looking at the application of TASMs for data
warehouses and OLAP systems, we first clarify what are the states of interest in
this definition. For this assume that names of functions, rules, etc. are completely
different for M and M∗. Then consider formulae A that can be interpreted by
pairs of states (s, s∗) for M and M∗, respectively. Such formulae will be called
abstraction predicates. Furthermore, let the rules of M and M∗, respectively, be
partitioned into “main” and “auxiliary” rules such that there is a correspondence
� between main rules r of M and main rules r∗ of M∗. Finally, take initial states
s0, s

∗
0 for M and M∗, respectively.

Definition 1. A TASM M∗ is called a (weak) refinement of a TASM M iff
there is an abstraction predicate A with (s0, s

∗
0) |= A and there exists a corre-

spondence between main rule r of M and main rule r∗ of M∗ such that for all
states s, s of M, where s is the successor state of s with respect to the update set
Δr defined by the main rule r, there are states s∗, s∗ of M∗ with (s, s∗) |= A,
(s, s∗) |= A, and s∗ is the successor state of s∗m with respect to the update set
Δr∗ defined by the main rule r∗.

While Definition 1 gives a proof obligation for refinements in general, it still
permits too much latitude for data-intensive applications. In this context we
must assume that some of the controlled functions in the signature are meant to
be persistent. For these we adopt the notion of schema, which is a subset of the
signature consisting only of relations. Then the first additional condition should
be that in initial states these relations are empty.
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The second additional requirement is that the schema S∗ of the refining TASM
M∗ should dominate the schema S of TASM M. For this we need a notion of
computable query. For a state s of a TASM M let s(S) define its restriction to
the schema. We first define isomorphisms starting from bijections ιb : dom(b) →
dom(b) for all base types b. This can be extended to bijections ιt for any type t
as follows:

ιt1×···×tn(x1, . . . , xn) = (ιt1 (x1), . . . , ιtn(xn))
ιt1⊕···⊕tn(i, xi) = (i, ιti(xi))
ι{t}({x1, . . . , xk}) = {ιt(x1), . . . , ιt(xk)}

Then ι is an isomorphism of S iff for all states s, the permuted state ι(s), and
all R : t → {1l} in S we have R(x) �= ∅ in s iff R(ιt(x)) �= ∅ in ι(s). A query
f : S → S∗ is computable iff f is a computable function that is closed under
isomorphisms.

Definition 2. A refinement M∗ of a TASM M with abstraction predicate A is
called a strong refinement iff the following holds:

1. M has a schema S = {R1, . . . , Rn} such that in the initial state s0 of M we
have Ri(x) = ∅ for all x ∈ dom(ti) and all i = 1, . . . , n.

2. M∗ has a schema S∗ = {R∗
1, . . . , R

∗
m} such that in the initial state s∗0 of M∗

we have R∗
i (x) = ∅ for all x ∈ dom(t∗i ) and all i = 1, . . . , m.

3. There exist computable queries f : S → S∗ and g : S∗ → S such that for
each pair (s, s∗) of states with (s, s∗) |= A we have g(f(s(S))) = s(S).

Definition 2 provides a stronger proof obligation for refinements in the appli-
cation area we are interested in. Furthermore, this notion of strong refinement
heavily depends on the presence of types.

Let us finally discuss refinement rules for data warehouses and OLAP systems.
According to [21] the integration of schemata and views on all three tiers is an
important part of such refinement rules. Furthermore, the intention is to set up
rules of the form

M � aFunc, . . . , aRule, . . .

M∗ � newFunc, . . . , newRule = . . .
ϕ

That is, we indicate under some side conditions ϕ, which parts of the TASM M
will be replaced by new functions and rules in a refining TASM M∗. Furthermore,
the specification has to indicate, which relations belong to the schema, and the
correspondence between main rules.

Example 1. As a sample refinement rule adopted from [11] take

M � R : (t11 ⊕ · · · ⊕ t1k) × t2 × · · · × tn → {1l}
M∗ � R∗

1 : t11 × t2 × · · · × tn → {1l}
R∗

2 : t12 × t2 × · · · × tn → {1l}
...

R∗
k : t1k × t2 × · · · × tn → {1l}
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Then the corresponding abstraction predicate A is as

∀x1, . . . , xn(R∗
i (x1, . . . , xn) = 1 ↔ R((i, x1), . . . , xn) = 1)

The corresponding computable queries f and g can be obtained as

R1 := {(x1, . . . , xn) | ((1, x1), x2, . . . , xn) ∈ R}‖ . . .‖
Rk := {(x1, . . . , xn) | ((k, x1), x2, . . . , xn) ∈ R}

and

R :=
k⋃

i=1

{((i, x1), x2, . . . , xn) | (x1, . . . , xn) ∈ Ri},

respectively.

6 Conclusion

In this paper we introduced a typed version of Abstract State Machines. The
motivation for this is that our research aims at applying the ground model / re-
finement method supported by ASMs in the area of data warehouses and OLAP
systems. For this it is advantageous to have bulk data types (sets, relations) and
declarative query expressions available, but these are not available in ASMs. So,
the major reason for adding them is to increase the applicability of ASMs. We
did, however, show that these extensions do not increase the expressiveness of
ASMs, as each typed ASM is equivalent to an “ordinary” one.

In a second step we approached refinement in typed ASMs. We clarified what
we want to achieve by refinements in data-intensive application areas. In partic-
ular, we distinguish between weak and strong refinement, the latter one being
more restrictive with respect to changes to the signature, in order to preserve
the semantics of data in accordance with schema dominance as discussed in [11].

This brings us closer to the goal of our research project to set up sound and
complete refinement rules for the development of distributed data warehouses
and OLAP systems. The general approach to defining such rules has already
been discussed in [21], while the current work clarifies, what kind of rules we
have to expect. In [15] we already discussed rules for distribution, but the more
challenging task consists in rules for data integration. So our next steps will
address such rules following among others the work on view integration in [11].
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Abstract. Semi-inversion is a generalisation of inversion: A semi-inverse of a
program takes some of the inputs and outputs of the original program and returns
the remaining inputs and outputs.

We report on an implementation of a semi-inversion method. We will show
some examples of semi-inversions made by the implementation and discuss lim-
itations and possible extensions.

1 Introduction

Inversion of programs [6,3,8,13,11] is a process that transforms a program that imple-
ments a function f into a program that implements the inverse function of f , f −1. A
related technique was used in [4] to add backtracking to a program by adding code to
rewind earlier computation.

Semi-inversion [12, 15] is a generalisation of inversion that allows more freedom in
the relation between the function implemented by the original program and the function
implemented by the transformed program. The difference can be illustrated with the
following diagrams. Assuming we have a program p with two inputs and two outputs:

p�
�

�
�

a
b

c
d

we can invert this into a program p−1 by “reversing all the arrows”:

p−1
�
�

�
�

a
b

c
d

With semi-inversion, we can choose to retain the orientation of some of the arrows while
reversing others, to obtain a program p′:

p′
�

�
�

�

a
b

c
d

p′ takes one of the inputs of p and one of its outputs and returns the remaining input
and output. More formally, if running p with inputs (a,b) produces (c,d), then running
p′ with inputs (b,c) produces (a,d).

I. Virbitskaite and A. Voronkov (Eds.): PSI 2006, LNCS 4378, pp. 322–334, 2007.
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In [12], some theory about semi-inversion and a method for it is described, but no
implementation existed at the time of writing. This paper describes an implementation
of the semi-inversion method described in [12], reports experiences using it on some
examples and conclude by discussing limitations and possible extensions.

2 The Semi-inversion Transformation

The steps of the semi-inversion transformation is shown in the following diagram:

original program
(disjoint equations)

�

desequentialisation

unordered
relational
equations

�resequentialisation

�

refinement

semi-inverted program
(disjoint equations)

reordered
relational
equations

�equation
construction

�

invalidate

The following sections will elaborate on each of these steps, further detail can be
found in [12].

We will use a simple example to illustrate the process. The program below takes two
lists of equal length and returns a pair of two lists, one containing the pairwise sum of
the arguments and the other the pairwise difference.

pm ([],[]) = ([],[]);
pm (a:as,b:bs) =

let (ps,ms) = pm (as,bs) in
((a+b):ps,(a-b):ms);

The syntax of the language we use is similar to Haskell, but there are a few semantic
differences that are not important to this example.

2.1 Desequentialisation

Desequentialisation makes patterns and expressions into unordered sets of relations,
where dependencies are carried through shared variables, much like in Prolog. The
guarded equation f P | G = E is desequentialised as follows:

f (P1,P2) = R1 ∪R2 ∪R3

where
(P1,R1) = Ip(P) (Ip : pattern → var+ × relationset)
(P2,R2) = Ie(E) (Ie : expression → var+ × relationset)
R3 = Ig(G) (Ig : guard → relationset)
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The functions Ip, Ie and Ig are detailed in [12]. Our example is desequentialised as

pm (w,x,y,z) where {w=[], x=[], y=[], z=[]}
pm (w,x,y,z) where {w=:(a,as), x=:(b,bs), pm(as,bs,ps,ms),

u=+(a,b), v=-(a,b), y=:(u,ps), z=:(v,ms)}

Note that arguments and results of functions are not distinguished. We will collectively
call inputs and outputs “in-outs”.

2.2 Refinement

Refinement rewrites the relation set to make some relations more explicit:

– Related operators on the same arguments are combined to a single operator:
z = +(x,y), v = -(x,y) is replaced by (z,v) = +-(x,y)

– Equalities of tuples are split into equalities of the elements:
(x,y) = (z,v) is replaced by x = z, y = v

We can apply the first of the above rules to our program to get:

pm (w,x,y,z) where {w=[], x=[], y=[], z=[]}
pm (w,x,y,z) where {w=:(a,as), x=:(b,bs), pm(as,bs,ps,ms),

(u,v)=+-(a,b), y=:(u,ps), z=:(v,ms)}

2.3 Resequentialisation

Up to now, the steps do not depend on which in-outs will be arguments and results of the
semi-inverted program. The next steps do, so we need to specify this. We do this by a
division that by 1s and 0s indicate which in-outs are, respectively, inputs and outputs of
the semi-inverted function. The division can also specify a name for the semi-inverted
function. We will use the division pm(0,1,0,1)=mp to indicate that the second and
last in-outs will be inputs while the first and third are outputs. The semi-inverse of pm
will be called mp.

Each primitive operator has a list of possible semi-inverses, for example

z = +(x,y) ⇒ x = -(z,y), y = -(z,x)
(p,q) = +-(x,y) ⇒ (p,x) = +-24(q,y), . . . , (x,y) = +-12(p,q)

where +-24(q,y) evaluates to (q+y,q+2y) and +-12(p,q) evaluates to ((p+q)/2,(p−
q)/2). For +-, any two in-outs are sufficient to calculate the remaining, so there are 11
cases for +- (all cases where at least two in-outs are known).

Resequentialisation uses dependency analysis to list relations in possible evaluation
order. Initially, the input variables are known, but as new operations are added to the
sequence, more variables become known.

Given the division pm(0,1,0,1)=mp, the example program resequentialises to

pm (w,x,y,z) where {x=[], z=[], w=[], y=[]}
pm (w,x,y,z) where {x=:(b,bs), z=:(v,ms), (u,a)=+-24(b,v),

pm(as,bs,ps,ms), y=:(u,ps), w=:(a,as)}
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For user-defined functions, it is initially assumed that any subset of input/output to
the function can define the remaining input/output, but these assumptions may later be
invalidated.

Resequentialisation may fail to succeed. If this happens for the top-level function call
(that we wish to semi-invert), the whole semi-inversion process fails, but if it happens
for an auxiliary function call, it may be caused by incorrectly assuming that the the
input/output subset used for resequentialisation is sufficient. Hence, we mark this subset
as invalid. This may require resequentialisation for other functions to be redone.

2.4 Constructing Equations

We now transform back from the relational form to equational form, while obeying the
evaluation order found during resequentialisation. We do this in three steps:

1. Construct patterns from structural relations for new inputs.
2. Make guards from non-structural relations for new inputs.
3. Make expression from remaining relations.

The semi-inverse of the example program gives the following reconstructed equations:

mp([],[]) = ([],[]);
mp(b:bs,v:ms) =

let (u,a) = +-24(b,v) in
let (as,ps) = mp(bs,vs) in

let y = u:ps in
let w = a:as in (w,y);

After transforming each equation as described above, equations for the same function
must by their patterns and guards divide the input into disjoint classes, i.e., there can be
no overlap. If this is not the case, we mark the input/output subset for the function as
invalid and backtrack.

In our example, the equations are clearly disjoint, so the semi-inverse is valid. The
semi-inverter additionally rewrites special operators like +-24 into “normal” operations
and unfolds trivial or linear let-definitions. The actual output from the semi-inverter
(after addition of a few newlines) is:

mp ([],[]) = ([],[]);
mp (b : bs,e_10_ : ms) =

let (as,ps) = (mp (bs,ms)) in
let a = (e_10_+b) in (a : as,(a+b) : ps);

3 Design Details

[12] leaves some implementation details unspecified. We have chosen the following:

Refinement. Addition and subtraction are combined, as shown above. Additionally,
the constraints p = /(x,y), q = %(x,y)1 are combined to (p,q) = /%(x,y),

1 Where % is the remainder operator.
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which when p, q and y are known can be semi-inverted to x = p*y+q. Equalities
between tuples are split, and if a variable is equated with a tuple, other occurrences
of the variable are replaced by the tuple.

Resequentialisation. When there are several possible relations that can be selected
during resequentialisation, the following priorities are used:
1. Tests with all parameters known.
2. Primitive operators with sufficient instantiation for semi-inversion.
3. Calls to already desired semi-inverses of user-defined functions, including the

one that is currently being resequentialised.
4. Other calls to user-defined functions.

Backtracking. If the semi-inverter fails to semi-invert a desired semi-inverse, it prints
a message, marks the semi-inverse invalid and starts over. Sometimes, it may find
other semi-inverses that can be used instead, otherwise the message may help the
user rewrite the program to get better results.

Starting over is clearly not the most efficient way of doing back-tracking, but in
our experience the semi-inverter rarely back-tracks very much, if at all.

Determining disjointedness of equations. First, the variables are renamed to make
the two equations use disjoint variables. Next, the patterns are unified. If unification
fails, the equations are disjoint, otherwise the unifying substitution is applied to
the guards. If the conjunction of the guards can never be true, the equations are
disjoint. To test the guard, intervals of the possible values of integer variables are
maintained, and if an interval becomes empty, the guard can’t become true. A few
additional cases of unsatisfiable constraints such as e/ =e are also considered.

There is room for improvement, as conjunctions like x<y && y<x are not recog-
nised as unsatisfiable. The general problem of determining non-overlap of guards
is undecidable, so there will always be cases that aren’t handled.

Resequentialisation of a single equation is quadratic in the worst case, but back-tracking
can make semi-inversion take exponential time, as a large fraction of the exponentially
many possible divisions of a function can be tried. In the (admittedly small) examples
we have tried, little backtracking occurs, so we don’t believe this to be a problem in
practice.

4 A More Ambitious Example: Multiplication of Binary Numbers

The semi-inverter can semi-invert the primitive multiplication operator into a division
operator when one argument and the result are known.

But can we repeat this if we instead represent numbers as lists of bits?
The binary multiplication algorithm can be described by the recursive equations:

1 × y = y
2x × y = 2(x × y)
(2x + 1) × y = 2(x × y)+ y

Note that we use 1 as a base case, as multiplication by zero doesn’t have a unique
left-inverse.
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The last equation uses addition, so our first step is to semi-invert addition of binary
numbers to obtain subtraction. To make the result of the subtraction unambiguous, we
assume that numbers do not have leading zeroes (zero is represented by an empty list
of bits).

In the addition above, the first argument is always at least as large as the second. This
allows us to simplify the algorithm a bit, so addition (for little-endian lists of bits) looks
like:

add(m,n) = adc(m,n,0);

adc(as,[],0) = as;
adc(as,[],1) = inc(as);
adc(a:as,b:bs,c) =

let (s,c1) = add3(a,b,c) in s:adc(as,bs,c1);

add3(0,0,0) = (0,0);
add3(0,0,1) = (1,0);
add3(0,1,0) = (1,0);
add3(0,1,1) = (0,1);
add3(1,0,0) = (1,0);
add3(1,0,1) = (0,1);
add3(1,1,0) = (0,1);
add3(1,1,1) = (1,1);

inc [] = [1];
inc (0:as) | as/=[] = 1:as;
inc (1:as) = 0 : inc as;

Note that absence of leading zeroes is explicitly tested in inc. This test implicitly in-
forms the semi-inverter of the invariant, which allows the semi-inverter to use the in-
variant to determine disjointedness of equations. It is often required to assert invariants
to make the semi-inverter work, we shall see more of this when we tackle the multipli-
cation rules.

With the division add(0,1,1) = sub (which says that we know the second
argument and the result of add and that the semi-inverse should be named div) we get
the following output from the semi-inverter:

sub (n,e_75_) = (adc_0111 (n,0,e_75_));

adc_0111 ([],0,as) = as;
adc_0111 ([],1,e_78_) = (inc_01 e_78_);
adc_0111 (b : bs,c,s : e_82_) =

let (a,c1) = (add3_01110 (b,c,s)) in a : (adc_0111 (bs,c1,e_82_));

add3_01110 (0,0,0) = (0,0);
add3_01110 (0,1,1) = (0,0);
add3_01110 (1,0,1) = (0,0);
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add3_01110 (1,1,0) = (0,1);
add3_01110 (0,0,1) = (1,0);
add3_01110 (0,1,0) = (1,1);
add3_01110 (1,0,0) = (1,1);
add3_01110 (1,1,1) = (1,1);

inc_01 [1] = [];
inc_01 1 : as | as/=[] = 0 : as;
inc_01 0 : e_91_ = 1 : (inc_01 e_91_);

The test for absence of leading zeroes in inc is now a guard that makes the two first
rules for inc_01 disjoint. Note that the semi-inverter automatically finds the required
semi-inverses of adc, add3 and inc, using names that indicate the division used.

Getting multiplication to semi-invert is a bit more tricky. We start with a straight
rewrite of the equations for multiplication into the syntax of the language:

mul([1],bs) = bs;
mul(0:as,bs) = 0:mul(as,bs);
mul(1:as,bs) | as/=[] = add(0:mul(as,bs),bs);

Note that the guard as/=[] is added to ensure non-overlapping equations. We give the
semi-inverter this program and a division mul(0,1,1) = div. The result is an error-
message:

Overlap:
div (bs,bs)
div (bs,0 : e_4_)

The semi-inverter has found that (at least) two equations of the semi-inverse of mul
overlaps. This isn’t too surprising, as the known argument bs isn’t used to select equa-
tions, so we have only the result to do this, and the right-hand sides of the equations for
mul are not clearly disjoint. Letting the first argument of mul be the known argument
doesn’t help either, as this makes both arguments to add unknown, so clearly no semi-
inverse of this can be found. Instead, we must make pattern-matching on bs while still
keeping it as one of the arguments to the addition.

We have three cases: [1], 0:bs and 1:bs, where bs/=[] in the last case. The two
first cases are so simple that we don’t need to special-case on as, but instead use mirror-
images of the rules for as = [1] and as = 0:as’. The remaining case gives us the
three original rules specialised for 1:bs with bs/=[]:

mul(as,[1]) = as;
mul(as,0:bs) = 0:mul(as,bs);
mul([1],1:bs) | bs /= [] = 1:bs;
mul(0:as,1:bs) | bs/=[] = 0:mul(as,1:bs);
mul(1:as,1:bs) | as/=[] && bs/=[] = add(0:mul(as,1:bs),1:bs);
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In the last rule, we can unroll a step of the addition, so we obtain:

mul(as,[1]) = as;
mul(as,0:bs) = 0:mul(as,bs);
mul([1],1:bs) | bs /= [] = 1:bs;
mul(0:as,1:bs) | bs/=[] = 0:mul(as,1:bs);
mul(1:as,1:bs) | as/=[] && bs/=[] = 1:add(mul(as,1:bs),bs);

We are nearly there, but the semi-inverter reports overlap between the third and last
equation:

Overlap:
div (1 : bs,1 : bs) | bs/=[]
div (1 : bs,1 : e_23_) | bs/=[]

But we can see that e_32_, which is the result of the addition in the last line, must be
different from bs, so we can add this as an assertion:

mul(as,[1]) = as;
mul(as,0:bs) = 0:mul(as,bs);
mul([1],1:bs) | bs /= [] = 1:bs;
mul(0:as,1:bs) | bs/=[] = 0:mul(as,1:bs);
mul(1:as,1:bs) | as/=[] && bs/=[] =

let xs = add(mul(as,1:bs),bs)
in let True() = xs/=bs in 1:xs;

With this test in place, we can call the semi-inverter with the division mul(0,1,1) = div
and successfully obtain a semi-inverse (which divides its second argument by its first
argument):

div ([1],as) = as;
div (0 : bs,0 : e_66_) = (div (bs,e_66_));
div (1 : bs,1 : bs) | bs/=[] = [1];
div (1 : bs,0 : e_77_) | bs/=[] = 0 : (div (1 : bs,e_77_));
div (1 : bs,1 : xs) | bs/=[] && xs/=bs =

let as = (div (1 : bs,(add_011 (bs,xs)))) in
let (True ()) = (as/=[]) in 1 : as;

The above is taken straight from the output of the semi-inverter, only adding a few
newlines and omitting the definition of add_011, which is identical to sub.

Note that the assertion we inserted in the mul function is now part of the guard of the
last equation to div. This test (that ensures disjoint equations) corresponds to the test
that in the traditional algorithm for binary division stops the repeated doubling of the
divisor. Note, also, that the pattern-matching on as has become an assertion.

Since the division is a semi-inverse of multiplication, it is only defined when the
divisor divides evenly into the other argument.

This development shows that semi-inversion in its present state is far from being
something you can just use without thought. This is similar to how you will often need
to rewrite programs (using binding-time improvements [9, 5, 1]) to get good results (or
even termination) from partial evaluators.
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5 Tail-Recursive Programs

Programs with tail-recursive functions can give problems for the semi-inversion trans-
formation.

Glück and Kawabe [6] observe that tail-calls after inversion are similar to left-
recursive productions, and that overlapping equations are similar to overlapping pro-
ductions in a grammar. They suggest using methods inspired by LR-parsing to solve
these problems, just like LR-parsing handles the equivalent problems in grammars.
Their method might work also for semi-inversion, but a simpler method is sufficient
for most cases. Consider the reverse function:

reverse(xs) = rev(xs, []);

rev([], acc) = acc;
rev(x : xs, acc) = rev(xs, x : acc);

The essense of the problem is that, with the current method, the call-trees of the origi-
nal and semi-inverted programs are isomorphic, the only difference being the order of
children of each node. But to invert the above, we really want to run the iteration in
rev backwards, i.e., change the call-tree. Glück and Kawabe’s solution is to apply a
program transformation to the inverted program to change the call-tree, but we propose
to apply a simpler transformation prior to (semi-)inversion instead. The idea is that tail-
recursion can be seen as iteration, so we introduce an explicit iteration construct in the
language: loop f e calls f with the value v0 of e as argument. If no rule of f matches,
it returns v0 unchanged, but if a rule matches, it applies f to v0 to get v1 and repeats
the procedure, i.e., checks if there is a matching rule for v1 and so on. In short, the loop
applies f repeatedly until no rule matches, at which point it returns the current value of
the argument.

We can rewrite the reverse function to use this loop construct:

reverse(xs) = let ([], acc) = loop revStep (xs, []) in acc;

revStep(x : xs,acc) = (xs, x : acc);

Note that revStep corresponds to the recursive case of rev, but instead of making the
tail-recursive call, it just returns what would have been the arguments to the call. The
non-recursive call has now been incorporated into the function that does the looping.
Notably, both the initialization and termination patterns are part of this function.

We can now invert reverse into

reverse2 acc = let (xs, []) = loop revStep_0011 ([], acc) in xs;

revStep_0011 (xs, x : acc) = (x : xs, acc);

The loop has been inverted by swapping argument and result and inverting the iteration-
step function in the usual way. We can, finally, transform the result back to using a
tail-recursive function by making the let-expression of the calling function into the base
case for the recursion, mirroring the transformation from tail-recursive function to loop:
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reverse2 acc = revStep_0011 ([], acc);

rev_0011 (xs, []) = xs;
rev_0011 (xs, x : acc) = rev_001(x : xs, acc);

It is interesting to note that the non-recursive rule of rev_0011 comes from the param-
eters to the call of the original rev and vice-versa. Hence, in retrospect it does not seem
reasonable to expect inversion of the program by tansforming each function in isolation.
Transforming into the loop form is a way of bringing together the information needed
for the successful transformation.

Note, also, that the resulting tail-recursive function has disjoint equations, as re-
quired. If we can not rewrite the loops in a (semi-)inverted program back into loop-free
disjoint equations, the semi-inversion is not valid, in which case we must backtrack and
possibly eventually fail to do (semi-) inversion at all.

As an example of this, consider the function

revapp(xs, ys) = rev(xs, ys);

rev([], acc) = acc;
rev(x : xs, acc) = rev(xs, x : acc);

Note that rev is the same as before. In loop form, this becomes

revapp(xs, ys) = let ([], acc) = loop revStep (xs, ys) in acc;

revStep(x : xs,acc) = (xs, x : acc);

which we can invert initially to

revapp_001(acc) = let (xs, ys) = loop revStep_0011 ([], acc) in (xs, ys);

revStep_0011 (xs, x : acc) = (x : xs, acc);

When we rewrite the loop back into functional form, we get

revapp_001(acc) = rev_0011 ([], acc);

rev_0011 (xs, ys) = (xs, ys);
rev_0011 (xs, x : acc) = rev_0011 (x : xs, acc);

whis has overlapping patterns for rev_0011. It should not really be a surprise that we
can’t invert revapp, as it is not injective. But note that the difference is not in the form
of the tail-recursive function, but in its calling context. Hence, it is clear that we can not
treat a tail-recursive function separate from its context.

We can predict whether a loop can be converted back to functional form after inver-
sion by looking at the original call to the tail-recursive function: If the argument to the
call is disjoint from the right-hand sides of the equations for the tail-recursive function,
this will make the equations of the inverted function disjoint too. So we can choose to
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only rewrite to loop form only calls that have this property. This requirement is similar
to the requirements for loops in [8], where the precondition of a loop is required to not
overlap the postcondition of the loop body.

It does not seem possible to semi-invert a loop other than by full inversion or no
inversion at all.

Not all tail-recursion is easily rewritten to a loop. Indirect tail-recursion will re-
quire more extensive rewriting, as will tail-recursive function with several non-recursive
rules. Multiple recursive rules are no problem, as long as their inverses are disjoint
equations.

At the moment, we have not implemented the transformations between tail-recursive
functions and loops, but the example above (and a few more complicated examples)
written with explicit loops in the source text have been transformed by the current im-
plementation.

This includes inverting a compiler from queue-machine code [14] to syntax trees to
get a compiler from syntax tres to queue machine code2. In a queue machine, instruc-
tions take their operands from the front of a queue and put their results at the end of the
queue. Building a syntax tree is easily done by letting the queue contain subtrees rather
than values and let instructions build larger subtrees from the operator in the instruction
and the subtrees in the queue:

fromQueue(prog) = let ([],[t]) = loop fq (prog,[]) in t;

fq(Const n : p, q) = (p, Num n : q);
fq(Bop op : p, q) = let (a,q1) = dequeue q in

let (b,q2) = dequeue q1 in
(p, Binop (op,a,b) : q2);

fq(Uop op: p, q) = let (a,q1) = dequeue q in
(p, Unop (op, a) : q1);

dequeue([x]) = (x,[]);
dequeue(x:xs) | xs/=[] = let (y,ys) = dequeue(xs) in

(y,x:ys);

The queue (q) is represented as a list where the front of the queue is the end of the
list. dequeue returns a pair of the head of the queue and the rest of it. Inverting with
the division fromQueue(0,1)=toQueue; produces the following compiler from syntax
trees to queue code:

toQueue t = let (prog, []) = loop fq_0011 ([], [t]) in prog;

fq_0011 (p, (Num n) : q) = ((Const n) : p, q);
fq_0011 (p, (Binop (op, a, b)) : q2) =

((Bop op) : p, dequeue_011 (a, dequeue_011 (b, q2)));
fq_0011 (p, (Unop (op, a)) : q1) =

((Uop op) : p, dequeue_011 (a, q1));

2 Thanks to Rustan Leino of Microsoft Research for suggesting this problem.
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dequeue_011 (x, []) = [x];
dequeue_011 (y, x : ys) = let xs = dequeue_011 (y, ys) in

let True () = xs/=[] in x : xs;

dequeue_011 is now an enqueue operation, but on a reversed queue.

6 Conclusion

As the multiplication example shows, it is sometimes necessary to rewrite programs
and add assertions of invariants to get successful semi-inversion. This example, though
small, is rather complex, so we don’t expect nearly as much rewriting to be necessary
for the majority of programs. Even so, semi-inversion will probably remain a tool for
experts until the technology matures.

Ideally, a semi-inversion method should discover such invariants, but it is unrealis-
tic to expect it to always do so, as discovery of nontrivial invariants is uncomputable.
As a consequence, it may sometimes be necessary to provide such invariants as extra
information to the semi-inversion process. Adding such redundant assertions is concep-
tually similar to using binding time improvements [9,5,1] to improve the result of partial
evaluation.

In addition to making invariants explicit, it may be necessary to combine several
user-defined functions, just like some predefined operators are combined at the refine-
ment stage. For example, the function that returns the last element of a list can not
be inverted on its own, nor can the function that returns all but the last element of a
list. In combination, they can, but only if the functions are merged into a single func-
tion (such as dequeue above). Such merging of functions is called tupling and can be
automated [2, 16].

Another non-trivial program that has been semi-inverted by the semi-inverter is an
interpreter of the invertible stack language used in [6]. The interpreter was semi-inverted
by specifying the program and output as known while the input is unknown. The result
is an inverse interpreter [7]. This example did not require any assertion of invariants or
similar tricks but, admittedly, the language was designed by Glück and Kawabe to be
easily invertible.

Tail-recursive functions are in the semi-inverter handled by transformation to explicit
loops, and they can only be left unchanged or fully inverted.

Another limitation of the current method is that it only works on first-order equa-
tions. We are currently working on extending it to handle simple cases of higher-order
functions.
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Abstract. Loop parallelization is of great importance to automatic translation of 
sequential into parallel code. We have applied Diophantine equations to 
compute the basic dependency vector sets covering all possible non-uniform 
dependencies between loop iterations. To partition the resultant dependencies 
space into multi-dimensional tiles of suitable shape and size, a new genetic 
algorithm is proposed in this article. Also, a new scheme based on multi-
dimensional wave-fronts is developed to convert the multi-dimensional 
parallelepiped tiles into parallel loops. The problem of determining optimal tiles 
is NP-hard. Presenting a new constraint genetic algorithm in this paper the tiling 
problem is for the first time solved, in Cartesian spaces of any dimensionality. 

1   Introduction 

The aim is to present a complete and comprehensible approach to convert nested 
sequential loops into parallel loops. The conversion is performed in three stages. In 
the first stage, data dependency analysis is performed to find dependencies between 
the loop iterations [4, 18]. We have applied Diophantine equations [4, 18] to find 
basic dependence vector sets, BDVS, covering all possible non-uniform dependencies 
in between the loop iterations. 

A main point to consider is to work out the optimal number of iterations to be 
assigned to each processing element such that the inter-processors communication 
and synchronization cost is minimized. To achieve this, in the second stage, the loop 
iterations are partitioned into chunks, called tiles, with minimal inter-dependencies 
[10, 12, 15]. The main problem in tiling for loop parallelization, considered in this 
paper, is to find optimal sizes and shapes for the tiles such that each tile covers a 
predefined number of interrelated points considering inter-tile communication 
restrictions such as: (1) the chain of vectors connecting any two points in a tile, reside 
in that tile, (2) the number of vectors connecting the tile to its neighboring tiles are 
minimal and (3) any other constraints imposed by the user. 

One of the first papers on tiling dates back to the mid-1980s by Wolfe [16, 17]. In 
Wolfe’s approach, the loop iteration space is transformed into parallelepiped tiles 
such that the chain of vectors connecting any two dependent iteration points resides in 
a same tile. The major difficulty with this approach is to find the optimal 
transformation such that the number of memory accesses to execute the loop 
iterations is minimized. To resolve the difficulty a heuristic algorithm has been 
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devised by Wolfe. The problem is also addressed by Griebl et al. [11]. In the 
approach proposed below in this paper, the problem is solved by finding an optimal 
shape for the tiles instead of using rectangular tiles and transforming the iteration 
space. 

In an approach presented by Kandemir et al. [12], to create optimal tiles a complete 
set of constraints, described below in Section 2.3, are defined. In Kandemir’s 
approach, it is shown how to represent multi-dimensional tiles. However, only  
2-dimensional tiles can be created with the Kandemir’s approach. In addition in this 
approach, the direction of one side of the tile has to be vertical. As described in 
Section 2.3.3 below, the shape and direction of a tile directly affects the number of 
dependencies between the tile and its neighboring tiles. 

Multi-dimensional tiles are created by an approach presented by Cociorva in 
reference [6]. However, in this approach the objective is not loop tiles and each tile 
represents a part of an array to be reused within a nested loop. None of the existing 
loop tiling approaches can create multi-dimensional tiles with minimum tiles inter-
dependencies, considering the complete set of constraints defined by Kandemir. It has 
been argued that since shallow loop nests are common and important in scientific 
applications, none of the existing approaches emphasize on generation of tiles with 
more than 2-dimensions, for loop parallelization. However, we can not restrict the 
world of scientific programming to loops with a maximum depth of three. For 
instance, using a multi-grid approach, adds at least an extra dimension to the nested 
loops for the numerical solution of integral and differential equations on a finite 
difference or finite element grid. 

In general, loop tiling is an NP-hard problem [1, 5, 10, 12, 15]. Determining an 
optimal size and shape for tiles is an optimization problem. These types of 
optimization problems can be best solved using evolutionary algorithms [3, 8, 9]. We 
have developed a new genetic algorithm (GA) to create suitable parallelepiped tiles of 
any dimensionality and size. In the third stage, considering the shape and size of the 
tiles, parallel loops are generated. We have developed a new scheme based on the 
wave-fronts [10, 15] to create parallel loops. 

The remaining sections are organized as follows: In Section 2, a constrained 
genetic algorithm is presented that uses a new encoding scheme to represent multi-
dimensional tiles. Section 3 offers a new scheme based on wave-fronts to convert the 
tiled space into parallel loops. In Section 4, a complete example is given and finally, 
in Section 5, an evaluation that reflects the reliability, stability and performance of our 
proposed genetic algorithm is discussed. 

2   A New Genetic Tiling Algorithm 

A tile in this paper is a set of loop iterations to be executed on a single processor. The 
aim is to partition loop iterations into tiles with minimal inter-dependencies, where 
each of the iterations is represented as a point in Cartesian space. The problem space 
is considered as a multi-dimensional Cartesian space where each dimension of the 
Cartesian space represents a loop index. In this section a new genetic algorithm for 
solving the tiling problem in Cartesian spaces of any dimensionality is presented. 
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Genetic algorithms are adaptive heuristic search algorithms based upon Darwin’s 
evolutionary ideas of natural selection and survival rule [3, 8, 9]. Below, in Fig. 1, the 
main body of our genetic tiling algorithm is presented. 

 
        Genetic Algorithm: 
             Generation number := 0 
             Generate the initial population at random using a normal distribution 
             Evaluate the fitness of each chromosome in the initial population 
             Keep the fittest chromosome in the population 
             for Generation number := 1 to Number of generations do 
             begin 
                  Select the fittest chromosome using fitness and penalty functions 
                  Generate an Intermediate Population of the selected chromosomes 
                  New population := Intermediate population 
                  Randomly select chromosomes with a predefined probability 
                  Recombine the selected chromosomes into the new population 
                  Mutate the recombined chromosomes with a predefined probability 
                  Evaluate the fitness of each chromosome in the new population 
                  Keep the fittest chromosome in the current generation (Elitism) 
                  Keep the fittest chromosome in the last generations 

                   end 

Fig. 1. Genetic loop tiling algorithm 

Genetic algorithms normally start with an initial population of randomly generated 
solutions. In the above algorithm, an initial population of the problem solutions is 
created randomly. Each solution represents a tile and is called a chromosome. A 
chromosome is an individual in a genetic population. To represent a tile as a 
chromosome, an encoding operator is presented in Section 2.1. The objective is to 
generate suitable tiles, which fit into the local memory of the parallel processors and 
when loaded into the memory execute at once without any delay. The objectives are 
fully described in Section 2.3. Evaluation of quality of the tiles is discussed in Section 
2.3. The tiles with highest quality or in the other words the fittest chromosomes in the 
population are selected and transferred into an intermediate population. Then, the 
individuals in the intermediate population are recombined to produce a new 
population. To combine chromosomes, an operator called crossover, described in 
Section 2.2, is used. To achieve genetic diversity a mutation operator, described in 
Section 2.2, is used. The fittest chromosome in a generation is moved to the next 
generation. The fittest chromosome within the generations is selected as the final 
solution. This process is repeated for a number of generations until the evolution is 
completed and the highest quality chromosome is found. 

2.1   Encoding Scheme and Initial Population 

Tiles should be represented in a form that can be processed by the genetic algorithm. 
For this purpose, each parallelepiped shaped tile is coded as a matrix. Each column of 
the matrix corresponds to one edge of the parallelepiped tile, beginning at the leftmost 
corner of the tile. For instance, the matrix P in Fig. 2 represents a square shaped tile. 
Since the data dependency vectors between the iterations are uniformed [2, 7, 14], the 
corresponding tiles are similar and so only the tile beginning at the origin is 
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considered. Hence, only the first tile beginning at the origin of the Cartesian 
coordinates is considered as a chromosome. The chromosome is represented by an 
n×n matrix P = [pi], where pi represents the ith edge of the corresponding tile. Also, to 
simplify certain computations on tiles, described in sections 2.3.2 and 2.3.3, a tile is 
represented by a matrix H = P-1. Each row of the matrix H represents a vector 
perpendicular to an edge of the tile. We have applied the Gaussian algorithm to 
compute the inverse of the matrix. 

 

Fig. 2. Encoding a tile to a matrix 

In the first stage of our genetic tiling algorithm, an initial population of 
chromosomes is created by applying a random number generator that uses a normal 
distribution. To generate a chromosome, the coordinates of the end point of each 
edge, beginning at the origin, are defined randomly and saved in a separate column of 
the chromosome matrix. The range of these random numbers is limited to the 
boundaries of the iteration space. 

2.2   Generating Genetic Populations 

As described above, at the beginning of a genetic algorithm, an initial population of 
solutions is randomly created. A new generation is created by selecting couples of 
parent chromosomes from within the current population. The selected couples are 
either directly transferred to the new population or combined by applying a crossing 
over operator. To select two parent chromosomes for the crossing over operation, we 
have applied the improved roulette wheel selection method [8]. In general, the 
probability of combining the selected parents is set to a value in the range 0.6 to 0.9. 
Schema theory [9] discusses the effects of the probability of crossing over and 
mutation on the convergence rate of genetic algorithms. In our genetic tiling 
environment the crossing over probability is an input parameter, defined by the user. 
The crossing over operator is applied, by combining the corresponding columns of the 
chromosomes matrices, using a uniform recombination operator as follows [3, 9]: 

        Column number i of the child chromosome = 
Column number i of the first parent * λ + Column number i of the second parent * (1 – λ)       (1) 

In the above relation 0 ≤ λ < 1 is selected randomly. The columns are selected for 
the crossing over operation using a binary mask, which is also generated randomly.  

In order to maintain the diversity in the new population, some of the newly 
generated chromosomes are selected for the mutation. The probability of applying 
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mutation is normally set to a value within the range 0.001 to 0.1. The mutation 
operator alters the shape of a selected tile randomly. The alteration is achieved by 
randomly selecting two rows in the matrix representation of the tile and then 
swapping the selected rows. Using this approach the absolute value of the determinant 
of the mutated tile, representing the tile size, remains intact. 

2.3   Tiling Objectives 

In order to evaluate the fitness of a tile, x, the quality of the tile and the penalty values 
for violating the tiling constraints have to be evaluated [13]. The quality of a tile 
represents its fitness. The fitness of a chromosome is estimated by the following 
relation: 

Fitness (x) = Objective (x) + Penalty (x)                                          (2) 

There are 5 sub-objectives, described in this section, concerning a tile shape and 
size that have to be covered by the objective function as follows [12]: 

Objective (x) = Tcost = pnnCI/O + VcomptI/O + ⎡Vcomm / K⎤ Ccomm + Vcommtcomm + (Vcomp – M)2       (3) 

In the above relation, pnn is the last element of the matrix P, CI/O is startup cost for 
an I/O read (write), tI/O is the cost of reading (writing) an element from (into) a file, 
Ccomm is startup cost for communication, tcomm is the cost of communicating an 
element, Vcomp is the computation volume, Vcomm is the communication volume, M is 
the size of the available local memory of multi-processors and K is maximum 
message length, passed in between the processors. The overall objective is to 
minimize the objective function Tcost. To minimize the objective function, its sub-
objectives have to be minimized. The sub-objectives are further described below. 

2.3.1   I/O Cost 
The I/O cost of a tile is determined by the number of file accesses I/O calls, pnnCI/O, 
required to read it from disk. Under row-major layout assumption, in order to 
minimize the number of file accesses, the number of (sub)-row reads should be 
minimized. This may not be always possible in practice as minimization of I/O calls 
can increase the cost of communications. In Fig. 3, tile (1) and tile (2) have the same 
computation volume (8 data points); however, I/O cost (number of sub-rows) of tile 
(2) is 4 while that of tile (1) is 2. Everything else being equal, tile (1) is a better choice 
than tile (2). Note that this constraint is unique to iteration space tiling [12]. 

 

Fig. 3. Three different shapes of a tile 



340 S. Parsa and S. Lotfi 

2.3.2   Load Time 
The load time of a tile is determined by VcomptI/O, where tI/O is the cost of reading or 
writing an element from (into) a file and Vcomp for a tile represented by a matrix P = 
H-1 is equivalent to determinant of P which is the number of iterations or index points 
contained in a tile [10, 12, 15]: 

Vcomp (H) = 1 / |det (H)|                                                         (4) 

As an example consider the tile in Fig. 4.(1). The absolute value of determinant of 
H is 1 / 20, and there are 20 points in the tile. 

2.3.3   Communication Startup Cost 
Dependency vectors of a loop are conventionally defined as columns of a matrix D. 
The number of dependency vectors starting in a tile and ending in its neighboring tiles 
is equal to sum of the elements of the matrix (1 / |det (H)|) H.D [10, 15].  

                   n       n      m 

Vcomm (H) = (1 / |det (H)|)  hi, k dk, j                         i = 1 k = 1 j = 1  
(5) 

The reason is that each edge of the tile is perpendicular to a vector represented as a 
row of H and H.D computes the inner product of the vectors perpendicular to tile 
edges and the dependency vectors. Here, H.D represents the proportion of the 
iteration points within a tile which start vectors intersecting the tile edges. 

Communication startup cost is determined by multiplying the number of messages 
to be passed between the tiles, ⎡Vcomm / K⎤, by the startup cost for communication, 
Ccomm, which is the cost of transferring a single message. Here, K is the maximum 
length of a message and Vcomm is the communication cost of a tile. 

For instance, in Fig. 4.(1), (H.D)1, 1 is equal to 3 / 4 and the number of points in the 
tile which is the absolute value of the determinant of the matrix P is 20. Hence, the 
number of vectors d1= (3, 1) cutting the first edge of the tile is computed as 20 × 3 / 4 
= 15 which is exactly the same as the number of vectors passing through the 
horizontal edge of the tile. There may be dependence vectors passing through more 
 
 

for j1 = 0 to 7 do 
     for j2 = 0 to 7 do 
          a (j1, j2) = a (j1 - 3, j2 -1) + a (j1 - 1, j2 - 2); 

                           

H2D = 1/2       0 
  0    1/2 

Vcomp a = |det (P1)| = 20 
Videal

comm. a = 20 × (3/4 + 1/4 + 1/5 + 2/5) = 32
Vcomp b = |det (P2)| = 20 
Videal

comm. b = 20 × (1/2 + 0 + 0 + 1/2) = 20 

H2 =  1/5     -1/10
-1/10    3/10 H1 = H1D =  3/4    1/4

 1/5    2/5
1/4       0 
   0    1/5 

 

Fig. 4. Two-dimensional tiles 
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than one edge of the tile. These vectors are considered twice. For instance, the 
computed value for Vcomm of the tile, depicted in Fig. 4.(1), is 32 but it should be 27. 
Hence the above formula approximates the value of Vcomm. 

2.3.4   Communication Time 
The total communication time of a tile with its neighbors is determined by 
multiplying the communication cost, Vcomm, by the cost of communicating an element, 
tcomm. The reason is that tile iterations are expected to execute serially on a same 
processor. On the other hand, the smaller the size of a tile the higher the 
communication cost between the tiles will be [12]. 

2.3.5   Fitting Tiles in Local Memory 
The iteration number and the shared data accessed by the iterations are kept into the 
local memory of the processor on which the iterations are to be executed. There 
should be enough space to keep these iterations and shared data in the local memory 
of a processor. Hence, the number of iteration points residing on a tile, Vcomp, should 
not exceed the size of the part, M, of the local memory of the parallel processor 
assigned to the tile. In other words, the memory constraint can be defined as: M ≥ 
Vcomp [12]. The tile size, Vcomp, should be very close to the size of the available 
memory. This is achieved by minimizing the value of (Vcomp - M)2 in relation (3) 
above. 

2.4   Penalty Function 

Considering a given constraint, the population of solutions in each generation can be 
divided into two groups of feasible and infeasible solutions. A feasible solution 
satisfies the desired constraint. The degree of infeasibility of a solution, c, in a genetic 
generation is considered as the distance, d (c) = g (c) – Qbest, where g (c) is the 
constraint value of c and Qbest is the quality of the most feasible solution. We have 
considered a normal distribution for these distances. To penalize an infeasible 
solution, c, its fitness can be reduced by a penalty factor P ∈ [0, 1] as follows: 

         Penalized_Fitness (c) = Estimated_Fitness (c) * P (c)                                                   (6) 

          P (c) = 1 - (u_p (c) - u_p (c0) )  / (u_p (cf) - u_p (c0)) 
          u_p (c) = N (d (c), μ, σt), where N is a normal distribution function and μ is the mean 
        value 
          μ = 0,   σt

2 =  d (ci), ∀ ci ∈  population in generation t                                               (7) 

In the above relation, c0 and cf are two solutions such that the distance d (c0) from 
feasible solutions is maximum and d (cf) is minimum; u_p (c) is unadjusted penalty 
value and p (c) is the penalty value in range [0, 1]. Using the above relations, a 
penalty value of 0 is assigned to the most infeasible solution and a penalty value of 1 
is assigned to each feasible solution. In our genetic tiling algorithm two constraints 
described below are applied to the tiles. To evaluate the penalty value for violation of 
these two constraints the following relation is used: 
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                       Fitness (x) = Objective (x) + P (x) * Objective (x), 
              P = (W1 * Legality constraint + W2 * Boundary Constraint) / (W1 + W2) 

                            If x is feasible Then P (x) = 0 Else P (x) > 0, 0  P (x)  1                            (8) 

2.4.1   Tile Legality 
The shape and size of a tile should be determined in such a way that the sequence of 
vectors connecting any two dependent loop iterations or points in the tile, reside in 
that tile. This issue is referred to as the atomic or tile legality constraint. To satisfy the 
legality constraint, there should be no mutual dependencies between the tiles. To 
achieve this, the length and direction of a tile sides should be defined in such a way 
that the set of vectors connecting any two dependent loop iterations or points in the 
tile, reside inside the tile. 

Arbitrary clustering of data space points into tiles might result in dependency 
vector cycles between the tiles. Tile shapes that produce effective dependency vector 
cycles are called illegal tiles. The reason for illegality is that processing of tiles must 
be atomic in the sense that a tile must take all the data it requires from outside before 
execution of the iterations addressed by the tile begins, and all the data required by 
other tiles should be available after the execution is completed. Allowing effective 
dependency vector cycles among tiles violates this requirement. As an example, 
consider the data space graph shown in Fig. 3, tiles (1) and (2) are legal, while tile (3) 
is illegal [10, 12, 15]. 

As described in Section 2.3.3 the inner product of vectors the matrices H = P-1 and 
D for a tile P, indicates the number of dependency vectors beginning at P and passing 
through the edges of P. If the element (H.D)i, j is zero, it means that the dependency 
vector dj is in parallel with the ith edge of P. If (H.D)i, j is positive, it means that dj cuts 
the edge and is in the same direction as the flow of execution of the tiles otherwise it 
is in opposite direction and therefore, the tile can not be atomic. In summary for a tile 
P to be legal, it must hold H.D ≥ 0 where, H = P-1 [10, 12, 15].  

2.4.2   Boundary Constraint Tile Diameter 
The diameter of a tile should not exceed the boundaries of the iteration space. 
Obviously if a tile exceeds the boundaries of the iteration space then there will be 
some iteration points within the tile which remain outside the scope of the loop 
indices. The reason behind this constraint is to have at least one complete tile in a 
loop iteration space. 

3   Parallel Loop Generation 

After computing the shape and size of the tiles, in the third stage, the iteration space, 
Jn, is tiled. The tiled space is called Jsn. Within the tiled space each tile is considered 
as a point. The coordinates of a point Js = (js

1, j
s
2, …, js

k, …, js
n) in the tiled space 

which includes an iteration point J = (j1, j2, …, jk, …, jn) in the original iteration space 
is computed as follows [10, 15]: 

Js = (⎣ HJT⎦)T                                                                   (9) 
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Given a point Js in the tiled space, the coordinates of the lower left corner, J = (j1, 
j2, …, jk, …, jn), of the tile in the original loop iteration space is computed as follows 
[10, 15]: 

J = (PJsT)T                                                                    (10) 

Applying relation (9) to the last point, ubk, of the kth dimension of the loop iteration 
space, the lower bound, lbs

k, and the upper bound, ubs
k, for the kth dimension of the 

tiled space is computed as follows: 

     lbs
k = min (⎣hki ubi⎦), 1  i  n, i ≠ k                                         (11) 

                                                   ubs
k = ⎣hkkubk⎦                                                                          (12) 

In order to generate the final parallel loop, a wave-front approach can be used. A 
wave-front contains a collection of tiles which have no inter-dependencies and can 
execute in parallel. Here, the problem is to locate tiles residing on a same wave-front. 
Considering the fact that our basic dependency vectors are all in positive directions  
all those points with equal sum of coordinates in the tiled space, Jsn, could be assumed 
to reside on a same wave-front. This sum of the coordinates is addressed as the wave-
front number. Since the edges of the first hyper-rectangular tile reside on the 
coordinates axis, the lowest wave-front number, lwn, is apparently zero. If the tiles 
are parallelepiped then there will be tiles which are not completely within the 
boundaries of the iteration space. In this case lwn is considered as -1. To compute the 
last tile coordinates relation (9) is applied to the last iteration point UB = (ub1, ub2, …, 
ubk, …, ubn) in the iteration space. To compute the highest wave-front number, hwn, 
the sum of the coordinates of the last tile is computed as follows: 

hwn = (Σ ⎣Σ hkiubi⎦) + c                                                             (13) 

In the above relation the value of c is defined as zero if the tile shape is hyper 
rectangular or the tile is not completely in the iteration space otherwise c is defined as 
1. To find out whether a tile completely resides in the iteration space the following 
condition is checked: 

(P (⎣H UBT⎦n×1 + [1]n×1) - [1]n×1)
T = UB                                         (14) 

In the above relation UB = (ub1, ub2, …, ubk, …, ubn) indicates the last iteration 
point and transpose of a vector such as UB is represented as UBT. 

To find the coordinates of the lower left corner, llc, and upper right corner, urc, of 
a tile Js, within the iteration space, relation (10) is applied to the tile coordinates (js

1, 
js

2, …, js
k, …, js

n). Below are the relations applied to the tile Js to compute the 
coordinates of its corners, llc = (llc1, llc2, …, llck, …, llcn) and urc = (urc1, urc2, …, 
urck, …, urcn): 

                               llc = (PJsT)T, urc = (P(JsT + [1]n×1) - [1]n×1)
T                                              (15) 

llck = max (0, Σ pki j
s
i),  urck= min (ubk, Σ pki (j

s
i + 1) -1)                         (16) 

In order to generate the final parallel loop, the range [lwn, hwn] of the wave-fornt 
numbers, the lower bound LBs = (lbs

1, lb
s
2, …, lbs

k, …,lbs
n), the upper bound UBs = 

(ubs
1, ubs

2, …, ubs
k, …, ubs

n) of the tiled space and the coordinates llc and urc, are 
used. The final parallel loop is shown in Fig. 5, below: 
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Parallel Code:Sequential Code:
for WaveFrontsNumber = lwn to hwn do
     for js

1 =  lbs
1 to  ub s

1 do in parallel
          for js

2 = lbs
2 to ubs

2 do in parallel       
        ...   
        for js

k = lbs
k to ubs

k do in parallel                         
          ...   
          for js

n = lbs
n to ubs

n  do in parallel  
                           n       

                      if  Σ js
k = WaveFrontNumber then

                           k = 1 

                           for j1 = llc1 to urc1 do
                           for j2 = llc2 to urc2 do   
                                ...  
                                for jk = llck to urck do  
                                     ...  
                                     for jn=llcn to urcn do  
                                          if (⎣HJT⎦)T = Js Then   
                                               a (j1, j2, …, jk, …, jn);    

for j1 = 0 to ub1 do
     for j2 = 0 to ub2 do 
          …
          for jk = 0 to ubk do
               …                             
               for jn = 0 to ubn do 

               a (j1, j2, …, jk, …, jn); 
 

Fig. 5. A sequential loop and its corresponding parallel loop 

4   An Example 

Consider the following perfectly nested loop and its corresponding dependence 
equations set: 

 
 

 
 

 
Applying the Diophantine approach to solve the above set of loop dependence 

equations, the loop dependence vectors and basic dependence vectors set, BDVS, can 
be computed as shown in Fig. 6. Applying the proposed tiling algorithm, the tile space 
for the above loop will be as shown below in Fig. 6.  

 BDVS =
      {(3, 1), (1, 2), (1, 1)} 

or

  BDVS =

Basic Dependence
Vectors Set 

1 2 1

j1

j2 P1 P2

 

Fig. 6. An example of a tiled iteration space 

for j1 = 0 to 9 do  
     for j2 = 0 to 8 do 
          a (-4j1 - j2, -j1 - 3j2 + 3) = … 
          … = … a (-j1 + 1, -j2 + 4) … 

-4j1- j2 = - j’1 + 1 
      -j1 – 3 j2 + 3 = -j’2 + 4  
or -4j1 - j2 + j’1 = 1 
 -j1 - 3j2 + j’2 = 1 
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Relations (11) and (12) are applied to the last iteration point UB, to compute the 
coordinates of the lower bounds, LBs, and upper bounds UBs of the tiled space 
respectively.  To generate the final parallel loop the tiled space, Js2, is scanned. 

 
UB = (9, 8) ⇒ LBs = (-2, -1), UBs = (3, 2) 
J2 = {J = (j1, j2) | 0 ≤ j1 ≤ 9, 0 ≤ j2 ≤ 8} ⇒ Js2 = {Js = (js

1, j
s
2) | -2 ≤ js

1 ≤ 3 , -1 ≤ js
2 ≤ 2} 

for WaveFrontNumber = -1 to 3 do 
for js

1 = -2 to 3 do in parallel 
     for js

2 = -1 to 2 do in parellel 
          if js

1 + js
2 = WaveFrontNumber then  

               for j1 = max (0, 3js
1 + 2js2) to min (9, 3js

1 + 2js
2 - 4) do 

                    for j2 = max (0, js
1 + 4js

2) to min (8, js
1 + 4js

2 - 4) do 
                         if (⎣HJT⎦)T = Js then 
                             a (-4j1 - j2, -j1 - 3j2 + 3) = … 
                             … = … a (-j1 + 1, -j2 + 4) … 

5   Evaluation 

Tiling is an NP-hard problem. Increasing the number of a tile dimensions, the time 
required to find an optimal tile increases exponentially. However, the time complexity 
of the proposed genetic tiling algorithm, is O (n3) and the space complexity is O (n2), 
because: (1) the main data structures used in the proposed algorithm are n×n matrices, 
each representing a multi-dimensional tile, and (2) the costly processing of the 
algorithm are the computation of the determinant and inverse of the tile matrix to find 
the volume of computation and the volume of communication, respectively. A unique 
capability of our proposed genetic algorithm is to create tiles with more than two 
dimensions. In this, tiles of 2 to 6 dimensions are created and it is shown that the 
resulting tiles are both reliable and stable. As shown in this Fig. 7, increasing a tile 
dimensionality, the amount of time to find the first feasible solution and the optimal 
tile increases in polynomial magnitude. The execution times shown in Fig. 7 are all 
the average for 10 times of running the algorithm for tiles of dimensions 2 to 6. 

The volume of computation, volume of communication and fitness of the 10 tiles 
resulted from 10 times of running the algorithm for the 3, 4 and 5 dimensional tiles, is 
 

 

Fig. 7. Execution Time of the proposed algorithm for 2 to 6 dimensional tiles 
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3-dimensional nested loop:    4-dimensional nested loop:     5-dimensional nested loop: 
for j1 = 0 to 7                            for j1 = 0 to 7                             for j1 = 0 to 7
  for j2 = 0 to 7                            for j2 = 0 to 7                             for j2 = 0 to 7 
    for j3 = 0 to 7                            for j3 = 0 to 7                            for j3 = 0 to 7 
      a (j1, j2, j3) =                                for j4 = 0 to 7                         for j4 = 0 to 7 
        a (j1 - 3, j2 - 1, j3 - 1) +                 a (j1, j2, j3, j4) =                     for j5 = 0 to 7 

         a (j1 - 1, j2 - 2, j3 - 1);                    a (j1 - 1, j2 - 1, j3 - 1, j4 - 1);    a (j1, j2, j3, j4, j5) = 
                                                                   a (j1 - 1, j2 - 1, j3 - 1, j4 - 1, j5 - 1); 

GA Parameters: 
3-dime

mb
4-dime

mb
5-dime

mb  

Fig. 8. Stability of the proposed algorithm 

shown in Fig. 8. This experiment, demonstrates the stability of the proposed genetic 
tiling algorithm. M and K in Fig. 8 are already defined in section 2.3. 

Fig. 9 demonstrates the reliability of the algorithm for the generation of 3 to 6 
dimensional tiles. In Fig. 9.a, the convergence of the proposed genetic tiling algorithm 
is demonstrated by depicting the quality of the best feasible tile in each generation of 
the evolutionary process of finding the optimal tile. In Fig. 9.b, to demonstrate the 
reliability of the proposed algorithm, it is shown that the number of feasible tiles gets 
closer to the population size as the number of generations increases. As shown in  
Fig. 9.b, the number of 3-dimensional feasible solutions is very low for the generation 
numbers 0 to 25. As the number of dimensions of the tiles increases, it takes longer to 
find the first optimal tile, For instance, as shown in Fig. 9.b, it takes longer for the 
algorithm to find the first feasible 6-dimensional tile, than the time required to find 
the first 2 to 5 dimensional tiles. 

6   Conclusions and Future Works 

In order to construct a uniform iteration space, Diophantine equations can be applied 
to solve the set of equations describing dependencies loop iterations. The iteration 
space can be best tiled by applying an evolutionary non-deterministic approach, 
because tiling is a NP-hard problem. However, to solve the problem the previous 
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3,4 and 5 Dimensionals Loop Tiling
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Fig. 9. Reliability of the proposed algorithm 

works use deterministic approaches. Even the award wining work described in 
reference [12] solves the tiling problem in only 2 dimensions, using a deterministic 
approach called data space tiling. In this deterministic approach to reduce the size of 
the search space for finding suitable tiles, the direction of one side of the tiles has to 
be vertical. Limiting the search space obviously, reduces the chance of finding an 
optimal solution.  
    Using a genetic approach as described in our paper, the entire search space is 
scanned for finding an optimal tile. Due, to the non-deterministic nature of 
evolutionary approaches such as genetics, the search will be faster than any 
exhaustive searches in the same space. The genetic approach, proposed in this paper, 
generates parallelepiped multi-dimensional tiles of any size which best fit into the 
local memory of parallel processors. The constraints applied to the genetic algorithm 
ensure the minimum inter-processors communication, maximum usage of the local 
memory of parallel processors and continuous execution of the iterations residing in 
each tile. The proposed multi-dimensional wave-front approach can be applied to 
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convert the ultimate iteration space represented as a multi-dimensional parallelepiped 
tiles into a parallel nested loop.  
     Iteration spaces are not necessarily rectangular. We are currently working to 
extend our parallel loop generation algorithm to irregular iteration spaces. Also, as a 
part of future work we intend to work on parallel loop scheduling algorithms applying 
multi-dimensional tiled spaces.  
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Abstract. The token flow semantics of UML 2 activity diagrams is for-
mally defined using Abstract State Machines. Interruptible activity re-
gions and multiplicity bounds for pins are considered for the first time
in a comprehensive and rigorous way. The formalisation provides insight
into problems with the UML specification, and their solutions. It also
serves as a basis for an integrated environment supporting the simula-
tion and debugging of activity diagrams.

1 Introduction

The Unified Modeling Language (UML) is widely used for specification and docu-
mentation purposes in the software development process. UML activity diagrams
model behaviour aspects of software systems, particularly control and data flow.
To provide tool support beyond drawing assistance, and to use activity diagrams
effectively, it is necessary to exactly understand their meaning.

While the UML specification [1] is a step forward to define activity diagrams
more precisely, it is insufficient for several reasons. First, it is vague, leaving much
space for interpretation – as will become evident throughout this paper. Second,
it is informal, thus a large gap has to be bridged until it can be usefully applied
for model execution and automated reasoning. Third, it contains implausible
requirements, e.g., for nested interruptible activity regions as discussed in Sect. 6,
which reduces its usability.

We propose a solution to these shortcomings by defining the semantics of ac-
tivity diagrams using Abstract State Machines [2]. The Abstract State Machine
(ASM) specification is precise and therefore it enables to understand the mean-
ing of a model to the utmost detail. It is formal and can therefore serve as a
foundation for the implementation of tools. Finally, it helps to ensure that the
specified behaviour meets the intuition of the modeller.

The state of the art in semantics for UML 2 activity diagrams covers three
distinct approaches: mapping to Petri-nets, using graph transformation rules, or
providing pseudo-code. A detailed discussion of related work is given in Sect. 8.

We improve on existing work by imposing less restrictions on activity di-
agrams, e.g., treating multiplicity bounds for pins and interruptible activity
regions. The construction using ASMs leads to enhanced clarity and reveals
problematic issues in the UML specification. Our solution also shows how to
deal with several of these problems without inflicting any biased decision.

I. Virbitskaite and A. Voronkov (Eds.): PSI 2006, LNCS 4378, pp. 349–362, 2007.
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The scope of this paper is to describe the ASM semantics of token flow. This
specifies the meaning of a transition from one state to another within an activity
diagram. It is, however, only one part of a complete ASM semantics of activity
diagrams. The remaining parts deal with events and multiple activity and action
executions, and are elaborated in [3].

In Sect. 2 we introduce the basic concepts of activity diagrams and Abstract
State Machines. The structure of the token flow semantics is presented in Sect. 3,
and the following sections describe its aspects. Token offers are computed in
Sect. 4 and selected in Sect. 5. Restrictions we have to impose on activity dia-
grams are also discussed there. Interruptible activity regions and configurable
semantics are dealt with in Sect. 6. A brief summary of our techniques to solve
problems we have encountered with the UML specification is given in Sect. 7.

2 Basics

In this section we detail the basic concepts of UML activity diagrams, also
called “activities” in [1], and Abstract State Machines [2] to a level needed for
the following development. In this paper, by writing UML we mean UML 2.0
unless stated otherwise.

2.1 Activity Diagrams

UML facilitates the modelling of control and object (or data) flow by means of
activity diagrams, comprising a multitude of concepts. Several levels are defined
that support different parts of these concepts. This paper mainly addresses the
intermediate level that includes object nodes, concurrent flows with guards, and
decisions. We additionally discuss interruptible activity regions as an example of
a useful feature having a vague semantics.

The fundamental elements of activity diagrams are actions that are connected
by edges to indicate control and data flow. Actions specify transformations on the
state of the system that are not further decomposed within the given diagram.
They are either implementation-dependent or more specific, e.g., used to send
and receive signals or to invoke behaviour specified in other diagrams. Since this
distinction is of no concern for the purposes of the paper at hand, the most
general term “action” is used.

Edges connecting actions may pass through control nodes that coordinate the
flows in an activity diagram. A decision node chooses between different outgoing
edges and the corresponding merge node unites several independent flows. On
the other hand, a fork node splits a flow into concurrent flows along all outgoing
edges and the corresponding join node synchronises all incoming flows. Moreover,
flows may originate in initial nodes and terminate in final nodes.

Object nodes allow for object flows in addition to control flows. They arise
as input pins and output pins attached to actions, indicating the delivery of
data. On the level of activities, objects can be passed through activity parameter
nodes. Objects may also be buffered in central buffer nodes.

An interruptible activity region is a subset of nodes and edges supporting the
termination of parts of an activity diagram. It is further examined in Sect. 6.
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Example. Several of these building-blocks are illustrated in the activity diagram
shown in Fig. 1 that acts as the running example throughout this paper. It
contains actions A and B, activity parameter nodes C and D, central buffer
node E, input pin F , control flows e1–e3, object flows e4–e8, the diamond-shaped
decision and merge nodes, the bar-shaped join node, and the bullet-shaped initial
node. The decision node’s outgoing edges are decorated with guards that indicate
the conditions for passing the edges.
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Fig. 1. Activity diagram used as a running example

While Petri-nets are not adequate to describe the semantics of activity dia-
grams (see Sect. 8), our example can be explained at least in terms of tokens.
Upon start of the activity diagram, tokens are available on the nodes C and D,
and on the edge e1. There are three different situations, depending on the value
of the attribute x:

– x < 0: Token 1© may enable action A and token 3© may move to buffer E.
The join node must not be traversed.

– x = 0: Only token 3© may move to E.
– x > 0: Token 2© may move to input pin F , enabling action B. Independently,

token 3© may move either to F or to E, but not to both nodes.

Note that in any of the three situations, any of the indicated flows may take
place, but is not required to.

2.2 Abstract State Machines

Basic ASMs may be viewed as “pseudo-code over abstract data” [2], and indeed
we use them as a convenient way to describe computations in this paper. We
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present a brief overview of the most important concepts and refer to [2] for
details, including an operational semantics.

An ASM comprises transition rules that operate on a state composed of func-
tions defined over a base set. The update rule f(s1, . . . , sn) := t modifies the
value of f at (s1, . . . , sn) to t. In general, several transition rules execute in par-
allel, requiring that individual updates do not conflict each other. Such conflicts
may be avoided by enforcing sequential execution with seq. Further constructs
include the no-operation skip, abstractions using let . . . in, the conditional, and
rule calls with call-by-name semantics. The rule forall x with ϕ do R executes
R in parallel for each x satisfying ϕ. The rule choose x with ϕ do R chooses
some x satisfying ϕ and then executes R. The rule iterate R executes R until it
provides no further or inconsistent updates. Borrowed from AsmL, the add . . . to
and remove . . . from rules denote non-conflicting, partial updates to sets [4].

3 Flow Computation

In this section we present our main ASM rule for the computation of transitions,
describing the structure of the token flow semantics. Relevant terms used by the
UML specification are introduced as needed.

The semantics of activity diagrams is specified in terms of tokens [1]. Our
transition rule is called whenever tokens are available at actions, initial nodes,
or object nodes. According to the UML specification, these nodes offer the tokens
on their outgoing edges. Tokens can be rejected by edges because their guards
evaluate to false, or by nodes not accepting them.

Offered tokens may move, if they are accepted by all intermediate edges and
control nodes, as well as their destination nodes. The latter comprise actions,
final nodes, and object nodes. The traverse-to-completion principle [5] requires
that the whole path from the original node to the destination is traversed at
once. The definitive goal of our rule is to determine which tokens move, triggering
which destinations, and to perform the entailed transition.

The exact working of the propagation of token offers and their selection at
destination actions and object nodes, however, is neither formally defined, nor
adequately discussed in the specification. Our proposal for transition compu-
tation and execution consists of the following main ASM rule that is executed
repeatedly as long as control or data tokens are available:

InitialiseFlowsForControlFlowSources

InitialiseFlowsForObjectFlowSources (see Sect. 4.1)
seq PropagateFlowInformation (see Sect. 4.2)
seq SelectTokenOffers (see Sect. 5)
seq RemoveFlowsInInterruptedRegions (see Sect. 6)
seq ActivateAcceptEventActions

seq ExecuteTransition

The InitialiseFlows and PropagateFlowInformation macros spread
token offers from the source nodes, where the actual control and data tokens rest,
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through the activity graph. These macros are described in the following section.
After all possible offers have been computed, subsets are selected at destination
actions, object and final nodes, preparing the traversal of the associated tokens.
The selection mechanism is described in Sect. 5. Note that selecting token offers
can invalidate other, conflicting token offers.

Since aborting interruptible activity regions can prevent tokens from traver-
sal, the rule RemoveFlowsInInterruptedRegions removes those selections.
Problematic cases unconsidered by the UML specification, including the han-
dling of nested interruptible activity regions, are discussed in Sect. 6.

Accept event action nodes without incoming edges, contained in interrupt-
ible activity regions, are initialised by ActivateAcceptEventActions. The
actual execution of the token traversal and the termination of actions in inter-
rupted regions is performed by ExecuteTransition. For want of space, both
rules are not detailed in this paper but presented in [3] that also deals with event
handling and multiple activity and action executions.

4 Computation of Token Offers

The distribution of token offers is performed in two steps. First, new token offers
are created for tokens resting at outgoing edges of actions or initial nodes (being
sources of control flows), or at object nodes (being sources of object flows).
Second, the token offers are propagated through the activity graph towards the
consuming destination nodes, namely actions, object nodes, and final nodes.

4.1 Creation of Token Offers

Offers are created by the InitialiseFlows macros. We show the rule for object
flow sources, and omit the similar one for control flow sources. The latter joins
control tokens offered by the same edge by creating only one token offer.

We use static ASM functions to model the activity diagram being worked on,
according to the UML meta model [1]. The domain ObjectFlowSource subsumes
output pins, central buffer nodes, and incoming activity parameter nodes.

InitialiseFlowsForObjectFlowSources ≡
forall n with n ∈ ObjectFlowSource ∧ |dataTokens(n)| > 0 do

let m = |outgoing(n)| in
forall i with 1 ≤ i ≤ m do t(i) := new(TokenOffer )
seq
forall i with 1 ≤ i ≤ m do

let e = outgoing(n, i) in
if IsGuardTrue(e,Self .context , head(dataTokens(n))) then

t(i).offeredToken := head(dataTokens(n))
t(i).paths := {[e]}
t(i).exclude := {t(j) | 1 ≤ j ≤ m ∧ i �= j}
t(i).include := ∅
offers(e) := {t(i)}
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The function dataTokens yields the data tokens currently available at a node.
If there is more than one, only the first is considered, assuming a FIFO-ordering
[1, p. 380]. For each outgoing edge, if its guard evaluates to true for that token, a
new instance of the TokenOffer structure is initialised. Since the syntax and the
implementation of guards are left open by the UML specification, the evaluation
is performed by the monitored ASM function IsGuardTrue.

The TokenOffer structure consists of the following components:

domain TokenOffer =def {offeredToken : Token ; paths : P(ActivityEdge∗);
exclude : P(TokenOffer); include : P(TokenOffer)}

The component offeredToken contains the actual data token, whose possible
traversal is represented by this offer. The component paths represents the path
beginning from the source node of the token to the current position of the offer.
Actually, a set of paths is needed, since control flows must be included when
combined with object flows by a join node, as described in Sect. 4.2.

Furthermore, according to the specification [1, p. 381], “a token in an object
node can traverse only one of the outgoing edges”. Our algorithm must there-
fore ensure that the offers on these edges exclude each other, as is the case in
Sect. 4.2 for decision nodes with non-exclusive guards. Tool implementation re-
quires efficiency, and we therefore avoid to try out all possible combinations for
several nodes with competing edges. An appropriate backtracking mechanism is
also ruled out, although for other reasons, by [6]. Note that lifting this problem
to the interpreting level, e.g., to the ASM choice construct, does not solve it.

Therefore, the component exclude of TokenOffer collects all conflicting offers.
It is initialised to contain the offers on all edges except the current, since all
outgoing edges of object nodes compete with each other. By the way, this is not
the case for control flow sources, where they are initialised as empty.

The component include, finally, contains those offers that have contributed
to the current offer. Being initial offers, their include set is empty. Both the
exclude and include sets are used for selecting token offers at destination nodes
in Sect. 5.

The ASM function offers : ActivityEdge → P(TokenOffer ) stores the new
token offers. While it initially maps to singleton sets, multiple offers may exist
on a single edge at later stages, as stated explicitly in [1, p. 369]. All offers stored
on all incoming edges of a node n are returned by offersForNode(n).

4.2 Propagation of Token Offers

After all initial offers have been created, PropagateFlowInformation dis-
tributes them by iteratively calling rules for the join, decision, merge, and fork
nodes.

Join. We first deal with join nodes, being the most complex kind. The following
ASM rule processes all join nodes of the current activity once, ensured by the
predicate visited . All previously computed offers on the outgoing edge are cleared
and, if there are offers on all incoming edges, we differentiate the two cases
specified by [1, p. 369].
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PropagateFlowForJoinNode ≡
forall n with n ∈ JoinNode ∧ AreAllPredecessorsVisited (n) ∧ ¬visited(n) do

let o = outgoing(n) in
offers(o) := ∅
seq
visited(n) := true
if ∀e ∈ incoming(n) : offers(e) �= ∅ then

if IsControlFlow(o) then PropagateControlFlowForJoinNode(n, o)
else PropagateObjectFlowForJoinNode(n, o)

If some (or all) incoming edges are object flows, all offers from these flows have
to be forwarded. By joining all incoming control flows to the paths set of each
transmitted token offer, they can be removed if the actual transition of the data
token takes place. The include and exclude sets of each offer contain all control
and object flows to prevent conflicting offers to flow that might invalidate the
join condition.

PropagateObjectFlowForJoinNode(n, o) ≡
forall e with e ∈ incoming(n) ∧ IsObjectFlow (e) do

forall t with t ∈ offers(e) do
if IsGuardTrue(o,Self .context , t.offeredToken) then

let t′ = new(TokenOffer) in
t′.offeredToken := t.offeredToken
t′.paths := {p −�− o | p ∈

⋃
{s.paths | s ∈ controlFlowOffers(n)} ∪ t.paths}

t′.exclude :=
⋃
{s.exclude | s ∈ offersForNode(n)}

t′.include :=
⋃
{s.include ∪ {s} | s ∈ offersForNode(n)}

add t′ to offers(o)

For this procedure to work we have to impose a restriction: We assume that
the incoming token offers are consistent, as discussed in Sect. 5. Otherwise, sets
of token offers would have to be considered to handle the additional dependences.

A similar rule emits only one token offer, if only control flows are joined.

Decision. The specification of decision nodes requires that each incoming token
is offered to those outgoing edges whose guards are satisfied. The modeller must
ensure that only one outgoing edge is actually traversed. Additionally, [1, p. 349]
states that “if multiple edges accept the token and have approval from their
targets for traversal at the same time, then the semantics is not defined”.

It is, however, left unspecified what the “approval” proviso means. We propose
that any selection of token offers may be chosen as long as no two outgoing edges
are traversed simultaneously by the same token. The following fragment of our
algorithm shows the use of the exclude sets to implement this:

forall i with 1 ≤ i ≤ |acceptingEdges | do t(i) := new(TokenOffer )
seq
forall i with 1 ≤ i ≤ |acceptingEdges | do

t(i).offeredToken := t.offeredToken
t(i).paths := {p −�− elementAt(acceptingEdges , i) | p ∈ t.paths}
t(i).exclude := t.exclude ∪ {t(j) | 1 ≤ j ≤ |acceptingEdges | ∧ i �= j}
t(i).include := t.include ∪ {t}
add t(i) to offers(elementAt(acceptingEdges , i))
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The set acceptingEdges contains all edges with true guards. Extending the
guard mechanism of edges, “a predefined guard ‘else’ may be defined for at
most one outgoing edge” of a decision node [1, p. 349]. As expected, this guard
succeeds only if all other guards fail. The else-guard is easily incorporated into
the transition rule as a special case.

Merge. The propagation for the merge nodes is considerably simpler, since “all
tokens offered on incoming edges are offered to the outgoing edge” [1, p. 374].
We immediately check if the token satisfies the guard of the outgoing edge, and
calculate the new token offer as follows:

let t′ = new (TokenOffer) in
t′.offeredToken := t.offeredToken
t′.paths := {p −�− outgoing(n, 1) | p ∈ t.paths}
t′.exclude := t.exclude
t′.include := t.include ∪ {t}
add t′ to offers(outgoing(n, 1))

Fork. The calculation for the fork nodes is almost identical, except that to-
ken offers are made at each outgoing edge with a true guard. Our algorithm
can be extended to deal with the buffering of tokens at fork nodes [1, p. 363].
Note that, when used in combination with guards, fork buffering leads to unex-
pected behaviour. The extension is presented in [3], along with a discussion of
the problems caused by the UML specification.

4.3 Example Computation

Figure 2 contains the computed token offers for our example shown in Fig. 1,
assuming x > 0. The offers 1, 3, 4 and 5 are computed by the InitialiseFlows

rules, whereas the remaining offers are added by the Propagate rules. The
next section explains how the propagated offers are selected at destination
nodes.

Edge Offers, id : (offeredToken , paths , exclude , include)

e1 1 : (−, {[e1]}, ∅, ∅)
e2 no offers
e3 2 : (−, {[e1, e3]}, ∅, {1})
e4 3 : ( 2©, {[e4]}, ∅, ∅)
e5 4 : ( 3©, {[e5]}, {5}, ∅)
e6 5 : ( 3©, {[e6]}, {4}, ∅)
e7 6 : ( 2©, {[e4, e7]}, ∅, {3}) and

7 : ( 3©, {[e5, e7]}, {5}, {4})
e8 8 : ( 2©, {[e4, e7, e8], [e1, e3, e8]}, {5}, {1, 2, 3, 4, 6, 7}) and

9 : ( 3©, {[e5, e7, e8], [e1, e3, e8]}, {5}, {1, 2, 3, 4, 6, 7})

Fig. 2. Computed offers for the example in Fig. 1
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5 Selection of Token Offers

Once the token offers are computed, we select subsets of them to participate
in the planned transition. The transition may lead, e.g., to the start of a new
action as described by the specification [1, p. 302]. Other possibilities are moving
tokens to central buffer nodes, outgoing activity parameter nodes, and final
nodes. The UML specification, however, does not indicate what to perform if
there are enough token offers to conduct several of these operations.

We use the ASM iteration and non-deterministic choice constructs to adhere
to the specification. The iteration may be stopped by choosing n = skipSelection
at any stage. Otherwise, we select token offers depending on the kind of node.

SelectTokenOffers ≡
iterate

choose n with n ∈ {skipSelection} ∪ Action ∪ FinalNode
∪ CentralBufferNode ∪ OutgoingActivityParameterNode do

if n ∈ Action then SelectTokenOffersForAction(n)
if n ∈ FinalNode then SelectTokenOffersForFinalNode(n)
if n ∈ CentralBufferNode ∪ OutgoingActivityParameterNode then

SelectTokenOffersForCentralBufferAndParameterNode(n)

In the following, we focus on action nodes. The selection for the other kinds
of nodes is dealt with by similar, even simpler rules.

For action nodes, we select a subset of token offers Si for each input pin i of
the action. Conditions for the acceptance of tokens by input pins are that the
number of selected tokens is between lower and upper [1, p. 249], and that the
total number of tokens resting on each pin does not exceed its upper bound [1,
p. 380]. If an appropriate selection has been found, we commit to it and update
the remaining offers according to the specification.

The selected subsets are accumulated in tokenSelections . The function taken
keeps track of the selections for each object node to make sure they do not
overflow. The input pins of action n are provided by input(n) according to the
UML meta model.

SelectTokenOffersForAction(n) ≡
if ∀e ∈ incoming(n) : offers(e) �= ∅ then

let p = |input(n)| in
choose S1, . . . , Sp with ∀1 ≤ i ≤ p : ∃j = input(n, i) : Si ⊆ offersForNode(j)

∧ lower(j) ≤ |Si| ≤ upper (j)
∧ |Si| + taken(j) + |dataTokens(j)| ≤ upperBound (j) do

let selection =
⋃
{Si | 1 ≤ i ≤ p} ∪ offersForNode(n) in

UpdateOffers(selection)
tokenSelections := tokenSelections ∪ {(n, selection)}
forall i with 1 ≤ i ≤ p do taken(input(n, i)) := taken(input(n, i)) + |Si|

The UpdateOffers rule removes the selection of token offers and all offers
inconsistent to it. If any inconsistent offers are removed from a join node, we
re-propagate this information using the rules introduced in Sect. 4, since the
removal may affect other token offers originating at that node.
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UpdateOffers(selection) ≡
forall n with n ∈ JoinNode

∧ ∃e ∈ incoming(n) : ∃t ∈ offers(e) : ∃t′ ∈ selection : ¬AreConsistent (t, t′) do
forall n′ with n′ ∈ AllControlNodeSuccessors (n) ∪ {n} do visited(n′) := false

forall e with e ∈ ActivityEdge do
offers(e) := {t ∈ offers(e) | t /∈ selection ∧ ∀t′ ∈ selection : AreConsistent (t, t′)}

seq
PropagateFlowInformation

The symmetric predicate AreConsistent is used to calculate which token offers
must be removed according to the specification.

AreConsistent : TokenOffer × TokenOffer → Boolean
AreConsistent(t1, t2) =def (t1 .exclude ∩ (t2 .include ∪ {t2}) = ∅)

∧ (t2 .exclude ∩ (t1 .include ∪ {t1}) = ∅)

To avoid an inefficient search at each destination node, we assume that the
incoming token offers are consistent. The modeller can ensure this, and also the
consistency required for join nodes in Sect. 4, e.g., by placing appropriate guards
on competing edges leading to the same destination nodes. A stronger, syntactic
condition is the absence of two paths from the same decision or object node to
the same action, final, join, or object node. Here, an action together with its
input pins is considered as one node.

Example Selection. Let us discuss the case x > 0 of our running exam-
ple shown in Fig. 1, assuming further that the action node B is chosen by
SelectTokenOffers. Then, either of the offers 8 and 9 shown in Fig. 2 may be
selected, or both of them, by SelectTokenOffersForAction. In any case,
the exclude set of the selection contains the offer 5 that is therefore removed
by UpdateOffers. Since all offers into the join node are consistent with the
selection, no further propagation is performed.

If, on the other hand, central buffer E was chosen by SelectTokenOffers,
and offer 5 selected, the offers 4, 7, 8, and 9 would be removed. By re-propagating
from the join node, offer 8 : ( 2©, {[e4, e7, e8], [e1, e3, e8]}, ∅, {1, 2, 3, 6}) is recon-
structed and may be chosen in the next iteration.

6 Interruptible Activity Regions

After token offers have been selected for destination nodes, we determine which
interruptible activity regions are aborted and eliminate flows that are in conflict
with those regions.

If one of the selected offers passes an interrupting edge [1, p. 366], all tokens in
the interrupted region must be removed, and therefore all offers of these tokens
have to be removed as well. Note that it is permitted to have concurrent, non-
interrupting flows out of aborted regions.

The specification, however, gives no information regarding concurrent flows
leading into aborted regions. Figure 3 shows the offer 1© that originates from a
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node outside of the region, and the offer 2© that re-enters the region after having
left it. Since either keeping or destroying such tokens can be useful, our algorithm
can be adapted to both alternatives. To this end, we introduce the configuration
of semantics by using UML tags, a standard extension mechanism of the UML.
This mechanism has already been applied successfully to the configuration of
signal handling [7]. In Fig. 3, the ignoreFlowIntoInterruptedRegion tag is used that
is queried in the following ASM rule.
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Fig. 3. Issues with interruptible activity regions

In general, multiple interrupting edges can be passed at the same time (see
offers 3© and 4© in Fig. 3), leading to another scenario where configuration is
useful. To enable the user to specify that only a single edge may be passed,
the singleInterrupt and priority tags are defined. If singleInterrupt is enabled for
a region, our algorithm selects the edge with the highest annotated priority,
implemented by ChooseIntEdge. Offer selections for the other interrupting
edges are then discarded.

Interruptible activity regions, being activity groups, are also allowed to be
nested. A major deficiency of the UML specification is missing information about
how to deal with them. According to the specification [1, p. 323], “no node or
edge in a group may be contained by its subgroups or its containing groups,
transitively”. This means that, when a region is aborted, its nested regions are
not. Instead of this unexpected behaviour we propose to interrupt all nested
regions. Token 5© would thus be removed in Fig. 3 if offer 3© was selected for
traversal.

The following ASM rule implements the discussion just carried out. For all
regions that are to be aborted, we remove all selected offers that do not leave the
region, as checked by HasInnerFlow . We furthermore eliminate flows according
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to the specified configuration tags. Finally, all nested regions are marked for
termination.

RemoveFlowsInInterruptedRegions ≡
forall r with r ∈ InterruptibleActivityRegion ∧ IsInterrupted (r)

∧ �r′ ∈ parents(r) : IsInterrupted (r′) do
remove {s ∈ tokenSelections | HasInnerFlow (s, r)} from tokenSelections
if tagValue(r, singleInterrupt) = yes then

let e = ChooseIntEdge(
⋃
{interruptingEdge(s, r) | s ∈ tokenSelections}) in

remove {s ∈ tokenSelections | Interrupts(s, r) ∧ e /∈ interruptingEdge(s, r)}
from tokenSelections

if tagValue(r, ignoreFlowIntoInterruptedRegion) = yes then
remove {s ∈ tokenSelections | HasFlowInto(s, r)} from tokenSelections

add {r} ∪ children(r) to regionsToInterrupt

7 Solving Problems of UML

Let us finally compare the problems with the UML specification we have encoun-
tered and the ways we solve them. Deliberate under-specifications are modelled
by the non-deterministic choice of ASMs (e.g., see Sect. 5). To deal with open is-
sues that can be decided by the modeller we introduce UML tags that are queried
from the ASM rules. If the specification should have decided, e.g., concerning
non-exclusive guards on competing edges, we propose a decision. Unintuitive
consequences of requirements in the specification (e.g., of fork buffering) are
discussed in detail, also by providing alternative implementations [3]. Obvious
errors, e.g., for nested interruptible activity regions, are corrected.

8 Related Work

Existing work covers the semantics for UML 1.∗, including an ASM semantics for
activity diagrams, excerpts of which are presented in [8]. For historical reasons,
however, UML 1.∗ activity diagrams are special kinds of state charts. In UML
2.0 they have been completely redefined. We therefore discuss only UML 2.0
related work in the following.

Since the UML specification envisions a “Petri-like semantics” for activity
diagrams [1, p. 314], it is manifest to propose a mapping between the two. Störrle
[9,10] uses different variants of Petri-nets, e.g., coloured Petri-nets for data flow,
and procedural Petri-nets for activities. The treatment of join nodes having
mixed object and control flows is, however, neither discussed nor obvious. The
development culminates in [11] concluding that Petri-nets might, after all, not
be appropriate for formalising activity diagrams. Especially mapping advanced
concepts, such as interruptible activity regions, is found not to be intuitive.
Moreover, the lack of a unified Petri-net formalism, integrating the different
variants used to map different concepts, is observed. Assuring the traverse-to-
completion semantics is identified as another problem. The related paper [12]
also translates to Petri-nets, but focuses on the parameters of actions.
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Vitolins and Kalnins [13] present an algorithm for computing the token flow,
proposing a forward and backward search by using so-called “push” and “pull”
engines. Several far reaching restrictions are, however, imposed on activity dia-
grams. Decision nodes must have mutually exclusive guards, and object nodes
must have no outgoing concurrent edges. This simplifies their algorithm, since
they do not have to pull all input tokens in one atomic step – traverse-to-
completion is thus not observed. Fork and join nodes must not be on the same
path between two actions. Tokens resulting from join nodes are grouped, which
is neither prohibited nor stated in the specification.

Hausmann [6] formalises activity diagrams using “Dynamic Meta Modeling”,
where graph transformation rules operate on an instance of the UML meta
model. The transformation engine is responsible to resolve the non-determinism
occurring at competing edges of object and decision nodes. This renders the
approach too inefficient to serve as a basis for tool support. The semantics of a
large part of activity diagrams is described very detailed and problems of the
UML specification are discussed. Apart from this, several restrictions apply also
to this work. Only one offer is allowed per edge, and – as a consequence – when
different data tokens are offered to a join node, only one of them is forwarded.
Guards and interruptible activity regions are not supported.

The ongoing UML Semantics Project [14] aims at formalising a subset of
UML by providing “a strong foundation for the definition of a UML virtual
machine that is capable of executing UML 2.0 models”. The Modelware Project
[15] implements a tool capable of simulating basic activity diagrams, but only
with control flows. Currently, no formalisation of the algorithms behind their
execution engine is available.

Our paper shows how to deal with the restrictions mentioned before. More-
over, none of the works discussed so far, and none that we know of, handles the
problems presented in Sect. 6 related to interruptible activity regions, including
incoming flows, multiple interrupting edges, and nested regions. The useful fea-
ture of lower and upper multiplicity bounds on pins is also not treated elsewhere.

9 Conclusion

We formalise the semantics of token flow in UML 2 activity diagrams in terms
of ASM rules. The resulting rules can be traced back to requirements present
in or absent from the UML specification. Our contribution deals with several
features neglected elsewhere, such as interruptible activity regions and multi-
plicity bounds for pins. The part presented in this paper is embedded into rules
for asynchronous multi-agent ASMs specifying signal handling and activity and
action executions [3].

The formalisation is high-level enough to reveal problematic issues with the
UML specification. On the other hand, it can be directly executed using the AsmL
compiler. Furthermore, it is suitable to serve as a basis for tool support, e.g., for
model checking [16] and verification [17]. An integrated environment has been im-
plemented [18], supporting the simulation and debugging of activity diagrams.
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10. Störrle, H.: Semantics and verification of data flow in UML 2.0 activities. In Minas,
M., ed.: Workshop on Visual Languages and Formal Methods. Volume 127, Issue
4 of Electronic Notes in Theoretical Computer Science, Elsevier (2005) 35–52
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Abstract. We address model checking problem for combination of Com-
putation Tree Logic (CTL) and Propositional Logic of Knowledge (PLK)
in finite systems with the perfect recall synchronous semantics. We have
published already an (update+abstraction)-algorithm for model checking
with detailed time upper bound. This algorithm reduces model check-
ing of combined logic to model checking of CTL in a finite abstract
space (that consists of some finite trees). Unfortunately, the known up-
per bound for size of the abstract space (i.e. number of trees) is a
non-elementary function of the size of the background system. Thus
a straightforward use of a model checker for CTL for model checking
the combined logic seems to be infeasible. Hence it makes sense to try
to apply techniques, which have been developed for infinite-state model
checking. In the present paper we demonstrate that the abstract space
provided with some partial order on trees is a well-structured labeled
transition system where every property expressible in the propositional
μ-Calculus, can be characterized by a finite computable set of maximal
elements. We tried feasibility of this approach to model checking of the
combined logic in perfect recall synchronous environment by automatic
model checking a parameterized example.

1 Introduction

Combinations of traditional program logics [20,8,25] with logics of knowledge
[9,24] become a current research topic due to the importance of study of inter-
actions between knowledge and actions for reasoning about multiagent systems.
A number of techniques for (semi)automatic processing of a number of combined
logics have been under study [15,6,7,23,14,16,17,13].

Paper [13] has studied the model checking problem in trace-based synchron-
ous perfect recall systems for pairwise fusion of the program logics Computation
Tree Logic extended by actions (Act-CTL) and the propositional μ-Calculus
(μC) with the epistemic logics Propositional Logic of Knowledge for n agents
(PLKn) and Propositional Logic of Common Knowledge for n agents (PLCn).
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‘Trace-based’ means that semantics of formulas is defined on traces, i.e. finite
sequences of states and actions1. Each element of a trace represents a state of the
system at some moment of time. So, ‘synchronous’ means that agents distinguish
traces of different lengths. ‘Perfect recall’ means that every agent can distinguish
traces with different sequences of information available for him/her. If L stands
for any of acronym of program logics Act-CTL or μC, and PLX stands for any
of acronym of epistemic logics PLKn or PLCn, then let acronym L-X stand
for fusion of logics L and PLXn. For example, Act-CTL-Kn denotes fusion of
Act-CTL and PLKn.

It has been demonstrated in [13] that the model checking problem in the
class of finitely-generated trace-based synchronous systems with perfect recall
is undecidable for Act-CTL-Cn, μPLKn, and μPLCn (where n > 1), but is
decidable for Act-CTL-Kn (with a non-elementary lower bound). It was a ‘deci-
dability in principle’, and is not oriented towards any implementation.

Paper [26] presents a ‘direct’ (update+abstraction)-algorithm for model chec-
king Act-CTL-Kn in perfect recall synchronous environments. This (update+
abstraction)-algorithm has been inspirited by [21]. It is based on a simple trans-
formation of Act-CTL-Kn formulas into formulas of Act+n-CTL (i.e. Act-CTL
with n fresh action symbols) and on a reduction of infinite synchronous perfect
recall system to finite model TRk(E) which consists of k-trees (special finite
trees of height k). Thus the resulting model checking algorithm simply solves
formulas of Act+n-CTL on k-trees.

Unfortunately, the upper bound for size of this finite model is a non-element-
ary function of the size of the background finite system [26]. Hence a straightfor-
ward use of a model checker for CTL for model checking Act+n-CTL on k-trees
is likely to be a non-feasible task. Roughly speaking, this space is too big to be
treated as a finite. It implies that for model checking Act+n-CTL on k-trees it
makes sense to try techniques which have been developed for infinite-state model
checking.

A very popular approach to infinite-state model checking is formalism of well-
structured labeled transition systems. Fundamental papers [1,10] have proved the
decidability of liveness (reachability) and progress (eventuality) properties in
well-structured single action labeled transition systems. Roughly speaking, a well-
structured single action labeled transition system is provided with (pre-)order
where transition ‘preserves’ this (pre-)order, and its labeling forms cones with re-
spect to this (pre-)order. Paper [19] has generalized cited decidability results for
disjunctive formulas of the propositionalμ-Calculus [18] in well-structured labeled
multi-action transition systems.

In the present paper we demonstrate that model TRk(E) provided with a
special sub-tree partial order forms a well-structured labeled transition system
where every property expressible in the μ-Calculus can be characterized by a
finite computable set of maximal trees that enjoy the property. We tried

1 Let us remark that we work with traces that are finite sequences. Every finite se-
quence represents current state of the system (that is the last element of the se-
quence) and system’s past (that is maximal prefix of the sequence).
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feasibility of this approach to model checking of Act-CTL-Kn in trace-based
synchronous perfect recall synchronous environment by automatic model check-
ing simple, but big example2.

2 Background Logics and Their Fusion

Logics we are going to discuss are propositional polymodal logics. Semantics of
these logics is defined in models which are called Kripke structures or labeled
transition systems (LTS); it is defined in terms of satisfiability relation |=.

Definition 1. Let {true, false} be Boolean constants, Prp and Rlt be disjoint
finite alphabets of propositional variables and relational symbols. Syntax of our
logics consists of formulas which are constructed from Boolean constants, propo-
sitional variables, and connectives3 ¬, ∧, ∨ and some modalities.

Definition 2. A transition system (synonym: Kripke frame) is a tuple (D, I),
where the domain D is a non-empty set of elements that are called states (or
worlds), and the interpretation I is a total mapping I : Rlt → 2D×D. For every
r ∈ Rlt an r-run is a maximal sequence of states ws = s1 . . . sisi+1 . . . such that
for all adjacent states within the sequence (si, si+1) ∈ I(r). For every finite i
within ws let wsi stands for the element si. Kripke model or labeled transition
system (LTS) M is a triple (D, I, V ), where (D, I) is a Kripke frame, and the
valuation VM maps propositional variables into subsets of D.

Definition 3. A satisfiability relation |= between models, worlds, and formulas
can be defined inductively with respect to a structure of formulas as follows4 .
For Boolean constants w |=M true and w |=/ Mfalse for any world w and model
M = (D, I, V ). For propositional variables we have: w |=M p iff w ∈ V (p). For
connectives |= is defined in the standard manner: w |=M ¬φ iff w |=/ Mφ, w |=M

φ ∧ψ iff w |=M φ and w |=M ψ, w |=M φ ∨ψ iff w |=M φ or w |=M ψ. Definition
of |= for modalities is specific for every particular propositional polymodal logic.

A particular example of propositional polymodal logics is Propositional Logic
of Knowledge (PLK) [9]. It is the simplest epistemic logic. Informally speaking,
PLK is a polymodal variant of the basic propositional modal logic S5 [3]. A
special terminology, notation and models are used in this framework.

Definition 4. (of Propositional Logic of Knowledge for n agents PLKn)
Let n > 0 be an integer. The alphabet of relational symbols consists of a set
of natural numbers [1..n] representing names of agents. Notation for modalities
is: if i ∈ [1..n] and φ is a formula, then (Kiφ) and (Siφ) are formulas5. For

2 The size of the initial background environment E is 120000 and the size of the
corresponding generated finite model TRk(E) is about 1036000 .

3 Standard abbreviations → and ↔ are admissible too.
4 Throughout the paper �|= stays for negation of |=.
5 They are read as ‘(an agent) i knows φ’ and ‘(an agent) i supposes φ’.
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every agent i ∈ [1..n] in every model M = (D, I, V ) interpretation I(i) is an
equivalence, i.e. a symmetric, reflexive, and transitive binary relation on D.
Every model M , where all agents in [1..n] are interpreted in this way, is denoted
as (D,

1∼, . . . ,
n∼, V ) instead of (D, I, V ) with I(i) = i∼ for every i ∈ [1..n]. In

particular, for every i ∈ [1..n] and every φ,

– w |=M (Siφ) iff for some w′: w
i∼ w′ and w′ |=M φ,

– w |=M (Kiφ) iff for every w′: w
i∼ w′ implies w′ |=M φ.

Another propositional polymodal logic Act-CTL is a variant of the basic
propositional branching time temporal logic Computational Tree Logic (CTL)
[8,4,5] extended by action symbols.

Definition 5. (of Act-CTL)
In the case of Act-CTL the alphabet of relational symbols consists of action
symbols Act. Notation for basic modalities is: if a ∈ Act and φ is a formula,
then (AXaφ) and (EXaφ) are formulas. Syntax of Act-CTL has also some other
special constructs associated with action symbols: if a ∈ Act, φ and ψ are for-
mulas, then (AGaφ), (AFaφ), (EGaφ), (EFaφ), (AφUaψ), and (EφUaψ)6 are
formulas too. For every model M = (D, I, V ) semantics of ‘universal’ special
constructors follows:

– w |=M AXaφ iff ws2 |=M φ for every a-run ws with ws1 = w,
– w |=M AGaφ iff wsj |=M φ for every a-run ws with ws1 = w

and every 1 ≤ j ≤ |ws|,
– w |=M AFaφ iff wsj |=M φ for every a-run ws with ws1 = w

and some 1 ≤ j ≤ |ws|,
– w |=M A(φUaψ) iff wsj |=M φ and wsk |=M ψ

for every a-run ws with ws1 = w,
for some 1 ≤ k ≤ |ws| and every 1 ≤ j < k,

Semantics of ‘existential’ constructors EXa, EGa, EFa, EUa is similar but
refers to some a-run.

The standard CTL is Act-CTL with a singleton alphabet Act.
We are going to define a combined Propositional Logic of Knowledge and

Branching Time Act-CTL-Kn.

Definition 6. (of Act-CTL-Kn)
Let [1..n] be a set of agents (n > 0), and Act be a finite alphabet of action
symbols. Syntax of Act-CTL-Kn admits all knowledge modalities Ki, and Si for
i ∈ [1..n], and all branching-time constructs AXa, AGa, AFa, AUa, EXa, EGa,
EFa, EUa. Semantics is defined in terms of satisfiability |=. An environment
is a tuple E = (D,

1∼, . . . ,
n∼, I, V ) such that (D,

1∼, . . . ,
n∼, V ) is a model for

PLKn and (D, I, V ) is a model for Act-CTL. Satisfiability is defined by induction

6 A is read as ‘for all futures’, E – ‘for some futures’, X – ‘next time’, G – ‘always’,
F – ‘sometime’, U – ‘until’, and a sup-index a is read as ‘in a-run(s)’.
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according to semantics of propositional (def. 3), knowledge (def. 4), and bran-
ching time constructs (def. 5). For every environment E and every formula φ let
E(φ) be the set {w | w |=E φ} of all worlds that satisfies formula φ in E.

We are mostly interested in trace-based perfect recall synchronous environments
generated from background finite environments. In these environments states are
sequences of worlds of initial environments with history of actions that gener-
ate them. Agent does not distinguish these sequences if the background system
performs the same sequence of actions, and if these sequences have the same
number of worlds, and agent can not distinguish these sequences world by world
(in the background environment). We can transit from a sequence to another
one with respect to an action a by extending the sequence by a state that can be
reached by a from the last state of the sequence. Propositionals are evaluated at
the last state of sequences with respect to their evaluations in the background
environment.

Definition 7. (of Perfect Recall Synchronous environment)
Let E be an environment (D,

1∼, . . . ,
n∼, I, V ). A trace-based Perfect Recall Syn-

chronous environment generated by E is another environment (DPRS(E),
1∼prs ,

. . . , n∼prs , IPRS(E), VPRS(E)), where

– DPRS(E) is the set of all pairs (ws, as), where7

ws ∈ D+, as ∈ Act∗, |ws| = |as| + 1, and
(wsj , wsj+1) ∈ I(asj) for every j ∈ [1..|as|];

– for every i ∈ [1..n] and for all (ws′, as′), (ws′′, as′′) ∈ DPRS(E),

(ws′, as′) i∼prs (ws′′, as′′) iff
as′ = as′′ and ws′j

i∼ ws′′j for every j ∈ [1..|ws|];
– for every a ∈ Act and for all (ws′, as′), (ws′′, as′′) ∈ DPRS(E),

((ws′, as′), (ws′′, as′′)) ∈ IPRS(E)(a) iff8

as′′ = as′∧a, and ws′′ = ws′∧w′′, (w′, w′′) ∈ I(a), where w′ is the last
element in ws′;

– for every p ∈ Prp and for every (ws, as) ∈ DPRS(E),
(ws, as) ∈ VPRS(E)(p) iff ws|ws| ∈ V (p).

3 Bounded Knowledge Update and Abstraction

Below in this section we recall definitions and results from [26] (slightly refor-
mulated for the lack of space) that lead to (update+abstraction)-algorithm and
evaluation of its non-elementary complexity. We examine the model checking
problem for Act-CTL-Kn in perfect recall synchronous environments generated
from finite environments. The following formalization of the problem has been
introduced in [26].
7 For every set S let S+ be the set of all non-empty finite sequences over S and S∗ be

the set of all finite sequences over S.
8 Operation ∧ stands for the concatenation of finite words.
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Definition 8. (of the model checking problem)
The model checking problem for Act-CTL-Kn in perfect recall synchronous envi-
ronments is to validate or refute (ws, as) |=PRS(E) φ, i.e. whether φ is satisfiable
on (ws, as) in PRS(E), where E is a finite environment, (ws, as) ∈ DPRS(E), φ
is a formula of Act-CTL-Kn.

Definition 9. The knowledge depth of a formula is the maximal nesting of
knowledge operators in that formula. For every k ≥ 0 let Act-CTL-Kk

n be
sublogic of Act-CTL-Kn with knowledge depth bounded by k.

It is obvious that Act-CTL-Kn =
⋃

k≥0 Act-CTL-Kk
n.

For every integer k ≥ 0 we define by mutual recursion a set Tk of k-trees over
E, and a set Fk of forests of k-trees over E.

Definition 10. Let T0 be a set of all tuples of the form (w, ∅, . . . , ∅), where w
is a world and the number of copies of the empty set ∅ is equal to the number
of agents n. Once Tk has been defined, let Fk be the set of all subsets of Tk.
Now, define Tk+1 as the set of all tuples of the form (w, U1, . . . , Un), where w is
a world and Ui 
= ∅ is in Fk for each i ∈ [1..n]. Let us denote

⋃
k≥0 Tk by T .

Intuitively, a k-tree is a finite tree of height k whose vertices are labeled by worlds
of the environment E and edges are labeled by agents. In a tuple (w, U1, . . . , Un),
the world w represents the actual state of the universe, and for each i ∈ [1..n]
the set Ui represents knowledge of the agent i.

The following update functions Ga
k generate k-trees obtained from some k-tree

after action a taking into account knowledge of every agent.

Definition 11. For every number k ≥ 0, a ∈ Act and i ∈ [1..n], functions
Ga

k : Tk × D → Tk and Ha
k,i : Fk × D → Fk, are defined by induction on k and

mutual recursion. Let Ga
0(tr, w) = (w, ∅, . . . , ∅) iff9 (root(tr), w) ∈ I(a). Once

Ga
k has been defined, we can define for each i ∈ [1..n] the function Ha

k,i(U, w) =

{Ga
k(tr, w′) | tr ∈ U and w′ i∼ w}. Now let Ga

k+1((w, U1, . . . , Un), w′) be

( w′ , Ha
k,1(U1, w

′), . . . , Ha
k,n(Un, w′) ) iff (w, w′) ∈ I(a).

The following model can be associated with the synchronous environment with
perfect recall PRS(E).

Definition 12. (of model TRk(E))
For every k ≥ 0 let TRk(E) be the following model (DTRk(E), ITRk(E), VTRk(E)):

– DTRk(E) is the set of all 0-, . . . , k-trees over E for n agents;
– for a ∈ Act: ITRk(E)(a) = {(tr′, tr′′) ∈ DTRk(E) × DTRk(E) |

tr′′ = Ga
j (tr′, w) for some j ∈ [0..k] and some w ∈ DE };

for i ∈ [1..n]: ITRk(E)(i) = {(tr′, tr′′) ∈ DTRk(E) × DTRk(E) |
tr′′ ∈ Ui and tr′ = (w, U1, . . . , Un) for some w ∈ DE };

– VTRk(E)(p) = {tr | root(tr) ∈ VE(p)} for p ∈ Prp.

9 Operation root on trees returns the root of the argument. In particular, for a k-tree
root(w, U1, . . . , Un) returns w.
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Definition 13. (of Act+n-CTL)
Let Act+n be Act ∪ [1..n]. A natural translation of formulas of Act-CTL-Kn to
formulas of Act+n-CTL is simple: just replace every instance of Ki and Si by
corresponding AXi and EXi, respectively (i ∈ [1..n]). For every formula φ of
Act-CTL-Kn, let us denote by φ+n the resulting formula of Act+n-CTL.

Definition 14. Complete tree is a k-tree (w, U1, ..., Un) such that {root(tr)|tr ∈
Ui} = {w′ ∈ D|w i∼ w′} and all trees in Ui are complete trees for every i ∈ [1..n].
Since a state in the root of a complete tree defines the tree uniquely, let us denote
the complete tree with root w by tr(w).

Definition 15. Let E be an environment, and k ≥ 0. A correspondence treek

between DPRS(E) and k-trees treek : (ws, as) �→ treek(ws, as) is defined by the
following.

1. Let tr1 be complete k-tree tr(ws1);
2. for every l ∈ [2..|ws|] let trl be G

asl−1
k (trl−1, wsl);

3. let treek(ws, as) be tr|ws|.

The following proposition summarizes propositions 4, 5, and 6 from [26].

Proposition 1
For every integer k ≥ 0 and n ≥ 1 and every environment E, for every for-
mula φ of Act-CTL-Kn with the knowledge depth k at most there exists bijective
correspondence treek : DPRS(E) → DTRk(E) that

(ws, as) |=PRS(E) φ iff treek(ws, as) |=TRk(E) φ+n.

The following (update+abstraction) model checking algorithm is based on the
above proposition 1:

1. Input a formula φ of Act-CTL-Kn and count its knowledge depth k;
2. convert φ into the corresponding formula ψ ≡ φ+n of Act+n-CTL;
3. input a finite environment E and construct the finite model TRk(E);
4. input a trace (ws, as) and construct the corresponding k-tree tr;
5. model check ψ on tr in TRk(E).

Its correctness immediately follows from the proposition. In contrasts, complexi-
ty of the algorithm is not so straightforward. Paper [26] has proved that its upper
bound nonelementary depends on the size of the formula, the number of states,
the knowledge depth k and the number of agents n.

4 TRk as Ideal-Based Model

In principle size of TRk(E) is finite, but it is simply too big to be treated
as finite. Due to this reason for model checking TRk(E) we would like to try
techniques that are in use for model checking infinite systems. In particular, we
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try a formalism of well-structured labeled transition systems [1,10] that is a very
popular approach to infinite-state model checking.

In well-structured labeled transition systems we can represent a set of states
(that is semantics of some formula) by some subset that is usually much smaller
than the set itself. Usually this representative subset is a collection of minimal or
maximal elements of the set of interest. In this case model checking can compute
representative subsets and then restore complete semantics of formulas.

Definition 16. Let D be a set. A partial order is a reflexive, transitive, and
antisymmetric binary relation R on D. A preorder is a reflexive and transitive
binary relation R on D. We use prefix, infix and postfix notation for preorders:
R(d′, d′′), d′(R)d′′ (or d′Rd′′) , and (d′, d′′) ∈ R. A well-preorder is a preorder R
where every infinite sequence d1, . . . di, . . . of elements of D contains a pair of
elements dm and dn so that m < n and dm(R)dn.

Definition 17. Let (D, R) be a well-preordered set (i.e. a set D provided with
a well-preorder R). An ideal (synonym: cone) is an upward closed subset of D,
i.e. a set C ⊆ D such that for all d′, d′′ ∈ D, if d′(R)d′′ and d′ ∈ C then d′′ ∈ C.
Every d ∈ D generates a cone (↑ d) ≡ {e ∈ D | d(R)e}. For every subset S ⊆ D,
a basis of S is a subset B ⊆ S such that for every s ∈ S there exists b ∈ B that
b(R)s.

Definition 18. A well-preordered transition system (WPTS) is a triple (D, R,
I) such that (D, R) is a well-preordered set and (D, I) is a Kripke frame.

We are mostly interested in well-preordered transition systems with decidable
and compatible well-preorder and interpretation. The standard decidability con-
dition for the well-preorder is straightforward: R ⊆ D × D is decidable.

Definition 19. Let (D, R, I) be a WPTS.

– Decidability (tractable past) condition: there exists a computable total func-
tion BasPre : D × Act → 2D such that for every w ∈ D, for every a ∈ Act,
BasPre(w, a) is a finite basis of {u ∈ D | (u, v) ∈ I(a) and w(R)v}.

– Compatibility condition: preorder R is compatible with interpretation I(a) of
every action symbol a ∈ Act. (Three equivalent definitions for compatibility
of R and I(a) are presented in Tab. 1.)

Definition 20. (of ideal-based model)
A well preordered transition system is said to be well-structured transition
system (WSTS) iff its preorder is decidable, it meets tractable past and com-
patibility conditions. A well-structured labeled transition system (WSLTS) is
a quadruple (D, R, I, V ), where (D, I, V ) is a labeled transition system, and
(D, R, I) is a well-structured transition system. An ideal-based model is a well-
structured labeled transition system (D, R, I, V ), where V interprets every pro-
positional variable p ∈ Prp by a cone.
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Table 1. Equivalent compatibility conditions

notation
∀s′

1, s
′′
1 , s′

2 ∃s′′
2 :

logic s′
1

I(a)−→ s′′
1 & R(s′

1, s
′
2) ⇒

⇒ s′
2

I(a)−→ s′′
2 & R(s′′

1 , s′′
2 )

diagram

s′′
1

(R). . . s′′
2

↑ ↑
|
|

s′
1 (R) s′

2

algebraic R− ◦ I(a) ⊆ I(a) ◦ R−

The μ-Calculus of D.Kozen (μC) [18] is a very powerful propositional program
logic with fixpoints. It is widely used for specification and verification of proper-
ties of finite state systems. We would like to skip formal definition of μC due to
space limitations. Please, refer to [25] for the elementary introduction to μC. A
comprehensive definition of μC can be found in a monograph [2]. Paper [19] has
demonstrated that model checking problem in ideal-based models is decidable
for μC formulas without negation, conjunction, boxes, and greatest fixpoints.

In the following we assume we are given an environment E and k, n ≥ 0.

Definition 21. Let us define binary relation � on DTRk(E). For all trees of
equal height tr′ = (w′, U ′

1, . . . , U
′
n) and tr′′ = (w′′, U ′′

1 , . . . , U ′′
n ) in DTRk(E), let

us write tr′ � tr′′ (and say that tr′ has a subtree tr′′) iff w′ = w′′ and for every
i ∈ [1..n], for every st′′ ∈ U ′′

i there exists st′ ∈ U ′
i that st′ � st′′.

Theorem 1. Binary relation � is a partial order on k-trees such that model
TRk(E) provided with this partial order becomes an ideal-based model, where
semantics of every formula of μC is a cone with computable finite basis.

Proof
First, � is a partial order since tr′ � tr′′ iff all branches in both trees have equal
length and the set of vertexes and edges of tr′′ is a subset of the set of vertexes
and edges of tr′ (i.e. just some branches are skipped). It is decidable relation
due to the same argument. It is also a well-preorder since DTRk(E) is finite.

Second, � enjoy tractable past since, in principle, we can find preimage of
every tree for every ‘action’ transition and for every ‘knowledge’ transition (de-
fined by ITRk(E)(a) and ITRk(E)(i), respectively for a ∈ Act and i ∈ [1..n], in
def. 12) by scanning finite space TRk(E). But there is more effective technic to
find preimages based on the notion of complete trees. More efficient algorithm
follows. Let (w, U1, ...Un) be a k-tree. If a ∈ Act then for every state u such that
(u, w) ∈ I(a) construct complete tree tr(u); collect all subtrees tr of any of these
complete tr(u) (i.e. tr(u) � tr) such that (w, U1, ...Un) � Ga

k(tr, w). If i ∈ [1..n]
is an agent then just collect all tr ∈ Ui.



372 N.V. Shilov and N.O. Garanina

But the most efficient10 algorithm can be described as follows. We consider
the case of one agent only, which is easily generalized to the case of n agents. Let
us find preimage by induction on a height of a tree. Let tr = (w, ∅) be a tree of
height 0. Its preimage with respect to an action a is the set of trees of height 0
with roots which are in the preimage for w: Prea(tr) = {(w′, ∅)|(w′, w) ∈ I(a)}.
Let tr = (w, U) be a tree of height k, where root w is a world, and U is a
set of trees, which roots are in the set roots(U) = {s|s = root(t), t ∈ U}. Its
preimage with respect to action a Prea(tr) = Tr′1 ∪ Tr′2 ∪ Tr′ includes all trees
of form tr′1 = (w′, U ′

1) ∈ Tr′1 and tr′2 = (w′, U ′
2) ∈ Tr′2, such that (w′, w) ∈ I(a)

and U ′
1 = {(s′, V ′)|s′ ∼ w′, and ∃s ∈ root(U) : Ga

k−1((s
′, V ′), s) ∈ U}, and

U ′
2 = U ′

1 ∪ {(s′, tr(s′)|s′ ∼ w′, and ∀s′′ ∈ a(s′) : s′′ � w} (Note that each
tree of Tr′1 is k-subtree of some tree in Tr′2). The set Tr′ is defined as follows:
Tr′ = {tr′|tr′1 ≺ tr′ ≺ tr′2 for some tr′1 ∈ Tr′1 and tr′2 ∈ Tr′2}. So, roots of trees
in U ′

1 are all worlds s′, which the agent can not distinguish with w′, and there
exists a world s ∈ roots(U), such that (s′, s) ∈ I(a), and subtrees of these trees
are computed in according to induction assumption. Roots of trees in U ′

2 are
roots(U1) supplemented by worlds s′′ whose images a(s′′) are distinguished with
w by the agent, and subtrees corresponding to these roots s′′ are complete trees.
In addition, preimage includes all ”intermediate” trees. We can compute these
trees easily due to finiteness of D. Due to definition of update function, it is
obvious that tr = Ga

1(tr′, w) for every tr′ ∈ Prea(tr). There are no other trees
in preimage since other roots are impossible, and U ′

2 can be extended only by
trees with roots which are transformed by action a to worlds indistinguishable
with w, but the images of such trees include tr as a subtree.

Third, � is compatible with all ‘action’ transitions and all ‘knowledge’ tran-
sitions. For every action a ∈ Act, and for every pair of trees tr′ � tr′′ there
exists some sup-tree tr which is a-image of the greater tree tr′ and this sup-
tree includes a-image of the smaller tree tr′′ because a-images are computed
recursively by processing each vertex of trees (def. 11). Again we consider the
case of one agent only, which is easily generalized to the case of n agents. Let
tr1 = (w, U1) and tr2 = (w, U2) be trees of height k and tr1 ≺ tr2. Note that
for every t1 ∈ U1 there exists t2 ∈ U2 such that t1 ≺ t2 by definition of ≺. Let
tr′1 = (w′, U ′

1) ∈ Ga
k(tr1, w

′). Let us find tr′2 = (w′, U ′
2) ∈ Ga

k(tr2, w
′), such that

tr′1 ≺ tr′2. Due to def. 11, (w, w′) ∈ I(a) and U ′
1 = {Ga

k−1(tr, w
′′)|tr ∈ U1 and

w′′ ∼ w′}. By the same definition U ′
2 = {Ga

k−1(tr, w
′′)|tr ∈ U2 and w′′ ∼ w′}.

Then it is obvious that for every t′1 ∈ U ′
1 there exists t′2 ∈ U ′

2 such that t′1 ≺ t′2,
hence tr′1 ≺ tr′2.

For every ‘knowledge’ action i ∈ [1..n], and for every pair of trees tr′ � tr′′

there exists some sup-tree tr which is i-image of the greater tree tr′ and this
sup-tree includes i-image of the smaller tree tr′′ because computing of i-images
of some tree is based on transition to subtrees of this tree (def. 12). Once again
we consider the case of one agent only. Let tr1 = (w, U1) and tr2 = (w, U2) be
trees of height k and tr1 ≺ tr2. Note that for every t1 ∈ U1 there exists t2 ∈ U2
such that t1 ≺ t2 by definition of ≺. (tr1, t1) ∈ ITRk(E)(1) holds for every t1 ∈ U1

10 To the best of our knowledge.
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and (tr2, t2) ∈ ITRk(E)(1) holds for every t2 ∈ U2 due to def. 12. it is obviously
implies that ≺ is compatible with ‘knowledge’ transitions.

Fourth, TRk(E) is an ideal-based model. It is obvious that valuation of every
propositional variable forms a cone with basis consisting of complete trees with
roots which are states where this propositional variable holds, due to def. 12:
VTRk(E)(p) = {tr|root(tr) ∈ VE(p)} = ↑ {tr(w)|w ∈ VE(p)} for p ∈ Prp since
p is satisfiable in every k-subtree of every tr ∈ VTRk(E)(p). There are no other
trees with this property since the set includes all complete trees with these roots.
Note, that negation of propositional variable is a cone also: VTRk(E)(¬p) =↑
{tr(w)|w /∈ VE(p)} for p ∈ Prp.

Finally we prove that semantics of every formula of μC is a cone with com-
putable finite basis by induction on structure of normal formulas in which nega-
tion is used in literals11 only. (Every μC formula is equivalent to some normal
formula [25].) Induction basis deals with literals; for propositional variables it is
proved already, for their negations proof is similar. Induction step consists of a
number of cases: for disjunction ∨, conjunction ∧, box [ ] and diamond 〈 〉.

Basis of disjunction of formulas is union of bases of these formulas.
Basis of conjunction of formulas consists of maximal trees which are subtrees

of trees from bases of these formulas simultaneously. Let basis of formula φ be
Bφ and basis of formula ψ – Bψ. Hence, the set Bφ∧ψ = {tr|tr ≺ trφ ∈ Bφ and
tr ≺ trψ ∈ Bψ} is computable and finite due to finiteness of sets Bφ and Bψ.
This set is a basis for semantics of φ ∧ ψ.

Bases of a box- or diamond-formula is a computable cone due to properties
of tractable past and compatibility. Let us find basis of semantics of formula
φ = 〈a〉ψ12. For simplicity let basis of ψ consists of single tree: Bψ = {tr}.
Denote preimage of tr with respect to action a as Prea(tr), defined above. Hence,
preimage of all trees in semantics of ψ with respect to action a is the set of all
k-subtrees from Prea(tr) = Tr′1 ∪Tr′2 ∪Tr′. Every tree in Tr′1 ∪Tr′ is k-subtree
of some tree in Tr′2. Hence, basis of preimage of semantics of ψ with respect to
action a is the finite set Prea(ψ) = Tr′2, due to definition of Tr′2 and knowledge
update function a-image of every k-subtree of every tree in Tr′2 is some tree in
the cone generated by tree tr. By definition of diamond modality this set is a
basis of semantics of formula φ = 〈a〉ψ also.

The least μx.φ and the greatest fixpoints νx.φ in finite models13 are equivalent
to ‘infinite disjunctions’ and ‘infinite conjunctions’:

– false ∨ φx(false) ∨ φx(φx(false)) ∨ . . . =
∨

j≥0 φj
x(false),

– true ∧ φx(true) ∧ φx(φx(true)) ∧ . . . =
∧

j≥0 φj(true),

where φx(ψ) is a result of substitution of a formula ψ instead of x, φ0
x(ψ) is ψ,

and φj+1
x (ψ) is φx(φj

x(ψ)) for j ≥ 0. In TRk(E) one can assume these infinite
disjunctions and conjunctions to be finite and bounded by the number of k-trees

11 A literal is a propositional variable or its negation.
12 Basis of semantics of [a]ψ is treated analogously.
13 By the finite-case Tarski-Knaster fixpoint theorem.
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in TRk(E). This observation reduces the case of fixpoints to combination of
cases for disjunction, conjunction, box and diamond that are proved already. �

Note that semantics of every formula of μC in model TRk(E) is a computable
cone in contrast to [19] where arbitrary ideal-based models have been studied.

It is well-known that standard CTL is expressible in μC (see for example [25]).
This translation of CTL to μC can be generalized easily to Act-CTL.

AXaϕ ↔ [a]ϕ EXaϕ ↔ 〈a〉ϕ
AGaϕ ↔ νx. (ϕ ∧ [a]x) AFaϕ ↔ μx. (ϕ ∨ [a]x)
EGaϕ ↔ νx. (ϕ ∧ 〈a〉x) EFaϕ ↔ μx. (ϕ ∨ 〈a〉x)
A(ϕUaψ) ↔ μx. (ψ ∨ (ϕ ∧ [a]x)) E(ϕUaψ) ↔ μx. (ψ ∨ (ϕ ∧ 〈a〉x))

It implies the following corollary.

Corollary 1. Semantics of every formula of Act+n-CTL in TRk(E) is a cone
with respect to � with computable finite bases.

5 Conclusion

In this paper we have shown that space TRk(E) provided with sub-tree partial
order forms a well-structured labeled transition system where every property ex-
pressible in the propositional μ-Calculus, can be characterized by a finite com-
putable set of maximal trees that enjoy the property. We tried feasibility of this
approach to model checking of Act-CTL-Kn in trace-based synchronousperfect re-
call synchronous environment by automatic model checking simple, but big exam-
ple (the size of model TRk is about 1036000). Data structures that are used in the
experiment are so-called vector-affine trees [12]. A presentation of a background
theory and of our experimental model checker is a topic for a future publication.

To the best of our knowledge, the only reported (experimental) model checker
for perfect recall synchronous systems is MCK [11]. It works in a linear as well
as branching time settings. For perfect recall synchronous systems in temporal
dimension MCK supports ‘next’ operator only, but neither ‘always’, ‘sometimes’,
nor ‘until’ (although the model checking theory for the full combination of knowl-
edge with Propositional Logic of Linear Time has been already developed [22]).
The present paper has developed a technique that may lead to practical model
checking the full combination of knowledge with branching time logics (a là Com-
putation Tree Logic) with ‘next’ operator as well as with ‘always’, ‘sometimes’,
and ‘until’.
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Abstract. Data mining (DM) has emerged as one of the key features of many 
applications on information system. While Data Analysis (DA) represents a 
significant advance in the type of analytical tools currently available, there are 
limitations to its capability. In order to address one of the limitations on the DA 
capabilities of identifying a causal relationship, we propose an integrated 
approach, called robust data mining (RDM), which can reduce dimensionality 
of the large data set, may provide detailed statistical relationships among the 
factors and robust factor settings. The primary objective of this paper is two-
fold. First, we show how DM techniques can be effectively applied into a 
wastewater treatment process design by applying a correlation-based feature 
selection (CBFS) method. This method may be far more effective than any 
other methods when a large number of input factors are considered on a process 
design procedure. Second, we then show how DM results can be integrated into 
a robust design (RD) paradigm based on the selected significant factors. Our 
numerical example clearly shows that the proposed RDM method can 
efficiently find significant factors and the optimal settings by reducing 
dimensionality. 

1   Introduction 

The continuous improvement and application of the information system technology 
has become widely recognized by industry as critical in maintaining a competitive 
advantage in the marketplace. It is also recognized that the improvement and 
application activities are most efficient and cost-effective when implemented during 
an early process/product design stage. Data mining (DM) has emerged as one of the 
key features of many applications on computer science. Often used as a means for 
predicting the future directions, extracting the hidden limitations, and the 
specifications of a product/process, DM involves the use of data analysis tools to 
discover previously unknown, valid pattern and relationships from a large database. In 
the context of a wastewater treatment, DA is often viewed as a potential means to 
identify the specification of a wastewater treatment process, such as conductivity, 
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Biochemical Oxygen Demand (BOD), and PH because the wastewater treatment 
process includes a number of input and output factors to improve the water quality.  

DA is a term coined to describe the process of sifting through large databases for 
interesting patterns and relationships. This field spans several disciplines such as 
database, machine learning, intelligent information system, statistics and expert 
system. Two approaches that enable standard machine learning algorithms to be 
applied to a large database are factor selection and sampling. Factor selection is 
known as an effective method for reducing dimensionality, removing irrelevant and 
redundant data, increasing mining accuracy, and improving result comprehensibility 
[1]. Consequently, factor selection has been a fertile field of research and 
development since 1970’s and proven to be effective in removing irrelevant and 
redundant features, increasing efficiency in mining tasks, improving mining 
performance like predictive accuracy, and enhancing comprehensibility of learned 
results. The factor selection algorithm performs a search through the space of feature 
subsets [2]. In general, two categories of the algorithm have been proposed to solve 
the factor selection problem. The first category is based on a filter approach that is 
independent of learning algorithms and serves as a filter to sieve the irrelevant factors. 
The second category is based on a wrapper approach, which uses an induction 
algorithm itself as part of the function evaluating factor subset [3]. Because most filter 
methods is based on a heuristic algorithm for general characteristics of the data rather 
than a learning algorithm to evaluate the merit of factor subsets as wrapper methods 
do, filter methods are generally much faster, and has more practical capabilities to 
utilize high dimensionality than wrapper methods.  

Most DA methods associated with the factor selection reported in literature may 
obtain a number of factors associated with the interesting response factor without 
providing the detailed information, such as relationships between the input factor and 
response, statistical inferences, and analyses [4, 5, 6, 7]. Based on this awareness, 
Witten and Frank [6] suggested alternative DA approach to semiconductor 
manufacturing problems in order to find significant factors. Further more, Su et. al [8] 
developed an integrated procedure combining a DM method and Taguchi methods. 
While DA represents a significant advance in the type of analytical tools currently 
available, there are limitations to its capability on the DA capabilities of identifying a 
causal relationship [9]. The limitation is that while DA can identify connections 
between responses and/or factors, it may not necessarily identify a causal relationship.  

In order to address this limitation, we develop an enhanced data analysis method 
incorporating the robust design (RD) principle into DA. Among the process/product 
design methods currently studied in the science and engineering community, 
researchers often identify RD as one of the most effective methodology for 
process/product improvement. Because of their practicability in reducing the inherent 
uncertainty associated with input factors and process performance, the widespread 
applications of RD techniques have resulted in significant improvements in process 
quality, manufacturability and reliability at low cost. However, most RD methods 
reported in literature may obtain the most favorable solution for a small number of 
given input control factors without considering reduction of dimensionality for a large 
database. Although traditional RD methods consider the selection of potential 
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significant factors when they confront a data set including many factors with an 
interesting response factor, the process is frequently far from objective as individual 
egos because the selection process is based on drawing insight from a number of 
readily available sources relying on practitioners’ opinion and their experience. 

For this reason, we propose an integrated approach, called robust data mining 
(RDM) as shown in Fig 1, which can reduce dimensionality of the large data set, may 
provide detailed statistical relationships among the factors and robust factor settings. 
This RDM approach has not been adequately addressed in the literature nor properly 
applied to industries. As a result, the primary objective of this paper is two-fold. First, 
we show how DM techniques can be effectively applied into a wastewater treatment 
process design by applying a correlation-based feature selection (CBFS) method. This 
method can evaluate the worth of a subset including input factors by considering the 
individual predictive ability of each factor along with the degree of redundancy 
between pairs of input factors. This method is far more effective than any other 
method when a large number of input factors are considered on a process design 
procedure. Second, we then show how DM results can be integrated into a RD 
paradigm based on the selected significant factors. Our numerical example clearly 
shows that the proposed RDM method can efficiently find significant factors and the 
optimal settings by reducing dimensionality.  

Control factors
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Noise factors
Z

Response factors
y
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Factor Selection)
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factors
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Fig. 1. The overview of the proposed RDA procedure associated with dual stage clearly 
illustrates roles of data mining and robust design 
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2   Development of Robust Data Mining Method 

2.1   Stage I: Correlation-Based Feature Selection (CBFS) Method 

Correlation-Based Feature Selection (CBFS) is a filter algorithm that ranks subsets of 
input features according to a correlation based heuristic evaluation function. The bias 
of the evaluation function is toward subsets that contain a number of input factors, 
which are not only highly correlated with a specified response but also uncorrelated 
with each other [3, 9, 14]. Among input factors, irrelevant factors should be ignored 
because they may have low correlation with the given response. Although some 
selected factors are highly correlated with the specified response, redundant factors 
must be screened out because they are also highly correlated with one or more of 
these selected factors. The acceptance of a factor depends on the extent to which it 
predicts the response in areas of the instance space not already predicted by other 
factors. The evaluation function of the proposed subset is  
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FRρ , and 
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FFnnn ρ)1( −+  and 
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the prediction of the response based on a set of factors and the redundancy among the 
factors. In order to measure the correlation between two factors or a factor and the 
response, an evaluation of a criterion called symmetrical uncertainty [10].  

The symmetrical measure represents that the amount of information gained about Y 
after observing X is equal to the amount of information gained about X after observing 
Y. Symmetry is a desirable property for a measure of factor-factor inter-correlation or 
factor-response correlation. Unfortunately, information gain is not apt to factors with 
more values. In addition, FRρ  and FFρ  should be normalized to ensure they are 
comparable and have the same effect. Symmetrical uncertainty can minimize bias of 
information gain toward features with more values and normalize its value to the 
range [0, 1]. The coefficient of symmetrical uncertainty can be calculated by  
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and where H(Y), p(y), H(Y|X), and gain represent the entropy of the specified response 
Y, the probability of y value, the conditional entropy of Y given X, and the information 
gain that is a symmetrical measure reflects additional information about Y given X, 
respectively. 

2.1.1   Best First Search (BFS) Algorithm  
In much literature, finding a best subset is hardly achieved in many industrial 
situations by using an exhaustive enumeration method. In order to reduce the search 
spaces for evaluating the number of subsets, one of the most effective methods is the 
best first search (BFS) method which is a heuristic search method to implement CBFS 
algorithm [5]. This method is based on an advanced search strategy that allows 
backtracking along a search space path. If the path being explored begins to look less 
promising, the best first search can back-track to a more promising previous subset 
and continue searching from there. The procedure using the proposed BFS algorithm 
is given by the following steps: 

Step 1. Begin with the OPEN list containing the start state, 
the CLOSE list empty, and BEST• start state (put start state 
to BEST). 

Step 2. Let a subset, θ = arg max EV
S 
(subset), (get the state 

from OPEN with the highest evaluation EV
S
). 

Step 3. Remove s from OPEN and add to CLOSED. 

Step 4. If EV
S 
(θ ) ≥ EV

S 
(BEST ), then BEST • θ (put θ to 

BEST). 

Step 5. For each next subset ξ of θ that is not in the OPEN or 
CLOSED list, evaluate and add to OPEN. 

Step 6. If BEST changed in the last set of expansions, go to 
step 2. 

Step 7. Return BEST. 

The evaluation function given in Equation (1) is a fundamental element of CBFS to 
impose a specific ranking on factor subsets in the search spaces. In most cases, 
enumerating all possible factor subsets is astronomically time-consuming. In order to 
reduce the computational complexity, the BFS method is utilized to find a best subset. 
The BFS method can start with either no factor or all factors. The former search process 
moves forward through the search space adding a single factor into the result, and the 
latter search process moves backward through the search space deleting a single factor 
from the result. To prevent the BFS method from exploring the entire search space, a 
stopping criterion is imposed. The search process may terminate if five consecutive 
fully expanded subsets show no improvement over the current best subset. 

2.2   Stage II: Connection to RD 

Even though a data warehouse contains many factors including both controllable and 
uncontrollable factors which is known as noise factors. The proposed DA method 
may provide significant factors associated with the given response. Based on the DA 
solutions, a further analysis of the given solutions may also be an important part of a 
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process design for applying the detailed and analyzed information to develop a 
process/product. In this situation, RD principle can be utilized to provide statistical 
analyses and optimal factor settings for the selected factors associated with the given 
response by considering the effect of noise factors.  

2.2.1   Response Surface Methodology (RSM) 
Response surface methodology (RSM) is a statistical tool that is useful for modeling and 
analysis in situations where the response of interest is affected by several factors. RSM 
is typically used to optimize the response by estimating an input-response functional 
form when the exact functional relationship is not known or is very complicated. For a 
comprehensive presentation of RSM, Box et al. [11] and Shin and Cho [12] provide 
insightful comments on the current status and future direction of RSM. 

In many industrial situations, a manufacturing or service process often contains 
both control and noise factors which may not be handled [13]. Supposing that there 
are k controllable variables x = [

kxxx ,...,, 21
], and r noise variables z = [

rzzz ,...,, 21
], 

the response model incorporating both control and noise factors can be given by 

ψ++= ),()(),( zxxzx hfy  (3) 

where f(x), h(x ,z), and ψ are the portion of the model that involves only the control 
factors, the term involving the main effects of the noise factors and the interactions 
between the control and noise factors, and a random error which is assumed a normal 
distribution with zero mean and certain variance, respectively. The detailed 
calculation of h(x ,z) is 
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where γi and δij are coefficients of the noise factors and the interactions between the 
control and noise factors noise factors, respectively. Denoting variance of the noise 

variables as 2
zσ  and the random errors as ε , and assuming that the noise variables 

and ε  have zero covariance, and then the mean response model by taking the 
expectation of the response model in Equation (3) can be derived as follows: 

)()],([ xzxz fyE = . (5) 

Using Taylor series expansion, the variance model for the response can be simplified 
as follows: 
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where σ2 is the mean square error on analysis of variance (ANOVA). 

2.2.2   Proposed Robust Data Mining (RDM) Model 
Using the two response functions for the process mean and variance given in 
Equations (5) and (6), a bi-objective problem can be formulated as follows: 
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Minimize ( ) ( ) ( )[ ] [ ]TT
i yVyEggg )],([)],,([, 21 zxzxxxx zz==  

Subject to x∈X 
(7) 

where gi: R n→ R1 and gi(x) ∈ C1, i = 1, 2. The set X of feasible solutions given by X 
⊆ Rn is closed and bounded. A point x*∈Ω (design space) is said to be a (globally) 
efficient (Pareto) solution of the bi-objective problem in Equation (3) if there does not 
exist another x*∈Ω for which gi(x) ≤ gi(x

*), for i = 1, 2, with a strict inequality for at 
least one index i. The image gi(x

*) of an efficient solution x* in the objective space is 
called a (global) Pareto (efficient, nondominated, noninferior) solution. A point x*∈Ω 
is said to be a (globally) weakly efficient solution of the BOP in Equation (3) if there 
does not exist another x*∈Ω for which gi(x) < gi(x

*), for i = 1, 2. The image gi(x
*) of a 

weakly efficient solution x* in the objective space is called a (global) weak Pareto 
solution.  The BOP in Equation (3) is referred to as the convex BOP if the feasible set 
X is convex and the objective functions gi(x), i = 1,2, are also convex. It is a well-
known fact that the set Z of the convex BOP is convex in R2 and the Pareto set can be 
viewed as a convex curve in R2. 

Let g1(x) and g2(x) denote )],([ zxz yE  and )],([ zxz yV , respectively. Since the 

optimization model subordinates )],([ zxz yE  and )],([ zxz yV  to the constraint associated 

with ε, the RDM model using the ε −constrained method can be formulated as  

Minimize     )],([ zxz yV  

Subject to    ε≤)],([ zxz yE  

Ω∈x   

(8) 

where ε represents an upper level of process bias in Equation(8). To solve this RDM 

problem, the ε−constrained method is used. The ε−constrained method has two 
important features. The first feature is the interactive nature of a solution process. 
After each cycle of computation, the results are evaluated before the problem is 
reconfigured for the next cycle of computation. The second feature is the generation 
of a series of candidate solutions from which the final solution will eventually be 

selected. Let x* be an efficient point and ζ ∗  be a nondominated criterion vector. 

Using the ε−constrained method, we can compute the nondominated partial tradeoff 
rate at x* 

( )
( )

*x
yE

yV

),(

),(

zx

zx

z

z  (9) 

between ( )),( zxz yV  and ( )),( zxz yE . The nondominated partial tradeoff rate is given 

by the values of the dual variable associated with ( )),( zxz yE  in the following model: 

Minimize             ( )( ) 11 ),( ζη =zxz yV  

Subject to    ( )( ) 22 ),( ζη ≤zxz yE  

Ω∈x   

(10) 
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where η1 and η2 are the gradients of the two objective functions. The partial tradeoff 
rate given in Equation (9) is “nondominated” in the sense that after a perturbation, the 
resulting criterion vector is still in the nondominated set. Thus, the ε−constraint 
method is useful for the generation of locally relevant nondominated trade-off 
information. The detailed discussion and proof of the ε −constrained method are 
shown in Shin and Cho [12].  

3   Numerical Example 

The data set comes from the daily measures of sensors in an urban wastewater 
treatment plant [15].  We select COND-S that is output conductivity of treated water 
as the response. Since the conductivity of water is an essential criterion for water 
purification, the lower the value of conductivity is, the purer the water is. One of the 
indispensable purposes of water treatment is to reduce the conductivity of water. 

If potential significant factors are selected by subjective opinions or experiences, it 
may often not include important factors on a factor selection process. Our objective is 
to find the most significant factors to the output response by short time consuming. In 
particular, during the two-step process of wastewater treatment, we want to make sure 
whether some input factors can affect the response factor significantly.  

3.1   Stage I : Results of Significant Factor Selection Using CBFS Method 

The evaluation result of the numeric example calculated by the DM software named 
“Weka” [15]. Among the BFS, COND-E represents the observation value of initial 
input conductivity to the plant, therefore, it can hardly be controlled during the RD 
process. Consequently, we consider COND-E the noise factor, and consider other 
input factors among BFS the controlled factors. 

Table 1.  The Water-Treatment Plant Data Set includes 34 factors and 527 instances. Among 
34 factors, the output of conductivity (COND-S) may include uncertain effects that are either 
irrelevant or redundant. Factor2-22 cover all input values measured during the process of two-
step treatment, and factor 23-29 cover all output criterion values after two settlers treatment, 
and factor 30-38 cover the performance criterions. 

Q-E ZN-E PH-E DBO-E DQO-E … SED-D COND-S 

35023 3.5 7.9 205 588 ... 0.4 2060 

29156 2.5 7.7 206 451 ... 0.3 1233 

39246 2 7.8 172 506 ... 0.6 1825 

42393 0.7 7.9 189 478 ... 0.4 1562 

40923 3.5 7.6 146 329 ... 0.2 1467 

43830 1.5 7.8 177 512 ... 0.4 1401 

... ... ... ... ... ... ... ... 
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Table 2. As shown in CBFS results, the merit of best subset equals 0.92, the highest value 
among the calculated 371 subsets. The factor set F = {ZN-E, SED-D, COND-E, COND-P, SS-
S, RD-DBO-P, DQO-S} is considered the best factor subset towards the response factor 
COND-S. Aside from the output factors including SS-S, RD-DBO-P and DQO-S, we get the 
best input factor subset BFS = {ZN-E, SED-D, COND-E, COND-P}. 

The response attribute COND-S 

Merit of best subset 0.92 

Se
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ed
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Selected attributes 
ZN-E, SED-D, COND-E, COND-P,SS-S, 

RD-DBO-P, DQO-S 

Search method Best First 

Search Direction forward 

Start set no attributes 

Se
ar

ch
 m

et
ho

d 

Total number of subsets evaluated 371 

3.2   Stage II: Results of RD Using RSM Based on Both Control and Noise 
Factors 

The data mining solution provides the four significant factors as ZH-E, COND-P, 
SED-D, and COND-E. Among these solutions, a primary input conductivity, COND-
E, may often not be controlled in a water treatment process. For this reason, we regard 
COND-E as a noise factor incorporating the RD principle in order to achieve a robust 
process and the other factors as control factors. Using MINITAB software package 
[16], the response function including both control and noise factors can be obtained by 

.44.039.001.071.21

04.006.263.079.080.17443.000.1613.546),(

13321131

21
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11321

zxxxzxxx

xxxxzxxxf
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Using the Equations (8) and (9), the response functions for mean )],([ zxz yE  and the 

response function for variance )],([ zxz yV  associated with response COND-S can be 

found as follows:  

=)],([ zxz yE 39.071.2104.006.263.080.17443.000.1613.546 3121
2

3
2

1321 +−+−−+−− xxxxxxxxx  

and 
2

31
2 )44.001.079.0()],([ σσ +−−= xxyV zzxz

 

where 2
zσ = 154924.98, 2σ = 23053.9 using the results of ANOVA as shown in Table 3, 

and 2σ  represents the residual mean-square on the given ANOVA table.  
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Table 3.  As shown in the RSM results, the second-order regression is significant based on the 
results of the global F-test and its associated p-values. The response model also has 85% R-sq, 
which implies the model may adequate to utilize as a response function. 

Predictors Coef SE Coef T P 

Constant 
x1 
x2 
x3 
z1 

x1*x1 
x2*x2 

x3*x3 

x1*x2 

x1*x3 

x1*z1 

x2*x3 

x2*z1 

x3*z1 

546.13 
-16.00 

-0.43 
174.80 

0.79 
-0.63 
-0.00 
-2.06 
0.04 

-21.71 
-0.01 
0.39  
0.00 

-0.44 

103.060 
15.225 
0.493 

113.587 
0.487 
0.580 
0.000 

19.137 
0.050 

10.301 
0.048 
0.345 
0.000 
0.344 

5.299 
-1.051 
-0.867 
1.539 
1.615 

-1.088 
-1.309 
-0.108 
0.770 

-2.108 
-0.306 
1.117 
2.327 

-1.289 

0.000 
0.294 
0.387 
0.125 
0.107 
0.277 
0.191 
0.914 
0.442 
0.036 
0.760 
0.265 
0.020 
0.198 

S = 151.8                  R-Sq = 85.0%                 R-Sq(adj) = 84.4% 

Analysis of Variance 

Source DF SS MS F P 

Regression 14 47552154 3396582.4 147.33 0.000 

Linear 4 46770281 79532.5 3.45 0.009 

Square 4 359208 34363.2 1.49 0.204 

Interaction 6 422666 70444.3 3.06 0.006 

Residual 
Error 

365 8414673 23053.9   

Total 379 55966827    

Using the proposed RDA model given in Equation (7), we can formulate 
optimization model as follows:  

Minimize   9.23053)44.001.079.0(98.154924 31 +−− xx  

Subject to  2
3

2
1321 06.263.080.17443.000.1613.546 xxxxx −−+−−  

ε≤+−+ 39.071.2104.0 3121 xxxx  

Ω∈x . 

Using MATLAB software package [17], we obtained the optimal solution (x1
* = 0.5, 

x2
* = 1153.6, and x3

* = 1.8).  
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4   Conclusion  

In this paper, we developed a RDM method by integrating a DM method for finding 
significant factors into an RD method for providing the best factor settings. Based on 
the results of the DM method, we found important factors for water treatment process 
among a large set of data. Utilizing BFS method, the CFBS method in its pure form is 
exhaustive, but the use of a stopping criterion makes the probability of searching the 
whole data set quickly. We then conducted an RD optimization using RSM and ε-
constrained method while incorporating an uncontrollable noise factor. We finally 
showed that the proposed RDM method could efficiently find significant factors and 
the optimal settings by reducing dimensionality through the numerical example. In 
order to achieve better precision of the proposed RDM method, the consideration of 
outliers of data using expectation maximization (EM) algorithm can be a possible 
further research issue. 
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Abstract. Although there are many formal representations of architec-
ture, actually determining what an architecture should be when systems
are merged is largely based on context and human intuition. The goal of
this paper is to find a mathematical model which supports this context
and determines the architecture when the systems have been merged. A
category of architectural models is presented, and the pushout in this
category provides the unique minimal merger of two architectures by
way of an abstraction of the desired intersection. We conclude by identi-
fying deeper aspects of architectural type which should be incorporated
into this theory, and how the whole model might be automated.

1 Introduction

An Architecture Description Language (ADL) provides means for a formal model
of systems’ components and their connections. A model clarifies the purpose of
the components and their interactions and, for the most part engineers represent
these architectures using graphs [18], such as UML architectural diagrams [5].

It often happens (for example, when companies merge) that their computer
systems with overlapping functionality also need to be merged with minimal
duplication of functionality in the resulting system. Because the architecture of
two systems merged is not a simple cut-and-paste, one hopes for formal and
well-defined ways to merge system designs without errors.

1.1 Related Work

Modelling systems has been addressed at many levels from syntax, through logic
based theories to abstract graph representations. At each level, maintaining the
known properties of systems being merged is a core issue.

At the syntactic level, the process of merging two modifications of the same
code has been dealt with extensively using the well established computation of
text differences. Although the process of merging them has been semi-automated
in projects such as the ArchStudio version control system [3], determining the
merger is far from obvious. Niu et al. [14] have modelled the code as a graph
labelled by Fuzzy logic values (which are essentially a partially ordered set) and
merging the models of two programs has been implemented using the categorical
pushout.

I. Virbitskaite and A. Voronkov (Eds.): PSI 2006, LNCS 4378, pp. 389–399, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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At the architectural level, merger has been attempted for systems modelled
with a logic based ADL. Moriconi and Qian [13] merge two architectures by a
union of their theories and provide a method for determining whether a com-
position of two systems is faithful, which is to say there is no collapse in the
separation of components apart from those specified. Using logic to define the
smallest architecture containing a set of properties, Caporuscio et al. [2] give a
method to test whether the theories are contradictory. While this is not specif-
ically about system merger, it could clearly be a bottom-up approach. With a
logic based model of program specifications, Goguen and Burstall [10] provide a
very similar categorical approach as presented below, using the colimit (a gener-
alization of pushout) to merge several specifications. In a slight deviation from
the logic approach, algebras have also been used to model software specifications
[11] with merger being defined to be the pushout when certain conditions are
met.

In spite of its rigour, logic does not fit comfortably in an engineer’s intuitive
graphical approach. The purpose of this paper is to formulate a graph based
ADL as a mathematical model which accommodates some of the context of the
systems being merged [6]. Le Metayer [12] uses a graph grammar to describe
the process of adding and removing components of a system, while Baresi et
al. [1] use graph homomorphisms to model architectural abstraction. Modelling
architecture by graphs labelled by a poset of component types, Denford et al. [4]
give an approach to refine an abstract description into a model closer to the
implementation level. As with Fahmy and Holt [7,8] one of the main topics is
an abstraction with only the parts of the architecture relevant to the activity at
hand – in our case, the systems being merged.

1.2 Contents of This Paper

In Section 2 we illustrate an example of systems to be merged, together with
the obvious intuitive solutions. Section 3 formalizes the notion of connection and
component types and gives a mathematical representation for the relationships
of their attributes. An architectural type (or as we refer to it, archetype) is
presented in Section 4 as a graph of component and connection types. Together
with the components and connections themselves, an architecture is then defined
in Section 5 as a graph projected upon an archetype by graph morphism.

In Section 6 the examples will demonstrate that on this categorical basis,
the merging of two architectures using pushout seems close to human intuition.
Furthermore, the fact that it is a pushout means that it is the unique and smallest
architecture which contains both of its sub-architectures.

In the conclusion we summarize how the aims of this paper have been achieved
and identify possible approaches to issues yet to be addressed such as automation.

2 Three Examples of Merging

Suppose two companies have merged and they need their two IT systems
(Figure 1) to become a single system.
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Sendmail

Eudora EudoraEudora

Exim

Outlook Outlook

E

System A System B

EP EP

Fig. 1. Email services of two companies, with SMTP connections over Ethernet (E) or
PPP (P)

Sendmail

Eudora EudoraEudora

Outlook Outlook

Solution 2

Sendmail

Eudora EudoraEudora

Exim

Outlook Outlook

P

Solution 1

Sendmail

? ??

? ?

Solution 3

EP

E E

P
P

E P
P

E

E E E E

Fig. 2. Three possible email services of the new company where E is an Ethernet based
SMTP connection and P is a PPP based SMTP connection

The differences between the two systems account for different activities, for
example Sendmail has already been setup for dealing with email over dialup con-
nections (PPP), while Exim has not, and to change (according to management)
would be an unnecessary expense. In this sense, Sendmail has more attributes
of value to the new organization.

Regarding the client side, many claim [16] that Eudora (relative to Outlook)
has serious inefficiency with large folders but is better for control filters.

Generally, there are three ways the new IT team might solve this problem
which are depicted in Figure 2.
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The first solution is easy but may make any retrenchment of employees in-
feasible. The second solution is possible because the Sendmail server has all the
necessary functionality. Having both Eudora and Outlook may keep the users
happy as they both have distinct but useful features, but it would be an ex-
pense to the company to have two different client packages to buy and maintain.
Therefore, the third solution would be to seek out an entirely different email
client which satisfies all the staff requirements.

For the remainder of this paper it is shown that these three approaches can be
formally modelled so that known system requirements are satisfied and which en-
sures that the erroneous models (such as replacing Sendmail with Exim) cannot
occur.

3 Posets of Types

In the examples there are two sets of types: component types such as Exim and
Sendmail, and connection types - SMTP over PPP (P) versus SMTP over the
Ethernet (E).

There is no exact definition of these types other than the code which imple-
ments them. But rather than giving up, we propose formalizing relations of these
types based on the attributes which are important to the stake-holders of the
given situation.

Fig. 3. Posets of component and connection types

A partially ordered set or poset is a set X together with a binary relation
(which we write as ≤) which is reflexive (for all x ∈ X , x ≤ x), antisymmetric
(for all x, y ∈ X , x ≤ y and y ≤ x implies that x = y) and transitive (for all
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x, y, z ∈ X , x ≤ y and y ≤ z implies that x ≤ z). Most importantly, in a partially
ordered set it may be the case that for some x, y ∈ X , neither x ≤ y nor y ≤ x.

We can form a poset Π of the component types and a poset Λ of the connection
types by the definition that x ≥ y if and only if x has all the attributes of y in the
given situation. We depict the posets related to our example in Figure 3 using a
graph with an arrow x → y meaning x ≥ y. The basis of this work is that if x ≥ y
in the poset of component types, a component of type y can be replaced with
a component of type x. Similarly for connection types. Furthermore, writing
Outlook ∨ Eudora we mean “some minimal application which covers both of
their attributes”.

4 Archetypes and Architectures

In this section we extend the notion of type from components and connec-
tions to architectures. A architecture’s type (in short, an archetype) is simply
a graph labelled by elements of the posets of component and connection types.
An archetype is not in itself an architecture, but merely the description of the
component and connection types which exist in an architecture. For example,
the archetypes of the architectures depicted in Figure 2 are given in Figure 4.

Fig. 4. Archetypes of Solutions 1, 2 and 3 in Figure 2

Now, we show an architecture to be a graph morphism from an unlabelled
graph (the actual components and their connections) to the graph of its arche-
type, which defines the types. The following section gives a concise formalization
of these notions, and their consequences through category theory. Thenceforth,
we are able to show the main result - a formal model of merging architectures.

5 A Category of Architectures

As introduced in Section 3, Π is a poset of component types and Λ is a poset
of connection types. An archetype (also known as a poset labelled graph) G is
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a tuple (VG, EG, sG, tG, πG, λG) where VG and EG are sets of components and
connections respectively; sG, tG : EG → VG define the source and target of a
connection; and πG : VG → Π and λG : EG → Λ are the types of the components
and connections.

A morphism φ : G → H of archetypes is a pair (φV : VG → VH , φE :
EG → EH) such that for all e ∈ EG: sH(φE(e)) = φV (sG(e)) and tH(φE(e)) =
φV (tG(e)) meaning φ preserves the structure of the graphs; and such that for all
x ∈ VG, e ∈ EG, φ has lax preservation of the types, that is:

πH(φV (x)) ≥ πG(x) and λH(φE(e)) ≥ λG(e) (1)

– a component (connection) of one type can only be mapped to a component
(connection) of greater or equal type as per the posets of types. In case the
mappings in Equation 1 are all equalities, we say that φ is strict.

It is easy to see that the composition of morphisms, as pairs of functions, is
another morphism. Associativity and identity are inherited from the category of
sets and functions. Therefore, with posets Π and Λ fixed as above, archetypes
(poset labelled graphs) and their morphisms form a category which we denote
by GraphΠ,Λ.

5.1 Formalization of Architecture

Let U : GraphΠ,Λ → Graph be the functor which forgets the labelling of an
archetype, and consider the comma category Graph/U . An object of Graph/U is
a pair (T, X : G → UT ) (often simply written as X) we call an architecture. The
architecture X consists of a typed graph T , called the archetype, and the graph
G, called the component graph, equipped with the graph morphism X from G
to the underlying ordinary graph of T . An arrow (architectural morphism) is a
pair (f, t) such that the following diagram commutes

G H

UT UT ′
��
��
��
��
��

X

��
f

��
��
��
��
��

Y

��
U(t)

Definition 1. Given a category GraphΠ,Λ of archetypes and the functor U :
GraphΠ,Λ → Graph, then the comma category Graph/U is called a category of
architectures.

Informally identifying T and UT , for any component v of G define the component
X(v) of T to be the archetype of v while π(X(v)) ∈ Π is the type of v. Define
archetype and type similarly for connections.

Let c : Graph/U → Graph map an architecture to its graph of components
and connections, and let a : Graph/U → GraphΠ,Λ map an architecture to its
archetype. It can be shown that there is a natural transformation l : c → Ua.
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Figure 5 illustrates the way that objects of Graph/U represent architectures.
The top part of the diagram is the object in Graph and the bottom part is its
archetype in GraphΠ,Λ.

Fig. 5. An architecture – an object of Graph/U

6 Merging Architectures by Pushout

As a quick reminder before launching into the pushout of Graph/U consider the
first example of pushout in most textbooks – the union of sets.

For example, let X = {1, 2, 3} and Y = {2, 4, 6} then the union of these
two sets, denoted X ∪ Y is equal to {1, 2, 3, 4, 6}. This is, the unique smallest
set containing the elements of both X and Y . One can express this category
theoretically by saying, let f : Z → X and g : Z → Y be injective functions,
which define Z as the intersection of X and Y . Then the pushout is an object P
together with a pair of arrows i1 : X → P and i2 : Y → P such that the inner
square of Figure 6 commutes (that is, i1f = i2g), and furthermore, that given
any other diagram (j1, j2, Q) there is a unique arrow from P to Q making the
whole diagram commute. (In the example of sets, this unique arrow is simply
indicating that any set which contains both X and Y contains {1, 2, 3, 4, 6}, but
could be larger.)

Therefore, the pushout is a formal construct that ensures the containment is
complete, unique (up to isomorphism) and minimal. In the remainder of this
section we present the mathematical details of the pushout for architectures.
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Fig. 6. Pushout diagram

It is a straightforward consequence of [15, Lemma 3.9] that

Proposition 1. GraphΠ,Λ has pushouts along strict monomorphisms.

and more generally

Theorem 1. In Graph/U there are pushouts along arrows η if its archetype part
ηa is a strict monomorphism.

However in trying to model merger, it is not helpful to demand that ηa be strict,
so instead we assert that Π and Λ have least upper bounds. It can be shown that

Theorem 2. If Π and Λ have least upper bounds, then GraphΠ,Λ has pushouts
(and, in fact, all its colimits) and the architecture category Graph/U has all
pushouts (and all its colimits).

Note that although real-world component and connection types will not generally
have least upper bounds, the join operation (for example Outlook ∨ Eudora of
Figure 3) produces any necessary types which can then be analysed to determine
how they will be implemented in practice. Therefore we can now formalize what
it means to merge architectures:

Definition 2. The merger of architectures X and Y over the archetype Z with
monomorphisms X

i← Z
j→ Y is the pushout of X and Y over Z.

In the next section we use this framework to identify two subsystems of the
merging systems which are similar enough that a single subsystem can replace
them both in the architecture of the merge.

6.1 Three Examples of Merging (Again)

It should now be clear that the examples in Section 2 are each a pushout in
the category of architectures. Solution 1 (see Figure 2) comes about when the
intersection architecture is empty. Solution 2 is the pushout when the intersection
architecture is a single Email Server. The archetype pushout ensures that as this
maps to both Sendmail server and an Exim server, the result is a Sendmail
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server. The most difficult example (Archetype 3 in Figure 4) is illustrated in
Figure 7 where a least upper bound appears as the join of Outlook and Eudora,
alerting one to the decision which needs to be made on the new type of these
components.

Fig. 7. ‘Top-down’ view of a pushout diagram in Graph/U , where an architecture is en-
capsulated in a box. The component graph (the terminal icons) sit above the archetypes
(circular objects) which define their types. The pushout results in Solution 3 in Fig-
ure 2. Notice that if this diagram were from GraphΠ,Λ it would not be a pushout and
therefore not have the useful properties of being minimal and unique.

7 Conclusion

The goal of this paper was to find a mathematical model of architecture which
is intuitive, yet rigorous when determining architectural merger. By “intuitive”
it is meant to be close to the way in which engineers think about architectures
and this has been done by using graph-like representations.
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The rigour required for merging two systems is to maintain the structure of
both systems while avoiding any unnecessary duplication. This was achieved by
formalizing the contextual and intuitive definition of types and implementing
the merger as a categorical pushout. At the core of this process is identifying
the intersection of the systems as different parts which, by abstraction, are the
same.

Although this is a well controlled model of types, there are many sets of
attributes which apply to an archetype - and not merely the sum of the attributes
of its parts. For instance, there are several properties determining architectural
style [9] such as ensuring that a particular type of connection has only one
server to many clients. It may therefore be helpful to move from types to a
single (infinite) poset of archetypes (together with some constraint on the comma
category) creating a more detailed definition of architecture.

An interesting project would be to modify a graph transformation based pro-
gram such as PROGRES [8] or AGG [17] to incorporate architectures as defined
in this paper and automate the pushout once the intersection is chosen by the
user.
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Abstract. Information systems support data privacy by constraining
user’s access to public views and thereby hiding the non-public underly-
ing data. The privacy problem is to prove that none of the private data
can be inferred from the information which is made public. We present a
formal definition of the privacy problem which is based on the notion of
certain answer. Then we investigate the privacy problem in the contexts
of relational databases and ontology based information systems.

1 Introduction

The development of automatic information processing has made it necessary to
consider privacy protection in relation to personal data. The surveillance poten-
tial of powerful computer systems demands for rules governing the collection and
sharing of personal information. An overview of the evolution of data protection
is presented in [20].

Two of the main international instruments in this context are the Council of
Europe’s 1981 Convention for Protection of Individuals with regard to Automatic
Processing of Personal Data [8] and the Organisation for Economic Cooperation
and Development (OECD) Guidelines on the Protection of Privacy and Trans-
border Flows of Personal Data [19]. These rules describe personal data as any
information relating to an identified or identifiable individual.

The expression of data protection in various declarations and laws varies.
However, all require that personal data must be kept secure. That includes ap-
propriate security measures for the protection of personal data stored in infor-
mation systems against unauthorized access. Thus, information systems must
take responsibility for the data they manage [1]. The main challenge in data
privacy is to share some data while protecting personal information.

We provide a theoretical framework to prove that under certain circumstances
none of the personal data can be inferred from the information which is made
public. The underlying system is given in the form of an ontology. Personal data
takes the form of a privacy condition which is a set of queries. Moreover, the
public information is given in terms of a view instance and background knowledge.
A view instance consists of queries and their (actual) answers, while background
knowledge includes additional facts about the system that are provided for better
understanding of the data in the views. The privacy problem is then to decide
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whether any of the queries in the private condition can be inferred from the view
instance and the background knowledge.

In order to state the privacy problem, we employ the notion of certain an-
swer: data privacy is preserved for a query with respect to the provided public
knowledge if there are no non-negative certain answers of the query with respect
to that knowledge. That is, if the certain answer to it is either the empty set or
negative (”None” or ”No”). The certain answers of a query are those answers
that are returned by the query in every ’possible’ instance. The problem of an-
swering queries against a set of ’possible’ instances was first encountered in the
context of incomplete databases [24]. Today, certain answer is a key notion in
the theory of data integration [7,14,16] and data exchange [2,13].

Let us demonstrate the above setting: consider an ontology that contains in-
formation about the customers of a telecommunication company. The company
provides information to the end-users through searching engines on its telephone
lists, whereas at the same time some of its customers do not wish to give in pub-
licity their telephone numbers. Thus, the privacy condition would be a set of
queries of the form Owns(custi, Tel), where Owns relates customers to their tele-
phone numbers, custi is a constant and Tel is a variable. Since these are retrieval
queries, data privacy is preserved when there is no certain answer to each of
them. That is, there is no telephone number which is returned by such a query
in every ’possible’ ontology. If this holds, then the set of certain answers is empty
which means that no telephone number of any of custis is exhibited. Negative
answers might occur only in the case of boolean queries that are not applicable
on the ontology, when this is also announced through the public information.

Our work is concerned with the question how much information a given view
instance reveals and whether it leaks private data. In [5] the same question is
addressed for a variety of confidentiality policies. Following their setting, the
privacy problem we deal with corresponds to what is called ‘uniform refusal for
unknown potential secrets’. Their work is however limited to boolean queries
in complete information systems. Moreover, much of the existing work on pri-
vacy for information systems deals with privacy preserving query answering.
There, the privacy problem is that of inferring a maximal subset of the answer
to a query so that no secrets are violated [6,25]. The idea of specifying sensi-
tive information as conjunctive query is pioneered in [18], where the notion of
perfect privacy is introduced. However, enforcing perfect privacy for conjunctive
queries is highly intractable. A generalization of this model has been studied in
[11]. There, checking perfect privacy is even harder. Recently, Machanavajjhala
and Gehrke [17] make a connection between perfect privacy and the problem
of checking query containment. This allows them to identify many subclasses
of conjunctive queries for which enforcing perfect privacy is tractable. Dix et
al. [12] established a relationship between privacy problems and non-monotonic
logics. Another approach [22] is to generalize the answers to a query in order to
provide anonymity.

The rest of the paper is organized as follows: first, we give formal definitions
for both the ontology and query answering on it. We define the ontology as a set
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of first-order sentences, while query answering is done via entailment. This allows
for the application of data privacy in both knowledge base and database systems.
Thus, the present definition of data privacy is much more general than the one
given in [23] which applies to relational databases only. Then, we present a formal
model of data privacy using certain answers and show that these can be reduced
to logical entailment. Thus, in general, the privacy problem is not decidable.
We continue by presenting two applications where the data privacy problem
is decidable: in Section 4 we apply data privacy on relational databases with
conjunctive queries. In this case, background knowledge consists of a relational
schema with constraints imposed on it. Data privacy for this setting is decidable
in polynomial time. In Section 5 we apply data privacy on ALC description logic-
based ontologies. In this case, background knowledge might include any TBox
or ABox entries. Here, the complexity of data privacy follows the complexity of
ALC-reasoning: it is ExpTime-complete for ontologies with a general TBox and
PSpace-complete for ontologies with an acyclic TBox. Finally, we summarize
the results and give further research directions.

2 The Ontology and Query Answering

We define the relational first-order language L as follows. The collection of L
terms comprises countably many variables x, y, z, . . . and countably many con-
stant symbols a, b, c, . . .. We use Const for the set of L constants. L includes for
every natural number n countably many relation symbols R, S, T, . . . of arity n as
well as the binary relation symbol = for equality. If R is an n-ary relation symbol
of L and t1, . . . , tn are L terms, then R(t1, . . . , tn) is an atomic L formula. L
formulae are built up inductively from the atomic formulae of L by closing under
the usual connectives as well as universal and existential quantification. We call
an L formula without free variables L sentence.

We will also make use of the standard notion of logical entailment: Let φ be
a formula and O a set of formulae. Then O |= φ if every model of O is also a
model of φ.

Note that the choice of a first-order language for the current presentation
is not important. We could as well use any other language that is employed
in the context of information systems, such as second order languages or fixed
point logics. Now, we can formally introduce the ontology and show how query
answering can be defined in terms of entailment:

Definition 1. An ontology O is a finite set of L sentences. Const(O) denotes
the set of constants that occur in O. A query q is an L formula. If q has no free
variables, then q is called boolean query otherwise it is a retrieval query.

Definition 2. The range of a query q (range(q)) is given by:

1. {∅, {�}, {⊥}} if q is a sentence,
2. Pow(Constn) which is the power set of the n times Cartesian product of Const

with itself, if q is a formula with n > 0 free variables.



A Formal Model of Data Privacy 403

Definition 3. The answer to a query q with respect to an ontology O (ans(q, O))
is given by:

ans(q, O) := {�} if q is a sentence and O |= q,
ans(q, O) := {⊥} if q is a sentence, O �|= q and O |= ¬q,
ans(q, O) := ∅ if q is a sentence, O �|= q and O �|= ¬q,
ans(q, O) := {t ∈ Const(O)n | O |= q(t)} if q has n > 0 free variables.

Note that ans(q, O) ∈ range(q) and is always finite. Finally, a view instance is a
set of queries together with their answers:

Definition 4. A view instance VI is a finite set of tuples 〈qi, ri〉 where each qi

is a query and ri ∈ range(qi). We say that an ontology O entails a view instance
VI (in symbols O |= VI) if ri = ans(qi, O) for every 〈qi, ri〉 ∈ VI .

3 Data Privacy

As mentioned in the introduction, in addition to the view instance VI that is pro-
vided, public knowledge also includes some other facts, the background knowl-
edge. We will refer to it as the ontology O. We call the tuple 〈O, VI〉 a data
privacy setting. Also, since querying an ontology makes sense only when the an-
swers it provides do actually hold, we assume that the underlying ontology is
consistent.

We give a definition of the problem based on the notion of certain answer: let q
be the information we wish to keep private. First, we collect all those ontologies
each of which is conceivably the underlying ontology. Afterwards, we collect
those answers to q that do certainly hold in each of the collected ontologies. A
non-negative answer would then mean that q is exhibited and thus, data privacy
is not preserved.

Definition 5. Let 〈O, VI〉 be a data privacy setting. We call an ontology P
possible with respect to 〈O, VI〉 if

1. P is consistent,
2. O ⊆ P, and
3. P |= VI .

Poss〈O,VI〉 denotes the set of all possible ontologies with respect to 〈O, VI〉.

Definition 6. The certain answers to a query q with respect to a setting 〈O, VI〉
are defined by

certain(q, 〈O, VI 〉) :=
⋂

P∈Poss〈O,VI 〉

ans(q, P)

Definition 7. We say data privacy is preserved for q with respect to 〈O, VI〉 if
certain(q, 〈O, VI〉) ⊆ {⊥}.
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The proposed definition has the advantage that works independently of the un-
derlying language. However, it does not provide a direct solution to the problem
as the possible ontologies are infinitely many. For this reason, we first construct a
so-called canonical ontology that carries minimal, though complete, information
about the certain answers to a given query.

Definition 8. Given a setting 〈O, VI〉, the canonical ontology C〈O,VI〉 is defined
as

C〈O,VI〉 := O ∪
{q | 〈q, {�}〉 ∈ VI} ∪
{¬q | 〈q, {⊥}〉 ∈ VI} ∪
{q(t) | there is an A with 〈q, A〉 ∈ VI and t ∈ A}

Note that this construction is language-dependent. The following theorem can
be easily shown:

Theorem 1. Given an L formula φ and a data privacy setting 〈O, VI〉, the
following holds:

C〈O,VI〉 |= φ if and only if ∀P .(P ∈ Poss〈O,VI〉 → P |= φ).

In order to check whether data privacy is preserved for a query q with respect
to 〈O, VI〉, we can build the canonical ontology C〈O,VI〉 and issue q to it.

Corollary 1. Data privacy is preserved for q with respect to 〈O, VI〉 if and only
if ans(q, C〈O,VI〉) ⊆ {⊥}.

4 Relational Databases

In this section we show that there is a polynomial time solution to the privacy
problem for relational databases. Although classical database theory is concerned
with model checking, we can make use of Reiter’s proof theoretic approach [21]
in order to apply our setting to relational databases.

In the context of relational databases, we consider only conjunctive queries.

Definition 9. An L formula is called conjunctive query if it is built from atomic
formulae, conjunctions and existential quantifiers. A conjunctive view instance
VI is a view instance such that qi is a conjunctive query for each 〈qi, ri〉 ∈ VI .

Definition 10. A data privacy setting for databases 〈O, VI〉 consists of

1. a set of dependencies O. Each element of O is either a tuple generating
dependency [4] of the form

∀x(φ(x) → ∃yψ(x, y))
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or an equality generating dependency [4] of the form

∀x(φ(x) → (x1 = x2)),

where φ(x) and ψ(x, y) are conjunctions of atomic formulae and x1, x2 are
among the variables of x,

2. a conjunctive view instance VI .

It is possible to translate the data privacy setting for databases to a data ex-
change setting [23]. Fagin et al. [13] show that in such a setting, the classical
chase can be used to compute certain answers for conjunctive queries. The pro-
cedure they present terminates in polynomial time.

Theorem 2. Given a data privacy setting for databases 〈O, VI〉 and a conjunc-
tive query q. Then we can check in polynomial time whether privacy is preserved
for q with respect to 〈O, VI〉.

5 ALC-Based Ontologies

Description logics build the mathematical core of many modern knowledge base
systems [3]. Their language consists of concepts (sets of individuals) and roles
(binary relationships between the individuals).

The basic description logic ALC consists of the following concepts:

C := A | ¬C | C1 � C2 | C1 � C2 | ∀R.C | ∃R.C,

where A is an atomic concept and R is a role. Each concept C abbreviates an L
formula C′(x) with one free variable x as follows.

A′(x) := A(x)
(¬C)′(x) := ¬C′(x)

(C1 � C2)′(x) := C′
1(x) ∧ C′

2(x)
(C1 � C2)′(x) := C′

1(x) ∨ C′
2(x)

(∀R.C)′(x) := ∀y.(R(x, y) → C′(y))
(∃R.C)′(x) := ∃y.(R(x, y) ∧ C′(y))

In the sequel, we will identify concepts and the corresponding L formulae. An
ontology contains a terminology, that is the vocabulary of an application domain,
as well as assertions about named individuals in terms of the vocabulary. The
terminology consists of concept equality axioms of the form C1 ≡ C2 abbreviating
∀x.(C1(x) ↔ C2(x)). An assertion is a formula of the form C(a) or R(a, b)
where a, b ∈ Const are called individuals. An ALC-based ontology consists of a
terminology (called TBox) and a set of assertions (called ABox).

A TBox is acyclic when it satisfies the following: (i) every concept equality
is of the form A ≡ C, (ii) every atomic formula occurs at most once at the left
hand side of an equality and (iii) there are no cycles in the concept equality
axioms.
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An ALC query is either a concept (retrieval query) or an expression of the
form C(a) or C1 ≡ C2 (boolean query).1 A setting 〈O, VI〉 is a data privacy
setting for ALC-based ontologies if O is an ALC-based ontology and VI is given
by ALC queries. For the rest of this section, query refers to ALC query.

The data privacy problem in this setting can be solved following the approach
presented in the general setting, that is, by building a canonical ontology that
corresponds to the public knowledge 〈O, VI〉. In its current form, the ontology
defined in Definition 8 is not an ALC-based ontology, since a negative answer on
an equality query C1 ≡ C2 would include a non-ALC formula. What actually a
negative answer tells about the ontology in this case, is that there is an individual
which belongs to C1 and does not belong to C2 or vice versa. Thus, we can unfold
the view instance by replacing every 〈C1 ≡ C2, {⊥}〉 in VI by 〈(C1 � ¬C2) �
(¬C1 � C2)(d), {�}〉, where d is fresh (that is it does not occur in 〈O, VI〉 or in
the private query q). We can now construct the canonical ontology based on this
unfolded view instance.

Similarly to Theorem 1, it can be shown that the constructed ontology is in-
deed canonical with respect to the public knowledge. Finally, under this frame-
work, the complexity results for the reasoning problem in ALC-based ontologies
[3] apply also to the privacy problem.

Theorem 3. Given a data privacy setting 〈O, VI 〉 for ALC-based ontologies and
a query q, the data privacy problem for q with respect to 〈O, VI〉 is ExpTime-
complete when the TBox in 〈O, VI〉 is general and PSpace-complete when it is
acyclic.

Note that in the context of description logic ontologies, our approach is not
restricted to ALC. We can use the same method also to solve the data privacy
problem for ontologies which are given in very expressive description logics. For
instance, our technique also applies to logics such as SHIF and SHOIN which
are the mathematical models for the web ontology languages OWL Lite and
OWL DL.

However, if the query language is different from the ontology language, then
Definition 8 is not applicable. For instance, if we have a description logic based
ontology language and use conjunctive queries to retrieve information, then we
need other techniques to solve the privacy problem.

6 Conclusion and Outlook

We have given a formal definition of the general data privacy problem for infor-
mation systems. This problem is to check whether a given view instance leaks
information about the underlying data or knowledge base. We have modeled the
privacy problem using the notion of certain answer. Privacy holds for a query q

1 The problems of querying a concept assertion and querying an equality are known as
the instance and equivalence problems, respectively. The well-known subsumption
problem is reduced to the equivalence problem.
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with respect to a view instance VI if there are no non-negative certain answers
to q with respect to VI .

Computing certain answers is equivalent to logical entailment. Thus it is in
general undecidable. We have investigated two important decidable cases: the
privacy problem for relational databases with a set of constraints and the privacy
problem for ontology (description logic) based information systems.

We plan to extend our study to other data models. The investigation of the
privacy problem for XML databases is an important further task. Like relational
databases, XML databases protect data from unauthorized access by allowing
users to issue queries solely to views that provide public information only [10].
The computation of certain answers in XML databases has been studied for
instance in [2].

Another direction of future work is to investigate the effect of updates to data
privacy. Assume we have a query and a view instance for which privacy holds. If
we update the underlying database or ontology, can we be sure that privacy still
is preserved? Thus, it is important to study privacy preserving updates. That
is, the question of which forms of updates do not violate data privacy.

The present definition of the privacy problem consists of deciding whe-
ther a given view instance leaks information. There is a second privacy prob-
lem: deciding whether already the view definition guarantees that there is no
possible leaking. That means, given the view definition, there cannot be a view
instance that leaks private information. For example, this is the case in rela-
tional databases if values stored in private attributes cannot be inferred via the
constraints defined in the database. In ontology based systems, the theory of
E-connections [15] and partitioning of ontologies [9] may lead to such secure
view definitions. Finally, the study of this second privacy problem will result in
a collection of database patterns which are safe with respect to data privacy.
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Abstract. We define the first nontrivial polynomially recognizable sub-
class of P-matrix Generalized Linear Complementarity Problems (GLCPs)
with a subexponential pivot rule. No such classes/rules were previously
known. We show that a subclass of Shapley turn-based stochastic games,
subsuming Condon’s simple stochastic games, is reducible to the new class
of GLCPs. Based on this we suggest the new strongly subexponential com-
binatorial algorithms for these games.

1 Introduction

The Linear Complementarity Problem (LCP: find vectors w, z ≥ 0 satisfying
w = Mz + q and wT z = 0 for given real square matrix M and vector q) is a
powerful framework for combinatorial and continuous optimization, with a rich
theory [21,10] and numerous important applications. The general problem is NP-
hard, but there are many rich polynomially solvable subclasses, such as Z-matrix
and PSD-matrix (positive semidefinite) LCPs [21,10,17]. For a prominent class
of P-matrix LCPs (possessing unique solutions, with positive principal minors
of matrix M) there are no currently known polynomial algorithms, but there
is strong evidence (NP �=coNP) that the P-matrix LCP is not NP-hard [19].
It is an exciting open problem to invent polynomial or at least subexponential
algorithms for nontrivial subclasses of P-matrix LCPs [20].

We consider the Generalized LCP (GLCP) introduced by Cottle and Dantzig
[9], also referred to as the Vertical LCP in the literature. The GLCP subsumes
LCP as a particular case, and it is more flexible and convenient in applications,
like game-theoretic ones aimed at in this paper.1 All definitions of matrix classes
(P-, Z-, etc.) extend straightforwardly to the GLCP.

In this paper we describe the first nontrivial subclass of P-matrix GLCPs,
which we call D-matrix GLCPs or DGLCPs (D- stands for discounted), together
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mentarity condition (in contrast to the standard LCP), which is more suitable for
describing games on graphs with arbitrary outdegree.
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with a number of randomized subexponential algorithms based on combinatorial
linear programming. The class of D-matrices has a simple syntactic description.
We show that D-matrix GLCP is nontrivial by subsuming Shapley’s turn-based
stochastic games [22] and Condon’s simple stochastic games [8] (both currently
not known to be polynomial). To our knowledge, prior to this paper there were
no nontrivial, polynomially recognizable and subexponentially solvable classes
of P-matrix GLCPs.

Our investigation into the GLCP theory was motivated by applications to solv-
ing certain full-information infinite adversary games. In [5] we investigated the
LCP approach for expressing and solving Mean Payoff Games (MPGs) [13,14],
and developed the first subexponential LCP-based algorithm for MPGs. It was
obvious that reductions to LCPs described in [5] applies to wider classes of
games, including stochastic games and a more general framework of Controlled
Linear Programming Problems (CLPPs) [3,2,4], but prior to this paper the use-
fulness of such reductions was questionable by lack of existing subexponential
algorithms for nontrivial classes of (G)LCPs. Alternative approaches to solving
simple stochastic and mean payoff games are described in [7,6].

Paper Outline. After recalling stochastic games in Section 2, in Section 3 we re-
duce the value problem for these games to the GLCP problem (basic facts about
GLCPs are collected in Appendix A). The structure of the resulting matrices,
called D-matrices, is explored in Section 4. D-matrices happen to be P-matrices
and D-matrix GLCPs possess unique solutions (Section 5). After that we intro-
duce a class of switching/pivoting algorithms for D-matrix GLCPs (Section 6),
analyze the structure of the matrices they produce (Sections 7, 8), prove mono-
tonicity of switching (Section 9) and optimality of stable strategies (Section 10),
crucial for termination and subexponential analysis. A family of subexponential
algorithms is described in Section 11. Algorithms for solving one-player games
at the bottom of recursion are described in Section 12. Missing proofs/details
can be found in [23].

2 Shapley’s Stochastic Games

For m ∈ N denote [m] = {i ∈ N|1 ≤ i ≤ m}. In a stochastic game [22] there
are finitely many N positions, and players Max, Min have finitely many action
choices, [mk], [nk], respectively, in each position k ∈ [N ]. If in position k player
Max selects action i ∈ [mk] and Min simultaneously selects action j ∈ [nk], then
Max gets payment ak

ij from Min, with probability sk
ij > 0 the play stops, while

with probability pkl
ij ≥ 0 the play proceeds to position l. A particular game Γ k is

obtained by specifying the starting position k. Player Max wants to maximize,
whereas player Min to minimize the total payoff, which accumulates during the
play. Assume,

∑N
l=1 pkl

ij = 1 − sk
ij < 1 − s < 1, |ak

ij | < M . Then the probability
that a play does not stop after t steps is at most (1−s)t, and the maximal payoff
does not exceed M = M

∑∞
i=0(1 − s)i = M/s.
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Turn-Based Stochastic Games. Simultaneous move stochastic games thus defined
are not perfect information. In turn-based stochastic games, for every position
k at least one of mk, nk equals one. For such a game, let k ∈ Max if mk > 1,
k ∈ Min if nk > 1. We call positions k for which both mk = nk = 1 unary and
arbitrarily let k ∈ Max or k ∈ Min. Turn-based stochastic games are perfect
information, solvable in pure positional strategies [22], and the unique value
(optimal payoff) for every vertex is determined by the unique solution of the
system

vk = maxi∈[mk](ak
i1 +

∑
l p

kl
i1 vl), for k ∈ Max,

vk = minj∈[nk](ak
1j +

∑
l pkl

1j vl), for k ∈ Min. (1)

3 Reducing to Generalized LCP

In this section we show that turn-based Shapley stochastic games are reducible
to Generalized LCPs (see Appendix A) of a specific structure.

By introducing, if necessary, auxiliary unary positions between positions of
the same player, and by appropriately modifying stopping and transitional prob-
abilities, we may assume, with no loss of generality, that the game is bipartite,
i.e., pkl

ij > 0 implies k ∈ Max and l ∈ Min or k ∈ Min and l ∈ Max.2 System
(1) can be equivalently presented as:

vk = max{ −M, ak
i1 +

∑

l

pkl
i1 ul | i ∈ [mk]}, for k ∈ Max,

uk = min{ M, ak
1j +

∑

l

pkl
1j vl | j ∈ [nk]}, for k ∈ Min,

(2)

where we reflect bipartiteness by using vi/ui for Max/Min variables.
Let us introduce mk + 1 fresh auxiliary nonnegative variables zk, wk

1 , . . . ,
wk

mk
≥ 0 for each variable vk ∈ Max, nk + 1 auxiliary nonnegative variables

zk, wk
1 , . . . , wk

nk
≥ 0 for each variable vk ∈ Min, and rewrite the system (2) as

vk = zk − M, for k ∈ Max,
vk = wk

i + ak
i1 +

∑

l

pkl
i1 ul, for k ∈ Max, i ∈ [mk],

uk + zk = M, for k ∈ Min,
uk + wk

i = ak
i1 +

∑

l

pkl
i1 vl, for k ∈ Min, i ∈ [nk],

(3)

additionally stipulating complementarity, i.e.,

zk ·
∏

i

wk
i = 0 for each k ∈ [N ]. (4)

2 Although this may blow up quadratically the number of positions, unary positions
introduced do not make worse the resulting complexity.
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Excluding variables vi, ui from (3), we can rewrite it as

wk
i = zk + P k

i (z̄|Min), for k ∈ Max, i ∈ [mk],

wk
i = zk + P k

i (z̄|Max), for k ∈ Min, i ∈ [nk],
(5)

where: 1) polynomials P k
i (z̄|Min) contain only variables zj for j ∈ Min, 2) poly-

nomials P k
i (z̄|Max) contain only variables zj for j ∈ Max, 3) these polynomials

have all variable coefficients nonnegative, summing up to < 1 (call such polyno-
mials discounted). Note that in obtaining this form of system (5) we essentially
use bipartiteness, which guarantees that variables wk

i and zk appear with non-
negative coefficients on different sides of equations.

4 D-Matrices and Discounted GLCPs

Finding nonnegative values zk, wk
i satisfying (5) and (4) is a well known Gen-

eralized (or Vertical) LCP [9]; see Appendix A for a reminder of the main def-
initions. In this paper, motivated by the special structure of the system (5),
we introduce a new class of vertical matrices and corresponding GLCPs called
Discounted, D-matrices and DGLCPs for short. We will demonstrate that D-
matrices are P-matrices, and unique solutions to DGLCPs can be found in ran-
domized subexponential time, which cannot be done (at least not known yet) for
general P-matrices [20]. Here is our main

Definition 1 (Discounted Vertical Matrix, Discounted LCP). A vertical
block matrix A is Discounted, or D-matrix, if A is of the form depicted in Fig-
ure 1 and has the following properties: 1) all elements of A are non-negative; 2)
every representative submatrix of A has a unit main diagonal; 3) the remaining
nonzero entries are located in the gray area; 4) A is strictly row diagonally dom-
inant. A D-matrix GLCP is called Discounted GLCP, or DGLCP for short. ��

1
1

1
1

1
1

1
1

1
1

Max

Min

Fig. 1. The structure of a D-matrix. 1’s denote column vectors of ones.
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Note that the property of being a D-matrix is easily polynomial time recogniz-
able. Assuming the unit main diagonal is just a matter of technical convenience
and may be dropped.

The reduction from the previous section shows that the class of DGLCPs is
nontrivial:

Theorem 1. Turn-based Shapley stochastic games and simple stochastic games
reduce to the DGLCP. ��

Notational Conventions. From now on we assume that the vertical block ma-
trices considered are of dimension m × k with m ≥ k. The upper part of a
D-matrix, consisting of n ≤ k blocks, is associated with the player Max, and
the lower part with the player Min. Thus the range of blocks and columns is
split between Max and Min. We will write i ∈ Max or j ∈ Min meaning that
the corresponding index is in the range of one of the players. By z|Min we will
denote vector z with all components of Max replaced with zeros, and similarly
for z|Max, w|Max

, w|Min
.

By U i
j or Li

j, respectively, depending on whether i ∈ Max or i ∈ Min, we
will denote the j-th row in the i-th block of a D-matrix, with the 1 in the i-
th coordinate (main diagonal) replaced with 0. We will call vectors U i

j and Li
j

discounted, because they have nonnegative coordinates summing up to a number
< 1. Note that by our conventions U i

j z|Min = U i
j z and Li

j z|Max = Li
j z.

5 D-Matrices Are P-Matrices, Uniqueness of Solutions

We start by an important property that D-matrices form a subclass of P-
matrices.

Theorem 2. Every D-matrix is a P-matrix.

Proof. Since every representative submatrix of a D-matrix has positive diagonal
and is strictly diagonally dominant, it is a P-matrix [10, p. 152]. ��

P-matrix GLCPs have unique solutions [24], therefore,

Theorem 3 (Uniqueness). Every D-matrix GLCP has a unique solution. ��

6 Strategies, Attractiveness, Switches, Stability

A strategy prescribes which of the complementary variables are to be zeroed.

Definition 2 (Strategy). A strategy σi for the block i ∈ Max is a selection
of either σi = {zi = 0} or σi = {wi

j = 0}, for some j ∈ {1, . . . , pi}. A full
Max strategy σ consists of selections σi for all blocks i ∈ Max and is denoted
σ = {σ1, . . . , σn}. A partial Max strategy consists of strategy selections for some
Max blocks. ��
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After selecting a strategy σi for block i ∈ Max, we have either zi = 0 or
zi = −qi

j − U i
j · z|Min. Denote by GLCPσi(A, q) the system (A, q) with the i-th

block and i-th column removed and remaining occurrences of zi replaced with
0 (if σi = {zi = 0}) or with −qi

j − U i
j · z|Min (if σi = {wi

j = 0}). Note that
GLCPσi(A, q) is not a DGLCP any longer, in general.

Given a Max strategy σ for all blocks we denote the resulting system, after
removing all blocks of Max and replacing all z|Max, by GLCPσ(A, q). Note that
after finding a solution w|Min

and z|Min for GLCPσ(A, q), the values w|Max
and

z|Max are easily and uniquely calculated by substitution but these values may be
negative. The fact that some values are negative means that we made a mistake
in selecting a strategy and some switches have to be made.

Definition 3 (Attractiveness, Switches, and Stability). For a full Max

strategy σ, let w∗ and z∗ be the complementarity vectors after calculating w|Max

and z|Max from the solution of GLCPσ(A, q), as explained above.

1. Say that a pivot to wi
j or zi is attractive, for i ∈ Max, if w∗i

j < 0 or z∗i < 0.
2. An attractive switch for σ in block i ∈ Max results from making an attractive

pivot, replacing σi with σ′
i = {wi

j = 0} or σ′
i = {zi = 0}.

3. The strategy σ is stable if w∗ and z∗ are nonnegative, i.e., give a solution
to the DGLCP(A,q).

7 GLCPs Resulting from Fixing Partial Strategies

Making a partial (or complete) substitution of a strategy in a DGLCP results in
a GLCP with a unique solution, which is a critical invariant for our algorithms:

Theorem 4. For a DGLCP (A, q) with matrix A of order p× k and n blocks of
Max, the resulting GLCPσ1,...,l

(A, q), for any Max strategy σ1,...,l (l ≤ n), has
a unique solution.

Proof. By induction. The inductive hypothesis (IH) is that the matrix in the
system GLCPσ1,...,l

(A, q) has the following properties. 1) The Max partition is as
in the Definition 1 of the DGLCP. 2) The Min partition is strictly row diagonally
dominant with a positive diagonal ≤ 1 (in every representative matrix).

For the base case l = 0, the original system DGLCP (A, q) satisfies the IH
by definition. For the inductive step, assume, IH is true for l − 1, with l ≤ n.
We want to prove the IH for the GLCPσ1,...,l

(A, q). Let A be the vertical block
matrix for the system GLCPσ1,...,l−1(A, q).

Case 1 (σl = {zl = 0}). Removing the l-th column and block from A and
substituting zl with 0 in the remainder results is a matrix GLCPσ1,...,l

(A, q)
obviously satisfying the IH.

Case 2 (σl = {wl
j = 0}). We remove the l-th block and column and substitute

zl with −U l
j · z − ql

j . The resulting matrix B will be the matrix for the system
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GLCPσ1,...,l
(A, q). It is immediate that the Max partition of B satisfies the

IH. Moreover, every Min row in A can be written as wd
i = Ad

i · z + qd
i =

λ1z1 + . . . λlzl + · · · + λkzk + qd
i .

By positivity of the diagonal and strict row diagonal dominance (IH), we have
λd >

∑
x �=d |λx|. After substituting zl with −U l

j · z − ql
j zl, the same row of B

will be
wd

i = λ1z1 + · · · − λlU
l
j · z|Min + · · · + λkzk + qd

i − λlq
l
j .

Since
∑

y |U l
jy | < 1 implies |λl|

∑
y |U l

jy| < |λl|, it follows that λd >
∑

x �=d |λx| >
∑

x �=d,x �=l |λx| + |λl|
∑

y |U l
jy |. Thus, after the substitution of zl the row remains

strictly diagonally dominant with a positive diagonal. Also, the diagonal entry
is ≤ 1, because at every step one Max variable zi with a positive coefficient is
replaced by either 0 or a nonpositive linear polynomial depending on variables
zj, j ∈ Min. Therefore, λd may only decrease. Consequently, the Min part of
GLCPσ1,...,l

(A, q) also satisfies the IH. We have proved that the IH holds for all
GLCPσ1,...,l

(A, q) for l ≤ n. The uniqueness of their solutions follows from the
IH by the proof of Theorem 2 and by Theorem 3. ��

8 One-Player Case Yields Discounted Z-Matrices

We have a special restricted subclass of block Z-matrices resulting from substi-
tuting full Max strategies in DGLCPs, which deserve a special name.

Definition 4. A vertical block is called a ZD+-matrix if it is:

1. a Z-matrix, i.e., all off-diagonal elements (in the representative matrices)
are ≤ 0;

2. diagonally positive with all diagonal elements in the range (0, 1];
3. strictly row diagonally dominant. ��

Theorem 5. For every full Max strategy σ the matrix in the system GLCPσ

(A, q) is a ZD+-matrix possessing a unique solution.

Proof. Recall that the first n blocks belongs to Max and the remaining m blocks
belongs to Min. Every Min row in DGLCP (A, q) can be written as

wn+d
j = zn+d + λ1z1 + · · · + λnzn + qn+d

j , (6)

with λl ≥ 0. After selecting a strategy σ, either zi = 0 or zi = −U i
jz|Min −

qi
j , for 1 ≤ i ≤ n and some j ∈ {1, . . . , pi}. Substituting the value for every

zi, 1 ≤ i ≤ n, into (6) will result in a nonpositive coefficient in front of zj ,
where n < j ≤ k and j �= n + d, because U is nonnegative. Hence, all off-
diagonal entries of GLCPσ(A, q) will be nonpositive. Consequently, the matrix
of GLCPσ(A, q) is a Z-matrix.3 The remaining conditions 2, 3 of Definition 4 for
3 This part of the proof does not use any row diagonally dominance or discountedness

properties. It only relies on the bipartite structure, shown in Figure 1, and can
therefore be generalized.
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the matrix of GLCPσ(A, q) and solution uniqueness follow from the inductive
proof of Theorem 4.4 ��
Corollary 1. Every ZD+-matrix is a K-matrix. ��

9 Monotonicity: Attractiveness Is Profitable

Monotonicity of attractive switches/pivots (to be explained shortly) is the cru-
cial property ensuring termination of our pivoting algorithms and allowing for
subexponential upper bounds. To simplify the proof (to reduce the number of
cases considered), we assume that the algorithms always start from a Max

strategy selecting zi = 0 for all i ∈ Max and proceed by making attractive
switches/pivots.5 A subexponential randomized policy is described in Section 11,
but monotonicity proved here guarantees finite termination of any sequence of
attractive switches/pivots. For our purposes, making just one attractive switch
at a time is enough, but one can consider a generalization when several such
pivots are made simultaneously. To simplify notation we make a convention to
denote solutions to the GLCPs before and after a switch as non-primed w, z
and primed w

′
, z

′
.

Definition 5. The value val(w, z) of a solution (w, z) to a DGLCP equals
∑

i∈Max

zi −
∑

k∈Min

zk. (7)

Monotonicity of attractive switches guarantees that this value strictly monoton-
ically increases, which immediately follows from the more general

Theorem 6 (Monotonicity). For every attractive switch/pivot in any DGLCP
instance from solution (w, z) to solution (w

′
, z

′
) one has:

1. z
′

i − zi ≥ 0 for each i ∈ Max (monotonic non-decrease);
2. at least one inequality above is strict, namely the one in the block where an

attractive switch was made;
3. z

′

k − zk ≤ 0 for each k ∈ Min (monotonic non-increase).

Proof. Suppose, an attractive switch/pivot in block i ∈ Max results in a new
strategy with σ′

i = {w
′i
j = 0}.

Let us start by proving Claim 3 by contradiction.6 Since the switch was attrac-
tive, the following constraints are satisfied (the first line means attractiveness,
the second stipulates that that after a switch we impose w

′i
j = 0): 7

0 > wi
j = qi

j + zi + U i
j z,

0 = w
′i
j = qi

j + z
′

i + U i
j z

′
.

(8)

4 This part of the proof depends on diagonal dominance and discountedness.
5 With this assumption, every switch away from zi = 0, i ∈ Max, will be definitive,

i.e., the algorithm will never switch back to zi = 0. The extension to an arbitrary
initial strategy is pretty straightforward.

6 This is the only part of the proof that relies on discountedness.
7 It is not important here whether before the switch σi was {zi = 0} or {wi

j′ = 0}.
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Suppose, toward a contradiction, that some zk (for k ∈ Min) increases its
value, and select k yielding the largest increase c > 0,

c = z
′

k − zk > 0. (9)

Subtracting the first line in (8) from the second one, we get −(z
′

i − zi) <

U i
j(z

′ − z) ≤ λ · c, where the last inequality holds for some 0 < λ < 1, be-
cause U i

j z is discounted, depends only on variables of Min (U i
jz = U i

jz|Min),
z, z

′
are nonnegative, and by the choice of k. Consequently, for the block

i ∈ Max in which the switch was made, z
′

i − zi > −λ · c. Similarly, in each
block i ∈ Max in which there was no switch, z

′

i − zi ≥ −λ · c. (the only
difference consists in replacing > in the first line of (8) with =, which re-
sults in a non-strict inequality.) Now let us look in the selected block k ∈
Min. For every constraint m in this block, before and after the switch, we
have:

wk
m = qk

j + zk + Lk
j z

w
′k
m = qk

j + z
′

k + Lk
j z

′ (10)

Subtracting the first line of (10) from the second one we get w
′k
m − wk

m = (z
′

k −
zk)+Lk

m(z
′−z) ≥ c−λ·c > 0, because Lk

m z is a discounted polynomial depending
only on variables zi with i ∈ Max, and for all such we proved z

′

i − zi ≥ −λ · c.
The last chain of inequalities leads to a contradiction. Indeed, w

′k
m − wk

m > 0
plus nonnegativity of wk

m imply w
′k
m > 0 for every m in block k. By assumption

z
′

k − zk > 0 and nonnegativity of zk, we also have z
′

k > 0. But this implies that
the complementarity z

′

k

∏nm

m=1 w
′k
m > 0 in block k is violated. This shows that

the increase (9) for zk, k ∈ Min, cannot happen, which proves Claim 3.
Let us now prove Claims 1 and 2, which depend on non-negativity of coeffi-

cients in U i
j , but not on discountedness. Assume the attractive switch happens

in block i and consists in switching from σi = {wi
l = 0} to σ′

i = {w
′i
j = 0}, 8 i.e.:

0 = wi
l = qi

l + zi + U i
l z,

0 > wi
j = qi

j + zi + U i
j z,

0 = w
′i
j = qi

j + z
′

i + U i
j z

′
.

(11)

(This is consistent with (8); the second line in (11) coincides with the first line
in (8). Line 1 expresses the selection before the switch, line 2 attractiveness, and
line 3 the selection after the switch.)

From (11) we derive zi = −qi
l − U i

l z < −qi
j − U i

j z ≤ −qi
j − U i

j z
′
= z

′

i, where
the inequality ≤ holds because U i

j has nonzero (positive) coefficients only for zk,
k ∈ Min (recall that by our notational convention U i

j z = U i
j z|Min), and by the

fact that z
′

k − zk ≤ 0 proved as Claim 3 above. Therefore, if an attractive switch
happened in block i, the corresponding zi component strictly increases z

′

i > zi,
proving Claim 2.
8 The case not covered here, but completely analogous, is when the switch is made

from σi = {zi = 0}, i.e., the first line is replaced with zi = 0.
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A block i ∈ Max in which an attractive switch was not made corresponds to
the system similar to (11):

0 = wi
l = qi

l + zi + U i
l z,

0 = w
′i
l = qi

l + z
′

i + U i
l z

′ (12)

from which we derive, analogously (≤ holds for the same reason) that zi =
−qi

l − U i
l z ≤ −qi

l − U i
l z

′
= z

′

i, which proves Claim 1 z
′

i ≥ zi for i ∈ Max and
finishes the proof. ��

10 Stability Implies Optimality for Discounted GLCPs

The following result is essential for correctness and complexity analysis of our
algorithm. (We do not claim stable strategies are unique, they are generally not.)

Theorem 7. In every DGLCP instance every stable Max strategy determines
the same solution.

Proof. Consider any two stable strategies in a DGLCP instance I. Since both are
stable, they both determine solutions for I, which are equal by Theorem 3. ��

11 Subexponential Algorithms

We now have all the ingredients necessary to describe a class of randomized
subexponential algorithms for the D-matrix GLCP, based on combinatorial lin-
ear programming schemes due to Kalai [15,16] and Matoušek-Sharir-Welzl [18].

Given a DGLCP instance (A, q), define a hyperstructure as a Cartesian prod-
uct P =

∏n
i=1 Si, where n ≤ k is the number of Max blocks, k is the total

number of blocks, Si = {0, . . . , pi}, and pi the size of the i-th block. Intuitively,
P is the space of all Max strategies, with 0 corresponding to σi = {zi = 0}
and j > 0 corresponding to σi = {wi

j = 0}. Define a substructure P ′ of P as a
Cartesian product P ′ =

∏n
i=1 S′

i, where 0 ∈ S′
i ⊆ Si for each i ∈ {1, . . . , n}). It

corresponds to the set of strategies in a DGLCP instance (A, q), in which some
constraints have been deleted (which remains a DGLCP instance).

Define the valuation on the hyperstructure P as follows. For every Max strat-
egy σ ∈ P the GLCPσ(A, q) (obtained by substituting σ considered as an as-
signment of zeros for zi and wi

j , as described in Section 6) is a ZD+-matrix
GLCP, possessing a unique solution (w, z) (Theorems 4, 5). Find this solution
as described in Section 12. Assign to σ the value ν(σ) = val(w, z), as defined by
(7). With this valuation,

1. every two neighbors σ and σ′ on P (at Hamming distance 1) corresponding
to an attractive switch from σ to σ′ have values ν(σ) < ν(σ′);

2. on every substructure P ′ =
∏n

i=1 S′
i with 0 ∈ S′

i ⊆ Si for each i, there is a
unique stable (optimal) solution/value (cf., Theorem 7).
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Now numerous well-known randomized subexponential algorithms [15,16,18]
for finding a (globally) maximal valuation (stable strategy solving the DGLCP
instance (A, q)) on the structure P apply. Roughly (we refer the reader to
[15,16,18] for details), one of the versions of the algorithm is as follows. Given
a structure P , consider the initial strategy σ = {zi = 0}i=1,...,n, correspond-
ing to the point σ̂ = (0, . . . , 0) ∈ P (below, for brevity we identify points of
hyperstructures with corresponding strategies)9, and proceed as follows.

1. if σ̂ = (σ̂1, . . . , σ̂n) and the bottom of recursion is hit, expressed formally as10

P =
n∏

i=1

{0} ∪ {σ̂i}, (13)

then solve an instance of ZD+-matrix GLCPσ(A, q); see Section 12;
2. otherwise, consider a substructure P ′ ⊂ P containing σ, obtained by (tem-

porarily) throwing away a random c ∈ Si, c �= 0, c �= σi for a random i; 11

3. apply the algorithm recursively to find a stable (globally maximal) σ∗ on P ′;
4. return back the last c temporarily thrown away and check whether σ∗ is

stable in P ;
5. if yes, return σ∗ as stable (globally maximal) on P ;
6. if not, make an attractive switch for σ∗, replacing σ∗

i with c; denote the
resulting strategy σ and repeat from step 1.

The analyses of [15,16,18] yield the following

Theorem 8. The above algorithm solves an instance of a DGLCP with n Max

blocks after expected subexponential 2O(
√

n log n) number of switches and invoca-
tions of the subroutine solving ZD+-matrix GLCPσ(A, q) in step 1. ��

In Section 12 we show that ZD+-matrix GLCPσ(A, q) can also be solved in
expected subexponential (or in weakly polynomial) time. This results in the
first nontrivial subclass of P-matrix GLCPs solvable in expected subexponential
time (in the number of variables).

9 For efficiency reasons, it is better to select, in the initial strategy, components σl =
{wl

1 = 0} for each unary position l. This neutralizes the effect of introducing many
unary positions when reducing to the bipartite case. The correctness of this initial
setting is explained by the fact that no switches will ever be made/become attractive
in any run of the algorithm.

10 Technically, we have to keep 0-components in substructures in (13) in order to be able
to associate elements of hyperstructures to strategies in GLCPs, since, in general,
the strategy switch to {zi = 0} is not excluded. However, starting with the strategy
σ̂ = (0, . . . , 0), and making attractive switches only, by Monotonicity Theorem 6,
every switch away from {zi = 0} is definitive, since zi for i ∈ Max can only increase.
Therefore, when (13) holds we immediately know that σ is optimal in P , and it
remains to solve the GLCPσ(A, q) to find values to be used in determining further
attractive switches.

11 In other words, we delete a random facet of P not containing σ.
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Monotonicity of attractive switches (Theorem 6) is essential for acyclicity of
the algorithm. Uniqueness (Theorems 3, 5) is crucial for subexponential anal-
ysis, because after finding an optimum on a substructure P ′ and making the
next attractive switch, P ′ will never be revisited by the algorithm again (by
monotonicity, each attractive switch improves the value), and the subexponen-
tial analysis based on hidden dimensions applies; see [15,16,18] for details.

12 Solving One-Player Z-GLCPs

In the bottom of recursion (when the full Max strategy σ is fixed) the random-
ized algorithm described in the previous section solves GLCPσ(A, q), an instance
of ZD+-matrix GLCP with a unique solution, as explained in Section 8. There
are several possible algorithms for this problem.

1) By using the least element property [12], solving any feasible Z-matrix
GLCP (A, q) amounts to solving a single linear program, minimizing any positive-
coordinate linear target function over the feasible domain {z : z ≥ 0, q+Az ≥ 0}.
There is a multitude of polynomial (but non-strongly) algorithms for that.

2) The above linear programming problem instance can be solved in random-
ized strongly subexponential time by the algorithms [15,16,18]. Note that this
algorithm is subexponential 2O(

√
(k−n) log(k−n)) in the number k − n of Min

blocks (equals the number of z-variables remaining in GLCPσ(A, q)). The ad-
vantage of using options 1 or 2 depends on the size of coefficients in the instance
GLCPσ(A, q). Applying option 2, together with Theorem 8 results in

Theorem 9. A D-matrix GLCP instance with k blocks, n of which belong to
Max, can be solved in expected subexponential time 2O(

√
n log n+

√
(k−n) log(k−n)).

Further improvement will be achieved if a more efficient, strongly polynomial,
algorithm for solving ZD+-matrix GLCP instances is used at the bottom of
recursion. This subject is outside the scope of this paper, deserves a separate
careful treatment, and the progress will be reported elsewhere; see, e.g., [1].

13 Conclusions

We identified the first nontrivial subclass of P-matrix Generalized LCPs, which
is: 1) polynomial time recognizable (in general, the P-matrix property is coNP-
complete); 2) has a very simple syntactical structure; 3) subsumes Shapley’s
turn-based stochastic games and Condon’s simple stochastic games (currently
not known to be polynomial time solvable). We suggested the first subexpo-
nential pivot rule and algorithm for this class of GLCPs; no such rules were
previously known, all were either polynomial or exponential. The resulting al-
gorithm for stochastic games has the same asymptotic behavior as other best
currently available algorithms for the problem [4,6].
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A Appendix: Generalized LCP

Definition 6. A vertical block matrix of type (p1, . . . , pk) is a real block matrix
A of order p × k, where p =

∑k
j=1 pj, partitioned by horizontal cuts in blocks Aj

of order pj × k, for j = 1, . . . , k. ��

Note that in A the number of blocks equals the number of columns.
Here comes the main definition.

Definition 7 (GLCP/VLCP). An instance of the Generalized or Vertical
LCP is specified as follows.

Given: a vertical block matrix A of type (p1, . . . , pk) and a constant vector
q decomposed in conformity with A:

q =

⎡

⎢
⎣

q1

...
qk

⎤

⎥
⎦ , A =

⎡

⎢
⎣

A1

...
Ak

⎤

⎥
⎦ .

Find: a vector w ∈ R
p (decomposed as q) and z ∈ R

k satisfying

w = q + Az,

w ≥ 0, z ≥ 0,

zi

∏pi

j=1 wi
j = 0, for i = 1, . . . , k, (Generalized Complementarity)

(14)

where p =
∑k

i=1 pi. ��

The standard LCP is a special case of the GLCP (14), with all blocks of size 1 and
square matrix A. Many results of the GLCP depend on the matrix structure. The
analysis of the matrix structure of a GLCP, often boils down to the investigation
of representative submatrices.
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Definition 8 (Representative Submatrix). A square submatrix M of a ver-
tical block matrix A is called a representative submatrix if its i-th row is drawn
from Ai, the i-th block of A. ��

The following classes of matrices are well investigated in the literature
[21,10,17]. Every class is first defined for square matrices and then the definition
is extended in a standard way to block matrices by stipulating the property to
hold for all representative submatrices.

Definition 9. A square matrix M is:

1. a P-matrix if all principal minors of M are positive;
2. a Z-matrix if all off-diagonal elements of M are nonpositive; if M also is a

P-matrix it is called a K-matrix;
3. strictly row diagonally dominant if |Mii| >

∑
j �=i |Mij | for each row i;

4. diagonally positive if all diagonal elements of M are positive.

A vertical block matrix is a P-matrix, Z-matrix, etc., if all its representative
submatrices are square P-matrices, Z-matrices, etc, respectively. ��

The property of being a P-matrix is coNP-complete [11].
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1 Problem

The analysis of the application of the existing knowledge engineering method-
ologies and tools shows that they are up to now virtually not used in practice
(see [13, page 16]). This stands in contrast to the often proclaimed necessity for
knowledge engineering. What can be the reason for this discrepancy? Most of
the existing knowledge engineering methodologies adopt techniques and apply
process models from software engineering. However, in many scenarios required
knowledge engineering tasks reveal specific characteristics, which an knowledge
engineering methodology should be aware of. In the following, we describe briefly
some specific characteristics of Knowledge Engineering important for Rapid-
OWL.

Knowledge Engineering is not a Business in itself. There is no market for Knowl-
edge Engineering as there is for Software Development. This is not because
Knowledge Engineering is less important in the economic sphere, but due to
the fact that the flow of knowledge in most cases accompanies the development
of products and services, rather than being an economic asset itself. Hence,
Knowledge Engineering services are often required when spatially distributed
users have to collaborate on a semantic level. For example, this is the case when
a common terminology has to be established, dispersed information must be
integrated, or when shared classification systems and taxonomies have to be
developed. This type of semantic cooperation is for example often required for
Virtual Organizations [1], scientific communities or standardization boards, or
intra-organizational use.

Lack of a Unique Knowledge Serialization. Agile methodologies rely heavily on
sophisticated versioning and evolution strategies due to their focus on small
incremental changes. However, agile methodologies, as well as their respective
versioning and evolutions strategies within software development, do not seem
to be reasonably applicable to knowledge engineering. For example, contrary
to software development paradigms, most knowledge representation paradigms
do not provide unique serializations. In other words, the ordering of statements
or axioms in a knowledge base is irrelevant, while the ordering of source-code
lines in software is fixed. Consequently, the use of existing software versioning

I. Virbitskaite and A. Voronkov (Eds.): PSI 2006, LNCS 4378, pp. 424–430, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



RapidOWL — An Agile Knowledge Engineering Methodology 425

strategies (e.g. delta method) and their respective implementations (e.g. CVS,
Subversion) would not be efficiently suitable.

Spatial Separation of Parties. Most agile Software Development methodologies
assume a small team of programmers working closely (especially spatially) with
domain experts. This is a reasonable assumption for commercial software de-
velopment, where a client requests software developers to implement a certain
functionality. But when the involved parties are spatially separated, the use of
a formal, tool-supported Knowledge Engineering methodology becomes partic-
ularly important. Furthermore, the knowledge engineering tasks of establishing
common classification systems, shared vocabularies and conceptualizations are
especially important in distributed settings. When teams are co-located implicit
knowledge representation in the form of text documents in conjunction with ver-
bal communication turns out to be more efficient and for a long time established.

Involvement of a Large Number of Parties. The growing together of the world
by Internet and Web technologies enabled completely new mechanisms of col-
laboration. Open source software projects as for example the Linux kernel or
collaborative content authoring projects as Wikipedia demonstrate this power
of scalable collaboration impressively. However, Knowledge Engineering is espe-
cially challenging when a large number of domain experts have to be integrated
into the knowledge-engineering process. Agile software development methodolo-
gies claim to be best suited for small to medium sized development scenarios.
This is mainly due to the accent on and need for instant communication. On the
other hand, the interlinking of people and tools using internet technologies facil-
itates scaling of agile cooperation scenarios. Knowledge Engineering scenarios in
most cases differ from software development scenarios: it is usually not optional,
but crucial to integrate a large number of domain experts, knowledge engineers
and finally users of the knowledge bases.

2 Aim of RapidOWL

The aim of this paper is to help make the development and use of knowledge bases
more efficient. For that purpose, a new, agile knowledge engineering methodol-
ogy, called RapidOWL is proposed. RapidOWL is founded on the observation
that knowledge must necessarily be modeled evolutionary, in a close collabora-
tion between users, domain experts and knowledge engineers. We argue that ex-
isting heavy-weight development methodologies from Software Engineering and
Knowledge Engineering are inefficient for certain application scenarios, because
they make changes in knowledge models too expensive. Most existing Knowledge
Engineering methodologies (e.g. Uschold [19], Grüninger and Fox [10], Methon-
tology [7]) take a task as the starting point, i.e. they suggest performing ontology
construction with the ontology’s usage scenarios in mind. This requires signif-
icant initial effort and makes changes to and reuse of the resulting ontologies
inherently hard (cf. [13]). The starting point of RapidOWL is the hypothesis
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that light-weight (or agile) development processes can be suitable for knowl-
edge engineering, because they stress the importance of supporting frequently
changing requirements and models and rely on a minimum of representation
artifacts. The application of RapidOWL is supported by concepts for knowl-
edge base versioning and evolution (see [4]) as well as rapid querying and view
generation. Both are accompanied by a framework supporting the development
of semantic-web applications on the basis of the RDF statement paradigm (see
[2,3]). Applications and examples are presented how efficient tool support for
RapidOWL can then be implemented on top of the framework in either generic
or domain specific way (e.g. [5]).

3 Related Work

Related approaches can be roughly classified into two groups. Accompanied by
the formation of knowledge engineering as an independent field of research sev-
eral Knowledge Engineering methodologies were developed. Most of them are
much inspired by Software Engineering methodologies. In the Software Engi-
neering domain, in the 90’s several Agile Software Engineering methodologies
emerged. Triggered by the fact that flexibility, in particular fast and efficient re-
actions on changed prerequisites, becomes increasingly important, agile method-
ologies recently also appeared in other areas than Software Engineering. The
most prominent representatives from each of these directions are briefly pre-
sented in the following.

Knowledge Engineering. The main goal of Knowledge Engineering is to structure
the development and use of knowledge bases. For that purpose, the most widely
known Knowledge Engineering approaches (such as CommonKADS [17]) are
based on the ontology paradigm (i.e. knowledge should be represented in formal
and explicit specifications [12]). Ontologies capture the semantics of the knowl-
edge in a format that is designed to be on the one hand easy to maintain and
on the other hand efficient to process by reasoning algorithms. The development
of both ontologies and adequate reasoning algorithms is supported by various
methodologies, the phases and models of which resemble traditional Software
Engineering approaches. These Knowledge Engineering methodologies now also
reveal similar problems to traditional Software Engineering approaches. Signifi-
cant initial efforts are needed to make the purpose of the final ontology explicit
and to deduce an appropriate model. It is often hard to estimate the required
level of detail for the knowledge structuring a priori. Changes to the knowledge
structuring are difficult and costly. Finally, only a few knowledge modeling tools
allow easy collaboration between domain experts and knowledge engineers. For
these reasons, methods from Knowledge Engineering are often too expensive to
apply and rarely used in practice.

Agile Methodologies. Agile methodologies have recently gained growing success
in many economic and technical spheres. This is due to the fact that flexibility,
in particular fast and efficient reactions to changed prerequisites, is becoming
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increasingly important in the information society. This development started in
Software Engineering after the realization in the mid 1990’s that the traditional
‘heavy’ methodologies do not work well in settings where requirements are un-
certain and change frequently. Several adaptive or agile Software Engineering
methodologies subsequently evolved (see [6,8,18,15,16]). Agile methodologies are
especially suited for small co-located teams and for the development of non life-
threatening applications. Since the problem of uncertain, changing requirements
is not limited to the Software Engineering domain, the idea of establishing adap-
tive methodologies, which can react to changing prerequisites, was also adopted
by other domains than Software Engineering. These include ‘The Wiki Way’
[14] for Content Management, Rapid Prototyping [11] for Industrial Engineer-
ing. Also, the Lean Management method was used to some extent in the business
management domain.

4 Results

The RapidOWL methodology is based on the idea of iterative refinement, anno-
tation and structuring of a knowledge base. Its aim is to bring about a stable state
of the knowledge base through small incremental changes from a multiplicity of
contributors. A central paradigm for the RapidOWL methodology is the con-
centration on smallest possible information chunks (i.e. RDF statements). The
collaborative aspect comes into play, when those information chunks can be selec-
tively added, removed, annotated with comments or ratings. Design rationales for
the RapidOWL methodology are to be light-weight, easy-to-implement, and sup-
port of spatially distributed and highly collaborative scenarios. The RapidOWL
methodology is presented following other agile methodologies. It is grounded on
the paradigms of the generic architecture of knowledge-based systems, knowl-
edge representation for the semantic-web on the basis of the RDF statement
paradigm and web technologies. The RapidOWL process then is characterized
by values from which (on the basis of the paradigms) principles are derived for
the engineering process in general, as well as practices for establishing those
principles in daily life (cf. Fig. 1). The values of RapidOWL are Community
(to enable collaborative knowledge base development and evolution), Simplic-
ity (to increase knowledge base maintainability), Courage (to be able to escape
representation dead-ends) and Transparency (to promote early detection of mod-
eling errors). The practices envisioned to organize the Knowledge Engineering
process in daily life include among others: Joint Ontology Design (to ease collab-
oration between knowledge engineers, domain experts and users), Information
Integration (to ground the knowledge elicitation on existing information), View
Generation (to provide domain specific views for human users and software sys-
tems) and Ontology Evolution (enabling the smooth adoption of modelings and
corresponding instance data migration). These values, principles, and practices
are the major ingredients of the RapidOWL methodology. In contrast to sys-
tematic engineering methodologies, RapidOWL does not prescribe a sequence of
modeling activities that should be precisely followed. Furthermore, RapidOWL
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does not waste resources on comprehensive initial analysis and design activities.
RapidOWL is primarily suited for establishing conceptualizations for informa-
tion integration as well as the establishing of shared classification systems and
vocabularies. The idea of applying agile paradigms to Knowledge Engineering
with respect to the specific characteristics of Knowledge Representation is the
major innovation of the presented approach.

Rapid Feedback

Simplicity CommunityCourageTransparency

OpenIncremental Organic Uniform

WYSIWYMObservable Convergent

Interactive Cooperation Joint Ontology Design

Community Modeling

Modeling Standards

Ontology Evolution Short ReleasesConsistency Checking

Simple Knowl. Model

Values

Principles

Practices

View Generation

Information Integration

Fig. 1. The building blocks of RapidOWL: Values, Principles, Practices

In [9] a number of criteria for analyzing methodologies was proposed. In the
following we discuss RapidOWL in the light of these criteria.

Detail of the methodology. RapidOWL is a rather lightweight methodology.
This is primarily due to the recognition that knowledge engineering is usually not
a business in itself and thus significant resources for evaluating the methodology
and later controlling the compliance of the processes with the methodology are
not available. RapidOWL rather banks on tools supporting it than on exhaustive
documentation.

Recommendations for knowledge formalization. RapidOWL bases on represen-
tation of all knowledge in the form of triples, i.e. RDF statements. A concrete
degree of formalization is not prescribed. However, RapidOWL proposes to jus-
tify the degree of formalization according to the required reasoning capabilities
of the resulting knowledge base.

Strategy for building ontologies. Regarding this criteria it is questioned whether
the strategy to develop ontologies is (a) application-dependent, (b) application-
semidependent, or (c) application-independent. RapidOWL focuses on the de-
velopment of rather application-independent ontologies. However, RapidOWL is
primarily suited for information integration tasks and tasks related to the estab-
lishing of shared classification systems, vocabularies and conceptualizations.

Strategy for identifying concepts. RapidOWL here follows a middle-out strat-
egy, i.e. from the most relevant to the most abstract and most concrete. By
stressing the collecting of example or instance data RapidOWL tries to abolish
knowledge elicitation by means of face-to-face communication between domain
experts and knowledge engineers.
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Recommended life cycle. Due to its adaptive nature RapidOWL does not ex-
plicitly propose a rigid life cycle. However, many aspects of stages in the life cycle
of conventional methodologies can be discovered in RapidOWL’s single process.

Differences between the methodology and IEEE 1074-1995. This criteria is re-
lated to the conviction that knowledge engineering processes should be similar to
conventional software development processes. In this regard RapidOWL is dif-
ferent in two ways: Firstly it stresses the need to react on changed prerequisites,
i.e. being agile. Secondly it assumes knowledge engineering to be fundamentally
different from software engineering in certain scenarios.

Recommended techniques. RapidOWL stresses the importance of providing
concrete techniques for performing the different practices of which the method-
ology is composed. However, in the description of RapidOWL’s practices within
this document only starting points on how to put them into effect are mentioned.

Usage and Application. Due to the fact that RapidOWL is rather new and
significant resources had not been at our disposal for a broad evaluation the
number of successfully realized RapidOWL projects is still small. However, on-
tologies and applications have been build on the basis of RapidOWL containing
approximately 20,000 concepts and serving 3,000 parties (see e.g. [5]).
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Abstract. Application-specific processors (ASIPs) look very promising
as a platform for embedded systems since they comprise both the flexi-
bility of a programmable device and the efficiency of application-specific
hardware. A number of approaches to design an application-specific in-
struction sets were introduced during the last years. We apply the BURS
(Bottom-Up Rewrite System) technique which is commonly used for re-
targetable code generation to this problem. As a result a simple algorithm
is presented that generates both instruction set and assembly code from
the source program; this algorithm can be used for retargetable code
generation as well.

1 Introduction

Two main tasks have to be solved during the development of the embedded sys-
tem based on an application-specific instruction set processor. On the one hand
the suitable architecture has to be developed; on the other hand the compiler
has to be retargeted to this architecture. Solving the first task independently
from the second can make efficient code generation surprisingly hard. Hardware
engineers strive to invent the most appropriate hardware for the given set of
tasks; however as a rule their considerations can hardly be effectively utilized
by a compiler. The reason is that the compiler has to generate good code for
any program while instruction set design has been performed with regard to a
particular application or a group of applications.

One way to avoid this glitch is to synthesize machine code together with
an appropriate instruction set directly from source application i.e. to perform
instruction set selection. Many different approaches have been developed in this
area; we suggest yet another one.

Bottom-Up Rewrite System (BURS) is a simple conventional model for re-
targetable code generation. Crafting BURS to synthesize both machine code
and instruction set we constructed an algorithm which provides for a given
instruction-set constraint an instruction set as a set of tree patterns minimizing
the cost of the machine program among all instruction sets satisfying that con-
straint. The algorithm can be used without any detailed knowledge of hardware
features. Since these features are not yet clarified due to the lack of the hardware
this does not restrict design space.
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In comparison to other approaches the suggested one may be considered as
a prototyping step since it allows to implement executable prototype consisting
of machine code and hardware instruction set model from scratch using only
high-level software implementation. While generally speaking such a prototype
may lack some important features (parallelism, clever resource allocation etc.)
then it may be optimized both on software and hardware levels.

2 Related Works

A number of approaches to design an application-specific instruction sets were
introduced during the last years.

Instruction set synthesis for pipelined architectures is addressed in [14,13]. For
a given parameterized pipelined microarchitecture and the set of benchmarks the
design of instruction set is considered as a scheduling problem. To control the
tradeoff between instruction set and program quality the number of cycles in
the program and the number of instructions in the instruction set are used.
Scheduling problem is solved by the simulated annealing algorithm.

Another approach [16] uses combined representation of a datapath and in-
struction set model. Bundling technique is explored to couple sequences of micro-
operations and construct datapath. Initial datapath samples are taken from a
predefined library; profiling is performed to determine frequently occurring op-
eration sequences.

Template generation as a way for instruction set selection is considered in [15,
3]. Templates are repeated occurrences of possibly interdependent nodes and
edges in a dataflow graph. Two types of templates are identified: sequential and
parallel. Templates are built iteratively starting from the pairs of adjacent nodes;
initially the most frequent pairs are selected. All selected templates are combined
into supernodes ; therefore DAG isomorphism algorithm is used to detect higher-
order templates.

Another graph-based approach to instruction-set selection is presented in [6].
All reasonable patterns with regard to the set of constraints are enumerated to
collect an instruction candidates. Instruction set selection guided by some cost
function is then performed. Finally the target application is mapped into the
selected patterns by binate covering algorithm. The similar approach is used
in [4].

3 Tree Grammars and BURS

Our approach to instruction set selection is based on tree grammars and BURS
theory so we have to mention some formal notions.

A tree grammar is a context-free grammar G = (N, T, S, R) where N and T
are finite sets of nonterminals and terminals, S ∈ N is starting nonterminal, R
is a set of rules of the form

K : p
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where K ∈ N is nonterminal, p is tree pattern — an (ordered) tree with all
interior nodes labeled with terminals and all leaves labeled with either terminals
or nonterminals. A ground tree is a pattern without nonterminal-labeled leaves.
While ordinary “linear” grammars define languages as sets of words tree gram-
mars define languages as sets of ground trees. Similarly to the “linear” case one
may define the transition relation p

r→ q for a rule r and two patterns p and q
as follows:

p
r→ q iff q = p[l ← t]

where r is K : t, l is a leaf of p with label K, p[l ← t] is a result of substitution
of l with t. The language defined by a tree grammar G is the set of ground trees

L(G) = {t : S →∗ t}

where “→∗” is a reflexive-transitive closure of “→”. More detailed description
of tree languages and automata theory can be found in [5].

For any ground tree its derivation corresponds to some partition by patterns
of G. This observation explains why tree grammars are used as a convenient
formal model for the instruction selection problem: if we interpret patterns of the
grammar as machine instructions and nonterminals as storage classes then any
derivation of the tree corresponds to some feasible instruction selection. Under
these assumptions the problem of optimal instruction selection for trees is the
problem of finding the least-cost derivation in a tree grammar with weighted
rules.

The least-cost derivation can be found by a dynamic programming algorithm
that in fact is a variant of Aho-Johnson algorithm for finding optimal code for
expression trees [2]; unlike the latter one, however, it does not yield optimal
register allocation.

The search is performed in two stages. During the first one, labeling, all pos-
sible rules are applied in a bottom-up manner and the costs of all derivations
are calculated. During the second stage, reduce, the least-cost derivation is re-
constructed by a top-down walk.

Applications of tree grammars to pattern matching and code generation are
discussed in more details in [12, 1, 9, 10].

4 Instruction Set Selection as a BURS Problem

As we have seen in the previous section, optimal instruction selection for a
tree can be considered as a search of least-cost derivations in weighted tree
grammars. Patterns of the grammar play role of individual machine instructions;
any derivation introduces a partition of the source tree. The inverted claim
obviously does not always hold: for an arbitrarily chosen partition, there might
not be a derivation. Since any partition corresponds to some instruction selection
with regard to some instruction set our first task is to build for given tree a
grammar which allows all its partitions. We call such grammars enumerating.
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Fig. 1. An example of enumerating grammar construction

This property of enumerating grammars can be interpreted as follows: for
given tree t they describe all possible instruction selections in all possible in-
struction sets. So least-cost derivation in enumerating grammar is the least-cost
instruction selection among all instruction sets.

The enumerating grammar for the given tree t can easily be built via bottom-
up breadth-first traversal of the tree t. For each node v with terminal label x
we first add a rule S : x to the grammar, where S is starting nonterminal of the
grammar; then we apply all rules exactly as during labeling stage of the BURS al-
gorithm; finally we enrich the grammar with rules of the form K : x(L1, . . . , Lk),
where K is new nonterminal, Li is nonterminal mark of i-th immediate successor
of v and there is no rule with the same pattern yet. An example of enumerating
grammar construction is presented in Fig. 1.

After construction of the enumerating grammar one may apply the conven-
tional BURS algorithm to perform instruction selection. The costs of the rules
may be assigned in the commonly used manner; for example to minimize code
length the cost of 1 has to be assigned to each rule. Least-cost derivation for
enumerating grammar yields the best instruction selection among all instruction
sets with the regard to constraint used during grammar construction. To select
an instruction set we finally remove from the enumerating grammar all rules
that do not participate in the least-cost derivation.

The main restriction of the approach being discussed is introduced by
limitation of cost function that has to be compliant with dynamic programming
algorithm. It is quite simple to estimate the cost of the a program and quite
hard to estimate the cost of an instruction set with the function of that kind. On
the other hand we can not ignore instruction set cost. For example the standard
cost function of a program is its length; obviously the shortest program for
given tree among all possible instruction sets contains one instruction — the
tree itself. To avoid such degenerative instruction sets from being considered
we restrict the set of patterns that can be used in enumerating grammars by
means of a constraint — some property that can be effectively checked for a tree.
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Table 1. Evaluation Results for the DSPstone Benchmarks

benchmark size triad dual mem mem/mul no constraint
I A R I A R I A R I A R

complex multiply 58 5 38 11 5 36 3 5 38 11 4 34 9
complex update 78 6 62 14 6 50 4 6 62 14 5 46 13
convolution 70 6 42 8 5 39 2 6 42 8 5 39 7
dot product 78 6 36 9 6 33 4 6 36 9 5 32 8
fir 83 8 54 12 7 48 2 8 54 12 7 48 11
fir2dim 149 8 147 23 8 136 4 8 147 23 6 132 21
biquad one section 86 8 57 14 7 48 2 8 57 14 7 48 14
biquad N sections 117 12 91 20 12 76 4 12 91 20 12 73 19
lms 156 9 77 15 9 65 4 9 77 15 8 64 14
matrix 76 9 87 18 9 74 4 9 87 18 8 72 17
matrix1x3 130 6 38 10 6 35 4 6 38 10 5 34 9
n complex updates 89 7 101 20 7 89 4 7 101 20 6 85 19
n real updates 69 6 56 11 6 53 4 6 56 11 5 52 10
real update 66 5 28 5 4 25 4 5 28 5 3 24 4
fft 125 38 235 41 42 189 4 35 230 41 42 184 40
g721 866 84 1547 75 149 1049 3 101 1332 75 136 1002 73

During the construction of enumerating grammars we do not consider patterns
that violate the chosen constraint.

5 Evaluation

We implemented the described algorithm on top of an ASDL-port of the lcc
compiler [8,7,11]. In addition to the instruction set selection we had to implement
local register allocator to store intermediate values and build a program from
partition. The classic algorithm of Aho and Johnson [2] was used for this purpose.

We ran our algorithm for the DSPstone benchmark [17]. Four types of con-
straints were used:

1. triad — the number of nodes in a pattern is limited by 3, which forces
instruction set selector to generate triad-based instruction set;

2. no constraint — any pattern is allowed so each tree becomes separate ma-
chine instruction;

3. dual mem — no more than one occurrence of multiplicative, logic or shift
operations and no more than two occurrences of memory access operations
are allowed in the pattern;

4. mem/mul — same as the above, but no simultaneous memory access oper-
ation and multiplication are allowed.

The length of the generated program was used as its cost function.
The results of the evaluation are shown in Table 1. Here I, A, and R stand

for instruction-set size, machine program length, and number of registers. The
number of registers is relatively large since we did not perform any clever global
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register allocation but assigned a dedicated register for each local variable, pa-
rameter, or temporary. Such a naive allocation does not affect the instruction
set selection results. Since our algorithm works only on basic blocks we use some
predefined set of control flow instructions to express the control flow in the gen-
erated program; these instructions are not included in the presented results.
Despite the complexity of the algorithm running time for all these benchmarks
did not exceed three seconds on Pentium-III 800 MHz 512MB RAM workstation
running Linux.

6 Discussion and Future Work

We see several drawbacks of the presented approach.
First of all, the model of tree covering looks restrictive since even within basic

blocks any program is generally represented by a DAG. One has to perform
common expression elimination to turn this DAG into forest. We argue that
due to the simplicity of the algorithm we may perform various ways of common
subexpression elimination prior to the instruction set selection.

The second drawback is that each instruction is implied to be a tree. We
think there is no hope to adjust this algorithm to handle instructions as DAGs;
however we may suggest to perform instruction set optimization to join simpler
instructions into complex ones.

The cost function for instruction sets is quite poor in the current implemen-
tation; it does not even allow to select the shortest instruction set among all sets
that yield the same program quality. We think though that the algorithm can
be extended to handle more sensible instruction-set costs.

These issues are subjects of future research.
On the other hand presented approach has some merits: it allows to synthe-

size both instruction set and machine code without any special knowledge of
processor architecture and so it can be used to discover some intrinsic properties
of the target algorithm implementation.

As a member of BURS family the algorithm produces provably-optimal code
with regard to all formulated restrictions. Note that the register allocator may
be adjusted to avoid introducing anti-dependencies into generated code; thus the
scheduling will not require instruction reselection.

Finally, for a fixed instruction set IS this algorithm can easily be turned into
code generator: it is enough to specify constraint of the form p ∈ IS, where p is
an instruction candidate.
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Abstract. The language L is used for specifying finite automata, and
is a fragment of a first order language with monadic predicates. Check-
ing specification for satisfiability plays an important role in the devel-
opment of reactive algorithms. Restricted syntax of this language and
interpreting it over the integers make it possible to substantially im-
prove resolution-based methods for satisfiability checking. This has been
done in previous papers devoted to R- and S-resolution. In this paper,
we present yet another improvement based on the restriction of the type
of atoms upon which the resolution is allowed.

1 Introduction

The language L is used as a specification language in the system for provably
correct design of reactive algorithms from their logical specifications [1]. This
language is a subset of a first-order language with monadic predicates inter-
preted over the set of integers. Checking specifications for satisfiability plays an
important role in the design process. The corresponding procedure is used in
almost all specification transformations not only to detect the internal inconsis-
tency of the specification but also to verify the designer’s decisions (changes in
the specification) in the course of interactive development of the algorithm [2,3].
So, a rather high efficiency of satisfiability checking algorithm is required. The
algorithm we propose here is based on the resolution inference search procedure.
The main reason of inefficiency of resolution-based methods is generating a large
number of redundant clauses during the inference search process. A reduction
in the number of generated clauses is attained by imposing various restrictions
on the application of the resolution rule. An efficient method for checking satis-
fiability of a language L formula was suggested in [4], where the simplification
of the corresponding procedure was achieved by means of restricting the type of
atoms upon which the resolving is allowed. The resolution rule in this method
was called R-resolution. Additional improvements to this method were made
in [5], where a set of clauses was partitioned into several classes and resolving
was only allowed between clauses belonging to the same class. This results in
significant reduction in the amount of the generated clauses as compared with
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c© Springer-Verlag Berlin Heidelberg 2007



Improved Resolution-Based Method for Satisfiability Checking Formulas 439

the R-resolution method. In this paper, we present one more improvement to
this method connected with the additional restriction on the type of atoms upon
which the resolving is allowed.

2 Basic Notions

First, we recapitulate briefly the basic notions concerning the language L and
R-resolution. For more details the reader is referred to [4]. Let T be a class of
formulas constructed by means of logical connectives from atoms of the form
p(t + k), where p is a monadic predicate symbol, t is a variable ranging over the
set of integers Z, and k is an integer constant called the rank of the atom. The
language L consists of the formulas of the form ∀tF (t), where F (t) ∈ T and is
interpreted on Z. The example of such a formula is ∀t(y(t − 1)&x(t) → y(t)),
where y and x are predicate symbols and (t−1) is an abbreviation for (t+(−1)).

A formula ∀tF (t) is called satisfiable if it has a model, i. e. the interpretation
in which it evaluates to true. Since F (t) is interpreted over the set of integers the
equivalence ∀tF (t) ↔ ∀tF (t + k), where F (t + k) denotes the formula obtained
from F (t) by adding k to the ranks of all its atoms, holds for any integer k. So,
we may assume that the maximum rank of atoms occurring in any formula is
equal to 0. Such formulas will be referred to as right-normalized. The formula
F (t) in the specification is assumed to be represented in the conjunctive normal
form which is viewed as a set of clauses, i. e. disjunctions of literals, where a
literal is an atom or its negation. A clause containing no literals is called an
empty clause (denoted by �). A set of clauses is called right-normalized if each
its clause is right-normalized.

Definition 1. Let c1 = c ∨ p(t), c2 = c′ ∨ ¬p(t) be right-normalized clauses,
where p(t) is an atom of rank 0. The clause c ∨ c′ is called an R-resolvent of c1
and c2 upon the atom p(t).

R-resolution (restricted resolution) is an inference rule which only admits resolv-
ing upon atoms of rank 0.

Definition 2. An R-deduction of a clause c from a set of clauses C is a finite
sequence of clauses c1, . . . , cm such that cm = c and each ci (i = 1, . . . , m) either
belongs to C, or is an R-resolvent of cj and ck for j, k < i, or is a result of
right-normalization of ci−1.

Definition 3. A clause c1(t) subsumes a clause c2(t) if there exists k ∈ Z such
that c1(t + k) is a subset of c2(t).

A clause set C is called unsatisfiable if it specifies an unsatisfiable formula ∀tF (t).
The following proposition has been proved in [4].

Proposition 1. A set C of right-normalized clauses is unsatisfiable if and only
if there exists an R-deduction of the empty clause from C.

The corresponding procedure checking a set of clauses for satisfiability is called
an R-completion procedure. In this procedure, the clauses subsumed by other
clauses are removed after adding each new clause to the current set of clauses.
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3 Separate Resolution Method

Let p1 < p2 < . . . < pn be an ordering of predicate symbols occurring in the
right-normalized set of clauses C. This ordering of predicate symbols is associated
with the partition of C into subsets Ci (i = 1, . . . , n), where Cn consists of
all the clauses which contain the atom pn(t) (the literal pn(t) or ¬pn(t)) and
Ci (i = 1, . . . , n−1) consists of all the clauses that do not belong to any Cj (j > i)
and contain the atom pi(t).

Definition 4. An S-deduction of a clause c from the set of clauses C is such
an R-deduction of c from C, where the R-resolution rule is only applied to the
clauses in the same subset Ci and the only atom the clauses from Ci are resolved
upon is pi(t).

The method is based on the following theorem.

Theorem 1. If C is an unsatisfiable set of right-normalized clauses, then for
any ordering of the predicate symbols occurring in C, there exists an S-deduction
of the empty clause from c.

First we prove the following proposition.

Proposition 2. For any right-normalized clause set C with ordered predicate
symbols and a clause c containing no atoms of rank grater than −1, the existence
of an R-deduction of c from C implies the existence of its S-deduction.

The validity of Theorem 1 immediately follows from this proposition since the
empty clause does not contain any atoms.

To prove Proposition 2, it suffices to consider an R-deduction that does not
contain clauses obtained by application of the right-normalization operation.
We shall refer to such an R-deduction as a simple R-deduction. Indeed, if we
define appropriately a notion of the depth of a deduction (for example, the
number of successive applications of the right-normalization operation in the
deduction tree) we can easily show by induction on the depth of the deduction
that if Proposition 2 holds for a simple R-deduction it also holds for any other
R-deduction.

Let c be a clause that does not contain atoms of rank grater than −1. Consider
a simple R-deduction of c from the clause set C = {c1, . . . , cn}. In such a deduc-
tion, all clauses, except the last, contain atoms of rank 0. With every clause ci of
this deduction we associate a clause c′i consisting of all literals of rank 0 contained
in the clause ci. The sequence of clauses c′i corresponding to the R-deduction of
clause c is an R-deduction of � from the clause set C′ = {c′1, . . . , c

′
n}. It is easy

to show that if there exists an S-deduction of � from C′, then there also exists
an S-deduction of c from C. Thus the problem is reduced to the propositional
case.

We now consider an unsatisfiable set of clauses C′ whose atoms are proposi-
tional variables ordered in the following way: p1 < p2 < . . . < pq. The existence
of an S-deduction of � from C′ follows from the Davis-Putnam method [6] which
can be reformulated as follows.
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Proposition 3. Let C’ be a set of propositional clauses and p any propositional
variable occurring in C’. If all the resolvents upon variable p which are not
tautologies are added to C’ and all the clauses containing p or ¬p are removed,
then the resulting set of clauses is unsatisfiable if and only if the original set is
unsatisfiable.

Let W1, W2, . . . , Wq be the partition of C′ corresponding to the above ordering
of the variables. The variable pq is contained only in the clauses of Wq. Applying
the rule of Proposition 3 to Wq and pq we eliminate the variable pq from the set
of variables occurring in the resulting clause set. Next, we eliminate the variable
pq−1 applying this rule to the clauses in Wq−1. Proceeding in this manner, we
obtain an S-deduction of � from C′. Thus, if there exists a simple R-deduction
of a clause c containing no atoms of rank grater than −1 from the clause set
C, then there exists an S-deduction of � from C′ and hence there exist an S-
deduction of c from C. This completes the proof of Proposition 2 as well as
Theorem 1.

We now can summarize the main features of the separate resolution method.
1. R-resolving is only allowed between clauses belonging to the same subset

of the partition corresponding to the chosen ordering of predicate symbols.
2. In every subset Ci of the clause set partition, resolving is only allowed upon

the atom pi(t).
3. The order in which the subsets of clauses are handled is not essential because

the subsets are not removed after generating all resolvents upon the correspond-
ing atom.

4. An S-resolvent c that is not a tautology and not subsumed by any other
of the existing clauses is added to the corresponding subset (according to the
partitioning rule) in the right-normalized form, and all the clauses in the current
set of clauses that are subsumed by c are removed.

4 Example

Consider the partition of the clause set corresponding to the following ordering
of its predicate symbols: x < u < y < z.

The subset C4 (corresponds to z):
(y(t − 2) ∨ ¬y(t − 1) ∨ z(t) ∨ ¬u(t)) 1,
(¬z(t − 2) ∨ ¬y(t − 1) ∨ ¬z(t) ∨ y(t)) 2,
The subset C3 (corresponds to y):
(z(t − 1) ∨ y(t) ∨ ¬u(t)) 3,
(y(t − 2) ∨ ¬y(t − 1) ∨ ¬y(t) ∨ u(t)) 4,
(z(t − 1) ∨ ¬y(t − 1) ∨ y(t) ∨ ¬x(t)) 5,
(z(t − 1) ∨ y(t) ∨ x(t)) 6.
The subset C2 (corresponds to u):
(z(t − 1) ∨ ¬u(t − 1) ∨ ¬u(t) ∨ x(t)) 7,
(z(t − 1) ∨ ¬y(t − 1) ∨ u(t − 1) ∨ u(t) ∨ ¬x(t)) 8.
The subset C1 (corresponds to x):
(¬z(t − 2) ∨ ¬y(t − 2) ∨ u(t − 1) ∨ x(t)) 9.
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The number of the clause is written to the right of it, and pairs of numbers
written to the left of the resolvents indicate the numbers of clauses being resolved.

The process of S-completion proceeds as follows.
(1, 2) (¬z(t − 2) ∨ y(t − 2) ∨ ¬y(t − 1) ∨ ¬u(t) ∨ y(t)) 10, is added to C3.
(4, 5) (y(t − 2) ∨ z(t − 1) ∨ ¬y(t − 1) ∨ ¬x(t) ∨ u(t)) 11, is added to C2.
(4, 6) (y(t − 2) ∨ z(t − 1) ∨ ¬y(t − 1) ∨ x(t) ∨ u(t)) 12, is added to C2.
(7, 12) (y(t − 2) ∨ z(t − 1) ∨ ¬u(t − 1) ∨ ¬y(t − 1) ∨ x(t)) 13, is added to C1.
The process terminates after generating four resolvents while in the process

of R-completion 35 clauses are generated.

5 Conclusion

We have proposed an efficient resolution based method for satisfiability checking
specifications in the language L. This method leads to significant reduction in
the number of clauses generating during the satisfiability checking in comparison
with the method of R-resolution. One more factor ensuring the efficiency of the
method is reduction in the number of clause pairs checking for the possibility
to be resolved. The result proved in the paper may be regarded as the proof
of completeness of the strategy combining a predicate symbols ordering with
R-resolution.

It should be noted that different orderings of predicate symbols lead to dif-
ferent partitions of the clause set that may result in different numbers of clauses
generated in the process of satisfiability checking. In turn, different orders of
subsets handling may lead to different run times of the procedure. As an appro-
priate heuristics we recommend to handle subsets of clauses Ci in the decreasing
order of their subscripts.
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Abstract. Event structures constitute a major branch of models for
concurrency. Their advantage is that they explicitly exhibit the interplay
between concurrency and nondeterminism. In a seminal work, Winskel
has shown that categories of prime and stable event structures can be re-
lated to a category of Scott domains by adjunctions. The intention of this
note is to show the applicability of the theory-categorical framework to a
real-time extension of stable event structures, in order to identify suitable
semantical domains for the models. To that end, we first introduce a cat-
egory TSES of real-time stable event structures, and a category MDom
of a particular class of Scott domains, called marked Scott domains, and
then define an adjunction between TSES and MDom.

1 Introduction

Category theory has been used to unify and classify models for concurrency —
see [22] for a survey. The general idea is to formalise that one model is more
expressive than another in terms of an ‘embedding’, most often taking the form
of an adjunction.

Domain theory offers a global mathematical setting for sequential computa-
tion, and thereby sets programming languages in connection with each other;
relates them with the mathematical worlds of algebra, topology and logic; and
inspires programming languages type disciplines and methods of reasoning. Al-
though the applicability of classical domain theory to the general theory of
concurrent computation is arguable [17], it has been shown in [20] that Scott
domains bear close categorical relationships with event structures (and there-
fore, via a chain of adjunctions, with Petri Nets [14,7]). Furthermore, semantical
domains have been identified for prime event structure with priorities [5] and
probabilistic event structures [19].

It is generally acknowledged that time plays an important role in many con-
current and distributed systems. This has motivated the extension of the theory
of untimed systems to real-time setting. Timed extensions of interleaving models
have been studied thoroughly in the last ten years (see, for instance, [1,8]). On
the other hand, the incorporation of quantitative information into noninterleav-
ing models has received scant attention: a few extensions are known of pomsets
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[4], configurations [15], asynchronous transition systems [3,12], net processes [10],
and event structures [9,12,18]. In [6] real-time prime event structures were re-
lated to Scott domains, obtaining a coreflection (a special form of adjunction)
between categories of the models.

The intention of this note is to show the applicability of the theory-categorical
framework to a real-time extension of stable event structures, in order to identify
suitable semantical domains for the models. To that end, we first introduce a
category TSES of real-time stable event structures, and a category MDom of a
particular class of Scott domains, called marked Scott domains, and then define
an adjunction between TSES and MDom.

The note is organized as follows. Sections 2 and 3 contain notions and no-
tations related to real-time stable event structures and marked Scott domains,
respectively. The interrelations between the models are established in Section 4.
Conclusions are drawn in Section 5. Appendix A contains basic notions regarding
partial orders and Scott domains.

2 Real-Time Event Structures

In this section, we introduce a real-time extension of Winskel’s model of event
structures [21] by equipping events with time delays.

We first recall the terminology concerning event structures. An event struc-
ture is a set of events together with relations of enabling and conflict. The
enabling relation models causality, whereas the conflict relation expresses alter-
native choices between events. Two events which are neither causally dependent
nor in conflict may occur concurrently. In this sense, event structures provide
explicit and separate representations of causality, choice and concurrency.

An event structure is a tuple S = (E, #, �), where E is a countable set of
events; # ⊆ E ×E is a symmetric and irreflexive relation (the conflict relation);
�⊆ Con × E is an enabling relation such that X � e ∧ X ⊆ Y ∈ Con ⇒ Y � e
(here Con is the set of finite conflict-free subsets of E, i.e. those finite subsets
X ⊆ E for which holds: ∀e, e′ ∈ X � ¬(e#e′)). An event structure is called stable
if X � e ∧ Y � e ∧ X ∪ Y ∪ {e} ∈ Con ⇒ X ∩ Y � e. In the following, we will
consider only stable event structures and call them simply event structures.

The set Conf(S) of configurations of S consists of those C ⊆ E which are
secured (i.e. ∀e ∈ C � ∃ {e0, . . ., en = e} ⊆ C s.t. ∀ i � n � {e0, . . . , ei−1} � ei)
and conflict-free (i.e. ∀e, e′ ∈ C � ¬(e#e′)).

We next present a real-time extension of event structures. In our model, a
global clock [8,9,12,15] which approximates the time of every snapshot by a nat-
ural number is assumed, and we attach a global-clock delay to each event. The
interpretation is that an event with a delay t becomes enabled at the time t since
the start of the system and may happen at any time from t. Therefore, in our
model all events are non-urgent [9,18], allowing idling to be modelled. The oc-
currences of events themselves take no time, i.e. events happen ‘instantaneously’
[8,9,15].
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Let N be the set of natural numbers, and Ñ = N∪{∞}, where ∞ > n for any
n ∈ N.

Definition 1. A real-time event structure is a tuple TS = (S, δ), where S is an
event structure and δ : E → N is a delay function.

A real-time event structure TS = (S = (E, #, �), δ) has correct timing iff for
any e ∈ E and X �min e1 holds: ∀e′ ∈ X � δ(e′) � δ(e). In what follows, only
real-time event structures with correct timing are considered.

A state of an execution of a real-time event structure TS = (S, δ) is called a
timed configuration (C, t) which consists of C ∈ Conf(S) and t ∈ Ñ such that
δ(e) � t for all e ∈ C. Let TConf(TS) denote the set of timed configurations of
TS. Say that there is a transition from a timed configuration (C, t) to a timed
configuration (C′, t′) and write (C, t) −→ (C′, t′) iff C ⊆ C′ and t � t′. It is easy
to see that −→ induces a partial order on TConf(TS).

We shall indicate that θ is a partial function from E0 to E1 by writing θ :
E0 →∗ E1. The image of a set X ⊆ E0 under a partial function θ is denoted by
θX = {θ(e) | e ∈ X and θ(e) is defined}.

Given real-time event structures TSi = (Si = (Ei, #i, �i), δi) (i = 0, 1), a
morphism from TS0 to TS1 is a partial function θ : E0 →∗ E1 on events such that
(C, t) ∈ TConf(TS0) implies (θ C, t) ∈ TConf(TS1) and θ(e) = θ(e′) ⇒ e = e′,
for every e, e′ ∈ C.

Lemma 1. Real-time event structures with the morphisms defined above form
the category TSES.

3 Marked Scott Domains

In this section we provide notions and notations concerning marked Scott do-
mains. We assume that the reader is familiar with basic domain theory. The
definitions of the notions used here, that are related to partial orders and do-
mains, can be found in Appendix A. Recall that a Scott domain is a consistently
complete algebraic partial order. We are specially interested in a particular kind
of Scott domains – finitary, coherent prime algebraic partial orders – which we
call simply domains.

We now develop the notion of a marked domain. The intuition behind marked
domains is rather simple. Prime intervals of a domain can be viewed as activity
occurrences. A marking is used to distinguish between two types of activities:
instantaneous and delayed, which are marked with 0 and 1, respectively.

Definition 2. Let D be a domain and I be the set of prime intervals of D. A
mapping m : I → {0, 1} is called a marking. A pair (D, m) is called a marked
domain.

1 For X ⊆ E and e ∈ E, X �min e iff X � e ∧ ∀Y ⊆ X � (Y � e ⇒ Y = X).
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Let (D, m) be a marked domain and ∼ be the equivalence relation on prime
intervals of D. Then, (D, m) is called correctly marked iff m respects the ∼-
relation, i.e [c, c′] ∼ [d, d′] ⇒ m([c, c′]) = m([d, d′]). Informally speaking, ∼-
related prime intervals of a domain represent the same activity of a system,
hence they are required to be equally marked. In the following, we shall consider
only correctly marked domains and call them simply marked domains.

Let (D, m) be a marked domain. For an element d ∈ D and a covering chain σ
for d, define the norm of d w.r.t. σ as follows: ‖d‖σ =

∑
dj∈σ\{d} m([dj , dj+1]) ∈

Ñ. The norm of d w.r.t. σ allows us to calculate the number of delayed activities
appearing in σ. It is easy to show that the definition of the norm of element
‖d‖ does not depend on the choice of a covering chain σ for d, since D is prime
algebraic. Let d, d′ ∈ D and i = 0, 1. Define the following: d ≺i d′ iff d ≺ d′

and m([d, d′]) = i; d �i d′ iff d ≺i d′ or d = d′; �i= (≺i)∗ (the transitive and
reflexive closure of ≺i); ↑id = {d′ ∈ D | d �i d′}; P i = {p ∈ P | m([d, p]) = i}. A
marked domain (D, m) is called linear iff for any d ∈ D holds: ↑1d is a linearly
ordered set.

Let (D0, m0) and (D1, m1) be marked domains and f be a morphism from
D0 to D1 (see Appendix A). Then f is called ≺i-preserving (�i-preserving,
respectively) (for i = 0, 1) iff for any d ≺i d′ holds f(d) ≺i f(d′) (f(d) �i f(d′),
respectively).

Lemma 2. Linear marked domains with additive, stable, �0- and ≺1-preserving
morphisms form the category MDom.

4 Relating the Models

In this section we establish the relationships between real-time event structures
and marked Scott domains.

First, consider a mapping TL : TSES → MDom. For a real-time event
structure TS, define TL(TS) = ((TConf(TS), −→), mTS), where mTS is a
mapping I(TConf(TS)) → {0, 1} defined as follows. Given a prime interval
[TC0 = (C0, t0), TC1 = (C1, t1)] of (TConf(TS), −→), define

mTS

(
[TC0, TC1]

)
=

{
0, if C1 \ C0 = {e} for some e ∈ E and t0 = t1;
1, if C0 = C1 and t1 = t0 + 1.

It easy to show that mTS is well-defined and TL(TS) is a linear marked domain.
For real-time event structures TSi (i = 0, 1) and a morphism θ : TS0 → TS1,

define a mapping TL(θ) : TL(TS0) → TL(TS1) by TL(θ)(C, t) = (θ C, t) for any
element (C, t) of TL(TS0).

Lemma 3. TL : TSES → MDom is a functor.

Next, consider a mapping TS : MDom → TPES. For a linear marked domain
(D, m) ∈ MDom, define TS(D, m) = ((P 0, #, �), δ) as follows:

– P 0 is the set of 0-marked prime elements of (D, m);
– p#p′ iff p � ↑ p′, for all p, p′ ∈ P 0;
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– X � p iff {p′ ∈ P 0 | p′ � p} ⊆ X , for all p ∈ P 0 and X ∈ Con;
– δ(p) = ‖p‖, for all p ∈ P 0.

It is easy to see that TS(D, m) is a real-time event structure.
The action of TS on morphisms in TSES can be described as follows. Let

f : (D0, m0) → (D1, m1) be a morphism in MDom between marked domains
(D0, m0) and (D1, m1) with the sets of 0-marked prime elements P 0

0 and P 0
1 ,

respectively. Each prime element p ∈ P 0
0 has the corresponding class of ∼-

equivalent prime intervals and because f respects ∼ — the content of [20, Lemma
2.5.4] — f determines a partial function from P 0

0 to P 0
1 . More precisely, let p ∈ P 0

0
correspond to the class of ∼-equivalent prime intervals [d, d′]∼ in D0. Define
TS(f)(p) = p′ ∈ P 0

1 if f(d) ≺0 f(d′) and p′ corresponds to [f(d), f(d′)]∼ in D1,
and undefined otherwise.

Lemma 4. TS : MDom → TSES is a functor.

Proposition 1. The pair (TS, TL) : MDom → TSES constitutes an adjunc-
tion with left adjoint TS.

Proof (sketch). Let TS = (S = (E, #, �), δ) be a real-time event structure. It
is routine to show that any 0-marked prime element of TL(TS) is of the form
(Ce, δ(e)), where e ∈ E and Ce ∈ Conf(S) such that Ce is a minimal configura-
tion w.r.t. ⊆, containing e. Thus, define a mapping εTS : TS ◦ TL(TS) → TS as
follows: εTS(Ce, δ(e)) = e for all (Ce, δ(e)) ∈ P 0(TL(TS)). It is easy to see that
εTS is a TSES-morphism for every TS ∈ TSES.

Further we shall show universality of εTS for every TS ∈ TSES, i.e. for every
marked domain (D, m) ∈ MDom and a TSES-morphism θ : TS(D, m) → TS
there exists a unique MDom-morphism f : (D, m) → TL(TS) such that θ =
εTS ◦ TS(f) (see the diagram below).

TS TL(TS) TS TS ◦ TL(TS)
εT S��

s.t.

TS(D, m)

∀θ

��

(D, m)

∃!f

���
�
�
�
�

TS(D, m)

θ

��

TS(f)

���
�

�
�

�
�

�
�

Indeed, define a mapping f(d) = (θ(↓d∩P 0(D, m)), ‖d‖) for every d ∈ D (with
↓d = {d′ ∈ D | d′ � d}). It is straightforward to check that f is an MDom-
morphism (using linearity of (D, m)) and that the diagram above commutes. It
is routine to show that f is unique. �

5 Conclusions

In this paper, following Winskel’s approach [20,21] we have shown the appli-
cability of the theory-categorical framework to a real-time extension of stable
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event structures, in order to identify suitable semantical domains for the mod-
els. For this purpose, we have introduced a category TSES of real-time stable
event structures, and a category MDom of a particular class of Scott domains,
called marked Scott domains, and then defined an adjunction between TSES
and MDom.

As a work in progress, we are studying coreflections between timed concur-
rent models (e.g., timed Petri nets, timed asynchronous transition systems, and
timed event structures), hoping to reach for these models results similar to those
relating classical untimed models along the lines of [16,22].
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A Scott Domains

We recall some notions and notations concerning partial orders from [20,21].
Let (D, �) be a partial order, d ∈ D and X ⊆ D. Then,

– X is said to be compatible (written X↑ or x ↑ y for two elements) iff X
has an upper bound. We shall denote the least upper bound (greatest lower
bound), if it exists, as

⊔
X (

�
X , respectively). Furthermore, lowest upper

bound (greatest lower bound) of a two-element set {d, d′} is denoted as d�d′

(d � d′).
– X is said to be finitely compatible (written X↑fin), iff every finite subset

Y ⊆fin X has an upper bound,
– X is said to be directed iff all its finite subsets X ′ ⊆fin X have upper bounds

in X (so X is finitely compatible and cannot be empty). An element e ∈ D
is said to be finite iff for all directed sets X ⊆ D, if e �

⊔
X then e � x for

some x ∈ X ,
– D is consistently complete iff every finitely compatible subset X ⊆ D has a

least upper bound
⊔

X (thus, D has the least element ⊥ =
⊔

∅),
– D is coherent iff all subsets X ⊆ D such that ∀d, d′ ∈ X � d ↑ d′ have least

upper bounds
⊔

X ,
– A consistently complete partial order is algebraic iff for every element d ∈ D

holds: d =
⊔

{e � d | e is finite}; ω-algebraic iff it is algebraic and the set
{e ∈ D | e is finite} is countable.

We call a consistently complete algebraic partial order a Scott domain (or
simply a domain). In this paper, only ω-algebraic Scott domains are considered.
A finitary Scott domain is one in which every finite element e dominates only a
finite number of elements, i.e. {d′ ∈ D | d′ � e} is finite.

Let (D, �) be a consistently complete partial order. A (complete) prime of D
is an element p ∈ D such that p �

⊔
X ⇒ ∃x ∈ X � p � x for every compatible



450 R.S. Dubtsov

set X ⊆ D. Let P denote the set of prime elements. D is a prime algebraic
domain iff for every d ∈ D holds: d =

⊔
{p � d | p ∈ P}.

Let (D, �) be a partial order and d, d′ ∈ D. Say d is covered by d′ and write
d ≺ d′ iff there is no c ∈ D such that d � c � d′ (i.e. ≺=� \ �2). A prime interval
is a pair [d, d′] such that d ≺ d′. In this paper, we use I to indicate the set of prime
intervals of D. Given two prime intervals [c, c′], [d, d′] ∈ I define [c, c′] � [d, d′]
iff c = c′ � d ∧ d′ = c′ � d. Define the equivalence relation ∼ as the symmetric,
transitive closure of the relation �, and write [d, d′]∼ to denote the equivalence
class of [d, d′] w.r.t ∼. A covering chain σ is a sequence {d0, d1, . . . , dn, . . . },
which may be empty, finite or infinite, in which ⊥ = d0 ≺ d1 ≺ · · · ≺ dn ≺ · · · .
A covering chain for an element d ∈ D is a covering chain σ such that d ∈ σ
and

⊔
σ = d.

Let (D0, �0) and (D1, �1) be partial orders and f be a mapping f : D0 → D1.
Say f is additive iff ∀X ⊆ D0 � X↑ ⇒ f(

⊔
X) =

⊔
fX, stable iff ∀X ⊆ D0 � X �=

∅∧X↑ ⇒ f(
�

X) =
�

fX , �-preserving iff ∀x, x′ ∈ D0 � x ≺ x′ ⇒ f(x) � f(x′)
(here f(x) � f(x′) iff f(x) ≺ f(x′) ∨ f(x) = f(x′)).
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Abstract. A new coordination language for distributed data-parallel
programs is presented, call SNet. The intention of SNet is to introduce
advanced structuring techniques into a coordination language: stream
processing and various forms of subtyping. The talk will present the or-
ganisation of SNet, its major type inferencing algorithms and will briefly
discuss the current state of implementation and possible applications.

Data-parallel programming languages such as Nesl, Zpl, Sisal, or Single-
Assignment C (known primarily as SaC) are known to be suitable for creating
highly efficiently executable concurrent code for numerical applications. Instead
of relying on programmer-specified explicit annotations as required for Hpf or
a library extension as is the case with MPI-based or OpenMP-based solutions,
these programming languages are designed in a way that allows compilers to
derive concurrency implicitly from homogeneous operations on large arrays.

More recent work in the context of SaC demonstrates that not only does
the data-parallel approach raise the level of abstraction in specifying numerical
applications, but it also permits compiler technology to be developed that pro-
duces code competitive with that of low-level Fortran code. SaC programs can
be written in a highly abstract style similar to specialised array programming
languages such as Apl or J. This level of abstraction improves code reuse and
maintainability of programs since the programmer can focus on the functional-
ity of individual components of a program rather than being constantly driven
by performance considerations [14]. Despite being less aware of the performance
issue, the programmer’s functional specifications can automatically be compiled
into code whose sequential runtime is competitive with that of low-level For-

tran programs where the programmer has to be aware of the performance issues
continually. Thanks to the sophisticated compiler technology developed within
the SaC project, SaC programs can be compiled into multithreaded code without
any source modification [6]. As sequential runtimes are competitive with sequen-
tial low-level code, so too the multithreaded code produced by our compiler is
very effective: the speed up for SMP platforms is almost linear in the number of
processors up to p = 8 and in many cases beyond.

I. Virbitskaite and A. Voronkov (Eds.): PSI 2006, LNCS 4378, pp. 451–455, 2007.
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One has to admit, however, that the concurrency that can be exploited by
the data parallel approach is limited to homogeneous operations on arrays. Al-
though these prevail within the component code for numerical applications, when
components are joined together, other forms of concurrency become prevalent,
which are better captured by pipelining, process farming and arbitrary message
passing. These forms of concurrency can not always be derived from a sequential
application code, since they tend to be strongly application-dependent. There is
a whole host of “parallel algorithms” capturing problem-specific data migration
and load balancing, of which perhaps the most convincing example is provided
by molecular dynamics and plasma particle simulations, see, for example, pa-
pers [10,3]. The methods being used rely upon the knowledge of computational
properties, such as relative cost of various components, and co-location require-
ments. For instance, the designer of a particle-in-cell simulation is naturally
aware that the main computational cost is in pushing particles under the influ-
ence of electromagnetic forces, hence load balancing should focus on that, while
field calculations are always assumed to be much cheaper. It is hardly realistic
at present time to expect any compilation system to be able to derive this kind
of information from sequential (or even purely functional) code.

Process concurrency is difficult to deal with in the framework of a program-
ming language. If properly integrated into the language semantics, it complicates
and often completely destroys the properties that enable the kind of profound
optimisations that make compilation of array programs so efficient. One solu-
tion to this problem, which is the solution that we align ourselves with, is the
use of so-called coordination languages. A coordination language uses a readily-
available computation language as a basis, and extends it with a certain commu-
nication/synchronisation mechanism thus allowing a distributed program to be
written in a purely extensional manner. The first coordination language proposed
was Linda [5,4], which extended C with a few primitives that looked like func-
tion calls and could even be implemented directly as such. However an advanced
implementation of Linda would involve program analysis and transformation
in order to optimise communication and synchronisation patterns beyond the
obvious semantics of the primitives. Further coordination languages have been
proposed, many on them extensional in the same way, some not; for the state of
the art, see a survey in [12] and the latest Coordination conference [8].

The emphasis of coordination languages is usually on event management,
while the data aspect of distributed computations is not ordinarily focused on.
This has a disadvantage in that the structuring aspect, software reuse and com-
ponent technology are not primary goals of coordination. It is our contention
that structuring is key in making coordination-based distributed programming
practically useful. In this paper we propose several structuring solutions, which
have been laid in the foundation of the coordination language SNet. The lan-
guage was introduced as a concept in [16]; the complete definition, including
semantics and the type system, is available as a technical report [17].

The approach proposed in SNet is based on streaming networks as intro-
duced in foundation work [9,1,7], see also more recent work on stream network
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semantics [2] and language design [11]. The application as a whole is represented
as a set of self-contained components, called “boxes” (SNetis not extensional)
written in the data-parallel language SaC. SNet deals with boxes by combining
them into networks which can be encapsulated as further boxes. The structuring
instruments used are as follows:

– Streams. Instead of arbitrary communication, data is packaged into typed
variant records that flow in a sequence from their producer to a single con-
sumer.

– Single-Input, Single-Output(SISO) box and network configuration. Multiple
connections are, of course, possible and necessary. The unique feature of SNet
is that the multiplicity of connection is handled by SNet combinators so that
a box sees a single stream of records coming in. The records are properly
attributed to their sources by using types (which include algebraic types,
or tagged, disjoint unions). Similarly, the production of a single stream of
typed records by a box does not preclude the output separation into several
streams according to the type outside the box perimeter.

– Network construction using structural combinators. The network is pre-
sented as an expression in the algebra of four major combinators (and a
small variety of ancillary constructs): serial (pipelined) composition, parallel
composition, infinite serial replication (closure) and infinite parallel repli-
cation (called index splitter, as the input is split between the replicas ac-
cording to an “index” contained in data records). We will show that this
small nomenclature of tools is sufficient to construct an arbitrary streaming
network.

– Record subtyping. Data streams consist of flat records, whose fields are
drawn from a linear hierarchy of array subtypes [15,18]. The records as
wholes are subtyped since the boxes accept records with extra fields and
allow the producer to supply fewer variants than the consumer has the abil-
ity to recognise.

– Flow inheritance. Due to subtyping, the boxes may receive more fields in a
record than they recognise. In such circumstances flow inheritance causes the
extra fields to be saved and then appended to all output records produced
in response to a given input one1. Flow inheritance enables very flexible
pipelining since, on the one hand, a component does not need to be aware of
the exact composition of data records that it receives as long as it receives
sufficient fields for the processing it is supposed to do; and on the other,
the extra data are not lost but passed further down the pipeline that the
components may be connected by.

– Record synchronizers. These are similar to I-structures known from dataflow
programming. SNet synchronisers are typed SISO boxes that expect two
records of certain types and produce a joint record. No other synchronisation
mechanism exists in SNet, and no synchronisation capability is required of
the user-defined boxes.

1 This is a conceptual view; in practice the data fields are routed directly to their
consumers, thanks to the complete inferability of type in SNet.
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– The concept of network feedback in the form of a closure operator. This
connects replicas of a box in a (conceptually) infinite chain, with the input
data flowing to the head of the chain and the output data being extracted
on the basis of fixed-point recognition. The main innovation here is the
proposal of a type-defined fixed point (using flow inheritance as a statically
recognisable mechanism), and the provision of an efficient type-inference
algorithm. As a result, SNet has no named channels (in fact, no explicit
channels at all) and the whole network can be defined as a single expression
in a certain combinator algebra.

The authors acknowledge the support of the EU-sponsored Integrated Project
“EATHER” [13], which is part of the Framework VI Advanced Computing Ar-
chitecture Initiative.
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Abstract. The article presents an approach to development of software
standards usage infrastructure. The approach is based on formalization of
standards and automated conformance test derivation from the resulting
formal specifications. Strong technological support of such a process in
its engineering aspects makes it applicable to software standards of real-
life complexity. This is illustrated by its application to Linux Standard
Base. The work stands in line with goals of international initiative Grand
Challenge 6: Dependable Systems Evolution [1].

1 Introduction

The needs of economical and social development make current software systems
very complex. Such a system usually consists of many components of different
vendors, and a lot of individual software engineers take part in its construction.
Due to this fact, interoperability of those parts and reliability of the system as
a whole become problematic. The well-known way to solve these problems is
enforcement of software interface standards.

The idea of interface standards is rather clear – we make possible for differ-
ent software systems to work together through standardized interfaces without
hard restrictions on the internal implementations of them. So, interoperability
is ensured without damping individual creativity and corporate innovation po-
tential. This approach works well if the standard defines the functionality of the
corresponding interfaces clearly, unambiguously, and precisely.

However, looking at the current state of software standards one can see that
many of them are not so clear. Historically, they were developed under the market
pressure to ensure some interoperability taking into account conflicting interests
of many software vendors. In such a situation, only the basic functionality can
be defined unambiguously. And each group of developers usually has its own
solution for peculiar and complex cases. Since such a solution is already invested,
it is hard for vendors to throw it away and take the point of a competitor, which
preserves its investments.

Usual compromise is to agree with some minor changes for each of competing
vendors and to make the standard ambiguous in cases where serious elaboration
is needed. Thus solutions in use can be declared as conforming to it.

I. Virbitskaite and A. Voronkov (Eds.): PSI 2006, LNCS 4378, pp. 456–466, 2007.
© Springer-Verlag Berlin Heidelberg 2007
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This helps vendors to spend acceptable money to standard enforcement in
their systems, but also compromise the desired interoperability of different im-
plementations. Some of current software and telecommunication standards ap-
peared about 20-25 years ago, and, of course, with each revision they become
more strict and more consistent. Most of ambiguities of the first versions were re-
moved, but newer additions and elaborations required by technological progress
still may have unclear and equivocal statements.

The way out of this situation proposed by many software engineering re-
searchers and practitioners is formalization of standards. Formal re-statement
of standard’s requirements discloses contradictions and ambiguities, but exacts
a lot of hard work. Nobody expects that inaccuracy and inconsistency will be
removed from standards at once. But by starting formalization, we at least will
be aware of real problems and can make practical suggestions on their solutions.

Formalization definitely makes standards more useful, but alone it does not
give instruments of their enforcement in practice. Developers of real-life systems
need tools that help them to ensure conformance to standards. So, practically
useful formal description of standard requirements should be supplemented with
test suites checking conformance to these requirements. The approach described
in this article uses one of the most elaborated frameworks for conformance
testing based on formal descriptions presented in telecommunication standards
ISO 9646 [2] and ITU-T Z.500 [3].

Solid formal framework makes conformance test construction more rigorous,
and therefore helps to enforce quality of the systems implementing the standard.
However, practical use of conformance test suites brings into account additional
engineering issues.

– Requirements traceability. For software engineers and their managers the
real source of requirements is the standard text. Formal specification is an
additional document that should clearly demonstrate its correspondence to
the standard. The same holds for tests derived from them – they should be
traced to some requirements stated in some sections of the standard. This
really helps conscientious development of standard implementations.

– Component-wise treatment of standard. Real-life standards are complex, as
well as real-life software. Some decomposition techniques are required for
adequate treatment of them. Specification formalism used should support
definition of separate components of the standard, should allow their consid-
eration in isolation, but also provide means for describing them as a whole.

– Change management. Standards and their implementations are not fixed
entities – they are changing. These changes should have adequate support
in the process of specification development, test derivation and translation.
Lack of this support quickly makes the specifications and tests useless.

– Configurations. Real-life standards describe parameterized systems, having
a lot of configuration options that significantly influence their functionality.
Such options should be also supported in specifications and tests.

All those problems should have suitable solutions in the technology that as-
pires to provide an adequate infrastructure for standard enforcement. This article



458 A. Grinevich et al.

presents a candidate approach based on UniTesK technology of automated test
construction developed in ISPRAS. Main ideas and techniques of the approach
are considered in the next two sections. The fourth section describes preliminary
results of its application to Linux Standard Base [4], the industrial standard on
interfaces of Linux operating system core libraries. The last two sections of the
article contain brief comparison of the approach presented here with other meth-
ods and a conclusion stating main results and directions of future development.

2 Standard Formalization

The main difficulties of standard formalization are concerned with informal and
compromise nature of the industrial standards. Their main goals are to fix the
consensus of main vendors on functionality of related systems and to provide
reference and programming guide for developers of both the standard implemen-
tations and the systems using them. They use the language and the structure
that seem to be suitable for these goals.

Interface standards often consist of two parts – rationale, presenting the main
concepts and features in their integrity, and reference, describing each interface
element separately. In addition to interface elements (data types, operations,
constants, global data elements) reference can describe complex entities – large
subsystems, header files, etc. Reference sections can refer to each other and
contain parts of each other.

Standard formalization consists of several activities.

1. Standard decomposition. Since the number of interface elements described
in the standard can be very large, on the first step they are partitioned
into logically related groups. Such a group usually is closed under operation
inversion and consists of operations and types concerned with one feature.
For example, operations to open and close files, to create and destroy objects
should be put in one group. All further work is performed mostly inside such
groups.

2. Requirements arrangement. The next task is to extract all standard require-
ments to interface elements that can be interpreted in formal way and can
be checked. Since one thing can be described in several places, all the corre-
sponding sections should be read attentively, phrase by phrase, and all the
constraints found should be marked. Then, these constraints are united in
some consistent set.

It is rather tedious work, but not a mechanical or trivial one. Transition
from informal to formal is essentially informal itself (M. R. Shura-Bura).

Standard statements in different parts can be inconsistent, ambiguous,
represent similar, but not the same ideas. The standard itself is not enough
to make consistent conclusions. One should use for that common knowledge,
related books and articles, solutions in use, and communication with authors
of the standard, experts in the domain or experienced developers.

Some aspects are made intentionally unspecified to make implementations
of different vendors conforming to the standard. Amusing example of such
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statement is in the current version of POSIX standard [5]. Description of
fstatvfs() and statvfs() functions from sys/statvfs.h header says: “It
is unspecified whether all members of the statvfs structure have meaningful
values on all file systems.”

There are two possible ways to resolve such situations.
– Do not check anything. In this case no constraints are extracted from

the corresponding text of the standard.
– If there are few possible implementations, they all can be presented as

a parameterized constraint. A configuration option corresponding to the
kind of implementation used is added. The constraint to check is selected
depending on this option.

Example of this case from POSIX description of basename() function:
“If the string pointed to by path is exactly ''//'', it is implementation-
defined whether '/' or ''//'' is returned.”

This activity is performed until all the text of the standard concerning the
chosen group of interface elements is partitioned into requirements that can
be checked and other phrases that do not contain testable restrictions. Main
results of this work are the following.
– Catalogue of requirements. It lists the requirements imposed by the stan-

dard and maps each requirement to the corresponding piece of standard’s
text. One requirement usually corresponds to logically complete piece of
text expressing one constraint on an interface element or data element.
Further this catalogue helps to ensure test adequacy in terms of original
text of the standard.

– Defects of the standard and notes presenting found ambiguities, incon-
sistencies, unintentionally unclear and imprecise statements, incomplete
descriptions of functionality, etc.

Fig. 1. Ins and outs of formalization and conformance test development process
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3. Specification development. This work is usually performed in some mix with
the previous one. They are separated only for clarity reasons.

All the constraints found are recorded in the form of contract specifica-
tions of operations, data types, and interface data elements. Each operation
is described with its precondition and postcondition. Precondition of an op-
eration defines its domain. Postcondition defines the constraints on the op-
eration results depending on values of parameters and internal system state.
Data types and data elements are described with their integrity constraints
called invariants.

This activity produces two results.
– Specifications of all interface elements. Code of specifications is marked

out to map the formal constraints specified to the corresponding require-
ments from requirements catalogue.

– Configuration system of the standard. This system consists of a set of
configuration parameters declared in the standard and additional ones,
dependencies between them, and their links with interface elements and
constraints. Some configuration options represented as values of the pa-
rameters can govern the set of constraints that should be checked. Others
can say that some functionality is absent and the corresponding opera-
tions should not be called at all. Third can influence possible error codes
returned by operations.

Example of the first case is given by POSIX description of
pthread create() function: “If POSIX THREAD CPUTIME is defined, the
new thread shall have a CPU-time clock accessible, and the initial value
of this clock shall be set to zero.”

4. Coverage criteria definition. The last activity is to define coverage crite-
ria that can be used to measure the adequacy of the conformance testing
of standard’s implementation. Basic criterion is to cover all the standard’s
requirements applicable to the current configuration of the system under
test. More elaborate criteria can specify additional situations to be tested.
All these criteria are based on the structure of specifications representing
standard requirements.

Coverage criteria can be in complex relations with configuration param-
eters. Possibility to cover some situation depends on values of configuration
parameters and this dependency should be recorded to prevent confusion
and burdensome reviews during analysis of test results.
This work results in a set of coverage criteria correlated with the configura-
tion system.

The process of standard formalization and further test construction is illus-
trated by Fig. 1.

3 Conformance Test Construction

The base of the conformance test construction is UniTesK technology developed
in ISPRAS. It uses almost the same general formal testing framework that was
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developed in works of Bernot [6], Brinksma, and Tretmans [7,8] and described in
the standards ISO 9646 [2] and ITU-T Z.500 [3]. Main elements of this framework
can be formulated as follows (Fig. 2 illustrates relations between them).

– The standard requirements are represented as a model in some formalism.
This model is called a specification.

– The software system, which conformance with the standard we need to check
(called system under test, or SUT), is supposed to be adequately modeled in
the same formalism. The corresponding model is called an implementation.
We do not know it, but assume that it exists. ‘Adequate’ modeling here
means that we cannot observe any difference between the real behavior of
the SUT and the model behavior of the implementation.

Fig. 2. Relations between real-life and model entities

– The fact that the SUT conforms to the standard is modeled by formal im-
plementation relation or conformance relation between the implementation
and the specification.

– Model tests are derived from the specification. A model test is a model that
provides boolean verdict as the result of interaction with other models. Im-
plementation passes a test, if the latter provides the verdict true after this
interaction. It is reasonable to derive only sound tests, which are passed by
any implementation conforming to the specification. One wish to construct
a set of model tests, or a model test suite that is complete in the sense that
a model passes it if and only if this model conforms to the specification.

– Model tests are represented as test programs interacting with the SUT. Since
this interaction is supposed to be modeled by the interaction between model
tests and the implementation, one can conclude that the SUT passing a
complete test suite conforms to the standard.

Real-life standards usually describe rather complex systems. Specification of
such a standard is also complex and huge, so any complete test suite for it
contains infinitely many tests. To make formal testing possible in this setting,
we introduce additional element of the framework.
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– A coverage criterion is an equivalence relation on model tests. We use cov-
erage criterion with the corresponding hypothesis stating that an implemen-
tation either passes any two pair of equivalent tests or does not pass both of
them. The criterion is chosen in such a way that it is reasonable to consider
only such implementations. A test suite is called complete according to the
coverage criterion if the union of equivalence classes of tests of this suite is
a complete test suite in the traditional sense.

Note that coverage criterion can be taken from different sources. The only
desired property is existence of finite test suite complete according to the cri-
terion used. In conformance test construction we use criteria derived from the
structure of specifications.

Here we present only basic ideas ofUniTesK, details can be found in [9,10,11,12].

– Functional requirements to the SUT’s behavior are stated in the form of con-
tract specifications. Contract of a component consists of pre- and postcondi-
tions of all its operations and asynchronous events provided and invariants
of its internal data.

– Test coverage criteria are defined on the base of postcondition structure. Ex-
amples of such criteria are functional branch coverage and multiple condition
coverage of postconditions. One can add user-defined criteria.

– Test scenarios are targeted to achieve certain level of coverage of some group
of operations. Such test scenario describes a finite state machine (FSM)
modeling the component’s behavior in such a way that its transition tour
ensures 100% coverage according to the criterion. It defines state calculation
procedure and a set of applicable actions for an arbitrary state. Each action
corresponds to call of some operation with some arguments.

– Tests are generated during test execution by on-the-fly automatic construc-
tion of paths on the FSM described by a test scenario.

Conformance test construction for real-life software standards also requires
development of a test configuration system. This system includes standard con-
figuration system and additional parameters that influence test execution pro-
cess. They correspond to different target coverage criteria, different sets of test
scenarios, and so on. Powerful configuration system makes the resulting test suite
useful in any settings where an implementation of the corresponding standard
can operate in practice.

4 Applications of the Approach

The approach described in the previous sections was used for formalization and
test construction for parts of IPv6 and IPMP2 protocol standards [10,13].

More serious case study is provided by the project of Linux Verification Center
on formalization of Linux Standard Base (LSB) [4]. The goal of this project is to
create formal specifications of LSB requirements and corresponding conformance
test suite for core libraries of Linux operating system described in the sections
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III and IV of LSB 3.1 and including 1532 functions. The requirements stated
there in many cases (but not always!) coincide with POSIX [5] requirements to
the same functions.

Now the project is in progress. Its results will be accessible at the end of 2006
as open source and will include the following.

– The set of notes to the text of LSB standard, pointing out unclear, incon-
sistent, or ambiguous statements.

– Parameterized conformance test suite (including formal specifications with
mapping from them to the standard requirements). The parameters will
control configuration of the SUT, testing quality level, test execution time,
and so on.

On the first step, 1532 functions were partitioned into 170 groups, which in
turn are grouped into larger subsystems according to the features concerned –
threads, interprocess communication, file system, memory management, math-
ematical functions, etc. By the end of August 2006 tests and specifications for
1245 functions of 140 groups is developed. 14400 separate standard requirements
are extracted for them. Some functions have just a few corresponding require-
ments, while others – several dozens (maximum is 134).

The productivity achieved shows that the project will require about 15 man-
years for complete formalization (with development of basic level tests) of LSB.
An experienced programmer (not an average tester!) can be trained to a level
needed by this project in about a month. These intermediate results give hope
that the approach presented is able to cope with tasks of such a size.

The preliminary results obtained also demonstrate rather high quality of the
tests developed. Tests are targeted mostly to cover all the requirements extracted
during standard formalization (more presicely, those of them that are achievable
on the configuration under test). At the same time they achieve high levels of
source code coverage. For example, tests for 24 functions working with threads
get 72% coverage of GLIBC source code lines, more than most analogous test
suites (LTP test suite [14] gets 48%, LSB binary conformance test suite [15] gets
71%). Only specialized GLIBC test suite [16] gets more (78%), since it is written
by the developers knowing peculiarities of the library and paying no attention to
check strict conformance to the standard. For 41 functions working with strings
the numbers are similar: our test suite gets 91%, LTP – 53%, LSB conformance
test suite – 67%, GLIBC test suite – 84%. For 13 utility search functions (located
in search.h) our test suite gets 65%, LTP – 28%, LSB conformance test suite
– 33%, GLIBC test suite – 70%.

5 Related Work

Most advances in standard formalization and conformance test construction
techniques were made in telecommunication domain. The general framework
[3,6,8] (see also above) was developed in this area.

Our approach has a lot in common with it. The differences are related with
larger size of OS interface standards such as POSIX or LSB in comparison with
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typical protocol standards. Scalability considerations lead to introduction of cov-
erage criteria in the general formal testing framework and coverage-oriented test
generation. Use of contract specifications makes possible more suitable decom-
position then automata or labeled transition systems used by most research and
industrial development in telecommunications.

Article [17] presents another attempt of standard formalization on the example
of IEEE 1003.5 – POSIX Ada Language Interfaces. Standard requirements were
transformed there into formally described tests directly, without intermediate
specifications. This method seems to us only slightly different from manual test
development.

More close to our approach is the paper [18] presenting case studies in model
based testing with GOTCHA-TCBeans toolkit. One of those case studies is
concerned with testing POSIX function fcntl(). The methodology of standard
formalization used in this work is focused more on getting effective formal model
for testing than on traceability to standard requirements, as in our case. Never-
theless, the approach presented in [18] uses very similar ideas with our approach,
although it is based on other kind of formalism – FSMs described in Murphy
language.

There are a number of similar activities of conformance test suite development
for operating system interface standards. Most well-known standards in this field
are IEEE Std 1003.1 (POSIX) [5] and Linux Standard Base (LSB) [4]. The main
conformance test suite development projects dealing with them are the Open
POSIX Test Suite [19], an open source project, and official certification test
suite for LSB conformance [15] developed by Free Standards Group [20].

Both these projects use similar techniques for requirements extraction from
standard text and requirements catalogue creation. Then, tests are developed
manually using traditional approaches, one test per requirement. They do not
perform formalization of requirements and do not use automated test construc-
tion techniques.

Note that the approach ‘one test per requirement’ tempts to consolidate many
separate constraints into one requirement to be able to check it within one test.
In Open POSIX Test Suite we found examples of requirements that correspond
to dozen of the requirements extracted in our project. This ends up in situations
when sub-constraints of big requirement are passed over and not tested while
the whole requirement is reported as tested. So, the resulting reports can be too
optimistic on the coverage of the standard requirements.

Automated test derivation from specifications used in our approach makes
test suite much more manageable in case of changes in the standard. It forces to
record one piece of knowledge in one place.

6 Conclusion

Enforcement of software interface standards usage is a complex task having
technical, economical, and social aspects. Nevertheless, all experts agree on its
necessity for stable development of software industry. Standard formalization was
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proposed a lot of times as a possible way to solve at least numerous technical
problems related to this activity. However, formalization requires a lot of effort
and many doubts were expressed on its applicability to software standards of
real-life size and complexity. The project mentioned in the Case Studies section
seems to be one of the first attempts to formalize a significant part of industrial
software standard and to taste the fruits of this work.

We believe that the approach presented allows successful accomplishment of
projects of such a scale. Strong arguments in favor of this opinion is given by
the stable progress of the project, the history of its technological background
(see [11,13]), and choice of good engineering practices as a main guide [12].
Taking into account real-life engineering and organizational issues helps to avoid
producing ungainly and useless results usually pertinent to pioneering use of
advanced methods in practice.

We consider this work as a part of effort concerned with Dependable System
Evolution Grand Challenge [1]. Tony Hoar suggested two tracks of activities
dealing with this problem: development of methods and tools capable to help in
resolving it and development of “challenge codes” – realistic examples of usage of
those methods and tools. The last track is necessary to demonstrate ways from
state of the art in software engineering to state of the practice, to find the scope
of systems, for which advanced the methods developed in research community
are applicable.

To stimulate activities of the second kind, ISPRAS donates the results of the
project and all the tools needed to deal with them to open source community.
We hope that members of this community can be attracted to more challenging
projects such as formalization of the huge set of Carrier Grade Linux stan-
dards [21], embedded and real-time versions of Linux, and some widely used
programming languages.

Acknowledgements. We thank Federal Agency for Science and Innovations
of Russia for its financial support of the Linux Verification Center creation and
LSB formalization project.
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1 Introduction

Rules are widely recognized to play an important role in the Semantic Web. They
are a critical technology component for the early adoption and applications of
knowledge-based techniques in e-business, especially enterprize integration and
B2B e-commerce. This includes, in particular, markup languages for integrity
and derivation rules, such as the Semantic Web Rule Language (SWRL)[5]
that has recently been proposed as an extension of the Web ontology language
OWL[4]. Rules also play an important role in information systems engineering,
especially in the specification of functional requirements where business rules are
the foundation for capturing and modeling business application logic.

A lot of work has been conducted in the area of visual representation of
business vocabularies. The mainstream technology is MOF[9]/UML[10], which
allows visualization of domain concepts by means of, for instance, UML class
diagrams.

On the other hand, relatively few research has been done in the area of visual
rules modeling. The emerging technologies for the Semantic Web, where rules
play an important role, experience lack of modeling tools for visual representation
of ontologies and rules. The request for a UML-based rule modeling tool for
the Semantic Web comes from the industry. Many companies claim that even
if they understand benefits of using Semantic Web technologies like ontologies
and rule languages, it is difficult for them to start since ontology architects
and rule experts are quite expensive. A UML-based rule modeling approach for
the Semantic Web will facilitate the use of the Semantic Web technologies by
traditional UML modelers.

The actuality of the proposed research also comes from the rules standard-
ization efforts of W3C (http://www.w3.org/2005/rules) and OMG (http://
www.omg.org), which need rules modeling methodologies and tools.

This paper gives a quick overview of existing rule modeling solutions (Section
3) and presents visual rules modeling approach, based on MOF/UML, using
examples (Section 4). In the conclusion part we formulate main advantages of
our research in progress (Section 5).

2 Research Description

There is a general problem of interaction between domain experts and techni-
cians, who formalize a business domain and business requirements. To contribute

I. Virbitskaite and A. Voronkov (Eds.): PSI 2006, LNCS 4378, pp. 467–473, 2007.
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to the solution of this problem we work on methodologies for visual represen-
tation of rules, which intend to help capturing business rules from a natural
language to the visual/formal representation.

Our present and future work intends to give appropriate answers, for instance,
to the following questions:

1. How extensible is UML to support rules in diagrams?
2. How can we integrate the visual modeling of rules with existent modeling

tools?
3. Is it possible to adopt component SE and aspect SE to ontology and rules

modeling in order to deal with large ontologies and different rule systems?
This question address a well-known problem of business rules management
and business rules validation in large rule-based systems.

4. What are the relations between UML/OCL and OWL/SWRL? Can OWL
and SWRL be transferred into UML/OCL and vise versa in order to ex-
change rules between two communities of UML modelers and ontology ar-
chitects?

3 Current Knowledge of the Problem Domain

Existing UML modeling tools usually provide facilities for class and relationship
modeling. These models have a static and declarative nature and cannot be used
for modeling reactive nature of the Semantic Web in particular and rules-driven
business processes in general. The Object Constraint Language (OCL [1])is used
for expressing rules in UML class diagrams. Existing tools support serialization
of OCL constraints to XMI and there are efforts of Java code generation directly
from UML class diagrams with OCL constraints. The latest is supported by
Fujaba Tool Suit (http://www.fujaba.de).

German company Visual Rules (http://www.visual-rules.com) provides a
tool for visual modeling of rules in block-schema like style, which may cover
some types of business rules.

Market leaders in business rules solutions, ILOG (http://www.ilog.com) and
LibRT (http://www.librt.com), provide flexible tools for rules modeling and
deployment, but contain no visual modeling components, which complicates de-
velopment of rule-based applications.

Concerning Semantic Web technologies, there are several methods for rules
modeling.

The Protege tool (http://protege.stanford.edu/) provides facilities for
ontology and rules modeling. In particular, it supports modeling in RDF and
OWL as well as modeling of SWRL rules. In conjunction with reasoning engine,
the tool can be used for consistency check of ontologies and serialization to the
rule markup. Protege is not a visual tool and requires a significant knowledge
of ontology modeling. Moreover it is doubtful that it can be easily adopted in
enterprizes, which already use UML technologies for software engineering.

There are ontology language specific tools for visual representation of ontolo-
gies, for instance, SemTalk from Semtation GmbH (http://www.semtation.de),



Visual Rules Modeling 469

which provides a visual language for modeling of OWL ontologies. The approach
of defining visual language for a particular ontology language has a lack of flex-
ibility and scalability, while our UML-based approach has a power of MDA and
allows obtain rules in language-independent manner.

In general, our main activities are focused on development of new visual nota-
tions for vocabularies and rules. We consider rules on top of UML class diagrams
because they are widely used in software development and such rule modeling
principles can be easily adopted by large community of UML modelers.

According to Business Rules Manifesto[6], rules are build on top of vocabular-
ies. This is why extending UML, which is used to express business vocabularies,
with a concept of a rule is natural.

4 The State of Art

Main classes of rules at three different abstraction levels are depicted in Fig. 1.
More detailed description of rules classification is provided in [7] and defines,

in particular, derivation rules, production rules, reaction rules and integrity con-
straints.

Abstract::Rule

DerivationRule

ProductionRule TransformationRule

SQL1999Assertion

OCL2.0Invariant
SQL1999View

ECAPRule ECARule

SQL1999Trigger

XSL1.0RuleOracle10gSQLView XSB2.6PrologRule MSOutLook6Rule

ILOGRule Jess3.4Rule

DerivationRule

IntegrityRule

CIM

PIM

PSM

IntegrityRule

ProductionRule

ReactionRule

ReactionRule

Fig. 1. Rule concepts at three different abstraction levels: computation-independent
(CIM), platform-independent (PIM) and platform-specific (PSM) modeling

In order to support modeling of these rules in UML, a UML-Based Rule Mod-
eling Language (URML) 1 has been developed, which extends UML metamodel
with a notion of a rule and defines a visual notation for rules.

1 The URML on I1 website http://www.rewerse.net/I1 or in REWERSE I1 deliverable
D8.
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In order to exchange rules between communities of UML modelers and ontol-
ogy architects, the rule markup framework R2ML ([8]) has been developed. The
R2ML accommodates main concepts of UML/OCL and OWL/SWRL, which al-
lows rules capturing, expressed in datalog-like languages (f.e. SWRL) and func-
tional languages (OCL). The visual rules modeling tool “Strelka” for derivation
rules, production rules and reaction rules is currently under development2. The
tool supports URML as a visual language for rules and serializes rule models
into R2ML, which allows rules deployment into rule systems and rule reasoners.

As an example of the visual modeling of derivation rules, let’s consider the
rule formulation by domain expert in a natural language and rule visualization
in a case tool.

Let’s consider a rule example from the EU-Rent case study[2]:

If return branch of rental is different from pickup branch, then the rental
is one way rental.

This is a derivation rule, which specifies how one way rental class is derived. The
part of a business vocabulary, visualized by means of a class diagram is denoted
in Fig. 2.

rentalbranch

/one way rental

return branch 1 *

pick up branch1 *

Fig. 2. Part of the EU-Rent business vocabulary

The OCL expression of this rule is:

context Rental inv:
if self.returnBranch<>self.pickupBranch
then self.oclIsKindOf(OneWayRental) endif

For visual representation of rules we introduce the following URML constructs:

Derivation rule expressed graphically as a circle with a rule identifier, “DR”
in the circle stands for “Derivation Rule”.

Condition arrow defines a relationship between a model element that is con-
ditioned and the rule. An example of conditioned model element is a class
or an association.

2 Strelka tool description: http://rewerse.net/events/annual-meeting-2006/demos/i1-
demos.html, Strelka home page on I1 website: http://www.rewerse.net/I1
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Conclusion arrow defines a relationship between the rule and a derived model
element. An example of derived model element is a class, an association or
an attribute.

Using this modeling notation we may visualize the rule as depicted in Fig. 3.
The boolean expression returnBranch <> pickupBranch at the beginning of

rentalbranch

/one way rental

return branch 1 *

pick up branch1 *

DR
id:1

returnBranch <> pickupBranch

Fig. 3. Visualization of a derivation rule

the condition arrow is a filter. It filters rental objects with different return and
pickup branches. Using this approach we may visualize different derivation rules,
where classes, associations or attributes are derived. This visual representation
corresponds to the following logical formula, where ”.” is a function, which return
attribute value for an object:

x ∈ OneWayRental ←− x ∈ Rental and x.returnBranch <> x.pickupBranch

As can be seen from the example, the visualization of the rule is vivid and simple.
For detailed description of the rules metamodel and more examples we refer to
the website of the REWERSE Working Group I1.

Another important class of rules under consideration is production rules.
These rules are widely used in business process automation, supported by several
commercial tools and under standardization procedure of W3C.

As an example let’s consider the following rule:

If the total amount of shopping cart of a customer is more than 100 give
customer a voucher with value 10.

The rule is represented as a circle with ”PR” inside, which stands for ”Pro-
duction Rule”, and an identifier. The voucher is created by means of so called
CreateAction (denoted by character ”C” near the arrow head) with a set of
initialization parameters (Fig 4). In this example, parameter is a voucher value,
which is set to 10 (voucher := 10 ).
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customer
/total
/discount

shopping cart

value
type

item

value
voucher

1

*

1 0..1* 1

PR
id:2

x

value := 10
C

shoppingCart.total > 100

Fig. 4. Visualization of a production rule

5 Conclusion

Main advantages of the introduced rules visualization approach against tech-
nologies, described in Section 3, are:

Simplicity — with relatively small and simple extension of UML metamodel,
visual modeling of main rule types can be implemented.

Visualization — visual representation of rules facilitates the use of rule-based
technologies.

W3C Semantic Web and OMG MOF technologies — the solution under
development for visual rules modeling may connect widely used OMG MOF
methodologies with emerging Semantic Web technologies. For instance, UML
case tools with support of rules may be used for modeling of Semantic Web
applications, which include ontologies and rules.

Potential — the proposed method for visual rules modeling and verbalization
introduces the possibility for rule–based software development, which is a
powerful paradigm for special classes of software applications (for example:
insurance, mortgage, business automation).

In this paper we have described a UML-based rule modeling approach. We have
provided a quick overview of existing rule modeling technologies for business
automation, software development and the Semantic Web and argue that our
approach can be used for formalization of business requirements, which is demon-
strated by means of two examples. The full specifications of R2ML and URML
are available in the D8 deliverable of the REWERSE Working Group I1.

The modeling approach has been evaluated on several business case studies.
The future work in this area is towards the approach evaluation on real busi-
ness applications. The issue of modeling of reaction rules-driven Semantic Web
Services is currently under consideration.
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412 96 Göteborg, Sweden

Fax: +46 31 772 3663

Abstract. Information flow exhibited by multithreaded programs is subtle be-
cause the attacker may exploit scheduler properties when deducing secret infor-
mation from publicly observable outputs. Volpano and Smith have introduced a
protect command that prevents the scheduler from observing sensitive timing
behavior of protected commands and therefore prevents undesired information
flows. While a useful construct, protect is nonstandard and difficult to imple-
ment. This paper presents a transformation that eliminates the need for protect
under cooperative scheduling. We show that both termination-insensitive and
termination-sensitive security can be enforced by variants of the transformation
in a language with dynamic thread creation.

1 Introduction

Information-flow security specifications and enforcement mechanisms for sequential
programs have been developed for several years. Unfortunately, they do not naturally
generalize to multithreaded programs [17]. Information flow in multithreaded programs
remains an important open challenge [12]. Furthermore, otherwise significant efforts
(such as Jif [7] and Flow Caml [14]) in extending programming languages (such as
Java and Caml) with information flow controls have sidestepped multithreading issues.
Nevertheless, concurrency and multithreading are important in the context of security
because environments of mutual distrust are often concurrent. As result, the need for
controlling information flow in multithreaded programs has become a necessity.

This paper is focused on preventing attacks that exploit scheduler properties to de-
duce secret information from publicly observable outputs. Suppose h is a secret (or
high) variable and l is a public (or low ) one. Consider threads c1 and c2:

c1 : (if h > 0 then sleep(100) else skip); l := 1
c2 : sleep(50); l := 0

Although these threads do not exhibit insecure information flow in isolation (because
1 is always the outcome for l in c1, and 0 is always the outcome for l in c2), there is a
race between assignments l := 1 and l := 0, whose outcome depends on secret h. If h
is originally positive, then—under many schedulers—it is likely that the final value of
l is 1. If h is not positive, then it is likely that the final value of l is 0. It is the timing
behavior of thread c1 that leaks—via the scheduler—secret information into l. This

I. Virbitskaite and A. Voronkov (Eds.): PSI 2006, LNCS 4378, pp. 474–480, 2007.
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〈|ci, m|〉 α
� 〈|c′

i, m
′|〉 α ∈ {ε, �d} σ = i

〈|σ, 〈c1 . . . cn〉, m|〉 → 〈|σ, 〈c1 . . . ci−1c
′
iαci+1 . . . cn〉, m′|〉

〈|ci, m|〉 α
� 〈|stop, m′|〉 σ = i

〈|σ, 〈c1 . . . cn〉, m|〉 → 〈|σ, 〈c1 . . . ci−1ci+1 . . . cn〉, m′|〉

〈|ci, m|〉
��
� 〈|c′

i, m|〉 σ = i σ′ = (i mod n) + 1 c′
i �= stop

〈|σ, 〈c1 . . . cn〉, m|〉 → 〈|σ′, 〈c1 . . . ci−1c
′
ici+1 . . . cn〉, m|〉

Fig. 1. Semantics for threadpools

phenomenon is due to internal timing, i.e., timing that is observable to the scheduler.
As in [17, 18, 15, 1, 16, 8], we do not consider external timing, i.e., timing behavior
visible to an attacker with a stopwatch.

Volpano and Smith have introduced a protect command that prevents the scheduler
from observing the timing behavior of the protected command and therefore prevents
undesired information flows. A protected command is executed atomically by definition.
Although it has been acknowledged [13, 8] that protect is hard to implement, no im-
plementation of protect has been discussed by approaches that rely on it [18, 15, 16].
This paper presents a transformation that eliminates the need for protect under coop-
erative scheduling. This transformation can be integrated into source-to-source transla-
tion that introduces yield commands for cooperative schedulers. We show that both
termination-insensitive and termination-sensitive security can be enforced by variants
of the transformation in a language with dynamic thread creation.

2 Language

We consider a simple imperative language that includes skip, assignment, sequential
composition, conditionals, and while-loops. Its sequential semantics is standard [20].
The language also includes dynamic thread creation and a yield command. A com-
mand configuration 〈|c, m|〉 consists of a command c and memory m. Memories m :
IDs → Vals are finite maps from identifier names IDs to values Vals . Transitions be-
tween configurations have form 〈|c, m|〉 α

� 〈|c′, m′|〉 where α is either ε (empty label), �d
(indicating a sequence of newly spawned threads), or ��. The latter label is used in the
transition rule for yield:

〈|yield, m|〉
�/
� 〈|stop, m|〉

Labels are propagated through sequential composition to the threadpool-semantics
level. Dynamic thread creation is performed by command fork:

〈|fork(c, �d), m|〉
�d

� 〈|c, m|〉

This has the effect of continuing with thread c while spawning a sequence of fresh threads
�d. Threadpool configurations have form 〈|σ, 〈c1 . . . cn〉, m|〉 where σ is the
scheduler’s running thread number, 〈c1 . . . cn〉 is a threadpool, and m is a shared memory.
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Threadpool semantics, describing the behavior of threadpools and their interaction with
the scheduler, are displayed in Figure 1. The rules correspond to normal execution of
thread i from the threadpool, termination of thread i, and yielding by thread i. Note that
due to cooperative scheduling, only termination or a yield by a thread may change the
decision of the scheduler which thread to run next. Although these semantics model a
round-robin scheduler, our approach can be generalized to a wide class of schedulers.

Let cfg →0 cfg , for any configuration cfg , and cfg →v cfg ′, for v > 0, if there is
a configuration cfg ′′ such that cfg → cfg ′′ and cfg ′′ →v−1 cfg ′. Then, cfg →∗ cfg ′ if
cfg →v cfg ′ for some v ≥ 0. Threadpool configuration cfg terminates in memory m
(written cfg ⇓ m) if cfg →∗ 〈|σ, 〈〉, m|〉 for some σ. In particular, cfg ⇓v m is written
when cfg →v 〈|σ, 〈〉, m|〉. If 〈〉 is not finitely reachable from cfg , then cfg diverges
(written cfg ⇑). Termination ⇓ and divergence ⇑ are defined similarly for command
configurations.

3 Security Specification

We define two security conditions, termination-insensitive and termination-sensitive se-
curity, both based on noninterference [4]. Suppose security environment Γ : IDs →
{high , low} specifies a partitioning of variables into high and low ones. Two mem-
ories m1 and m2 are low-equal (m1 =L m2) if they agree on low variables, i.e.,
∀x ∈ IDs. Γ (x) = low =⇒ m1(x) = m2(x).

Command c satisfies termination-insensitive noninterference if c’s terminating exe-
cutions on low-equal inputs produce low-equal results.

Definition 1. Command c satisfies termination-insensitive security if

∀m1, m2.m1 =L m2 & 〈|1, 〈c〉, m1|〉 ⇓ m′
1 & 〈|1, 〈c〉, m2|〉 ⇓ m′

2 =⇒ m′
1 =L m′

2

Command c satisfies termination-sensitive noninterference if c’s executions on any two
low-equal inputs either both diverge or both terminate in low-equal results.

Definition 2. Command c satisfies termination-sensitive security if

∀m1, m2.m1 =L m2 =⇒
〈|1, 〈c〉, m1|〉⇓ m′

1 & 〈|1, 〈c〉, m2|〉⇓ m′
2 & m′

1 =L m′
2 ∨ 〈|1, 〈c〉, m1|〉⇑& 〈|1, 〈c〉, m2|〉⇑

4 Transformation

By performing a simple analysis while injecting yield commands, we are able to auto-
matically enforce both termination-insensitive and termination-sensitive security. The
transformation rules are presented in Figure 2. They have form Γ 
 c ↪→ c′, where
command c is transformed into c′ under Γ . In order to rule out explicit flows [2] via as-
signment, we ensure that expressions assigned to low variables may not depend on high
data. This is enforced by demanding the type of the assigned variable to be at least as re-
strictive as the type of the expression that is to be assigned. Restrictiveness relation � on
security levels is defined by low � low , high � high , low � high and high �� low .
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∀v ∈ Vars(e). Γ (v) = low
Γ � e : low

∃v ∈ Vars(e). Γ (v) = high
Γ � e : high

(HCTX)
No yield, fork or assignment to l in c

Γ � c : high

Γ � skip ↪→ skip; yield Γ � yield ↪→ yield

Γ � e : τ τ 
 Γ (v)
Γ � v := e ↪→ v := e; yield

Γ � c1 ↪→ c′
1 Γ � c2 ↪→ c′

2

Γ � c1; c2 ↪→ c′
1; c′

2

Γ � e : low Γ � c1 ↪→ c′
1 Γ � c2 ↪→ c′

2

Γ � if e then c1 else c2 ↪→ if e then (yield; c′
1) else (yield; c′

2)

(H-IF)
Γ � e : high Γ � c1 : high Γ � c2 : high

Γ � if e then c1 else c2 ↪→ (if e then c1 else c2); yield

Γ � e : low Γ � c ↪→ c′

Γ � while e do c ↪→ (while e do (yield; c′)); yield

(H-W)
Γ � e : high Γ � c : high

Γ � while e do c ↪→ (while e do c); yield

Γ � c ↪→ c′ Γ � d1 ↪→ d′
1 . . . Γ � dn ↪→ d′

n

Γ � fork(c, d1 . . . dn) ↪→ fork(c′, d′
1 . . . d′

n)

Fig. 2. Transformation rules

In order to reject implicit flows [2] via control flow, we guarantee that if’s and while’s
with high guards may not have assignments to low variables in their bodies. These two
techniques are well known [2, 19] and do not require code transformation.

The transformation injects yield commands in such a way that threads may not
yield whenever their timing information depends on secret data. This is achieved by a
requirement that if’s and while’s with high guards may not contain yield commands.
In addition, such control flow statements may not contain fork. The rationale is that
if secrets influence the number of threads, then it is possible for some schedulers to
leak this difference via races of publicly-observable assignments [13, 10]. Rules H-IF
and H-W enforce the above requirements. The rest of the transformation injects yield
commands without significant restrictions (but with some obvious liveness guarantees
for commands that do not branch on secrets).

The first lemma shows that commands typed under rule HCTX do not affect the
low-security variables.

Lemma 1. Given a command c and memories m1 and m2 so that Γ 
 c : high ,
m1 =L m2, 〈|c, m1|〉⇓m′

1, and 〈|c, m2|〉⇓m′
2, then m′

1 =L m′
2.

The following theorem states that pools of transformed threads preserve low-equality
on memories:
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Theorem 1. Given two (possibly empty) threadpools �c and �c ′ of equal size, memories
m1 and m2, and number σ so that Γ 
 ci ↪→ c′i where ci ∈ �c and c′i ∈ �c ′, m1 =L m2,
〈|σ, 〈�c ′〉, m1|〉⇓v m′

1, and 〈|σ, 〈�c ′〉, m2|〉⇓w m′
2, then m′

1 =L m′
2.

Proof. The proof is done by induction on v + w. �

As desired, the transformation enforces termination-insensitive security:

Corollary 1. If Γ 
 c ↪→ c′ then c′ satisfies termination-insensitive security.

Proof. By applying Theorem 1 with �c = 〈c〉, �c ′ = 〈c′〉, and σ = 1. �

The transformation can be adopted to termination-sensitive security in a straightforward
way. We write Γ 
TS c ↪→ c′ whenever Γ 
 c ↪→ c′ with the modifications that (i) rule
H-W is not used, and (ii) rule HCTX is replaced by:

(HCTX’)
No while, yield, fork or assignment to l in c

Γ 
TS c : high

These modifications ensure that loops have low guards and that no loop may appear in
an if statement with a high guard. These requirements are similar to those of Volpano
and Smith [18] (except for the requirement on fork, which Volpano and Smith lack):

Lemma 2. Given a command c so that Γ 
 c : high cmd for some security environ-
ment Γ in Volpano and Smith’s type system [18]; and given command c′ obtained from
c by erasing occurrences of protect, we have Γ 
TS c′ : high .

Proof. By structural induction on the type derivation of c. �

This allows us to connect the transformation to Volpano and Smith’s type system:

Theorem 2. If command c is typable under security environment Γ in Volpano and
Smith’s type system [18], then there exists command c′′ such that Γ 
TS c′ ↪→ c′′,
where c′ is obtained from c by erasing occurrences of protect.

Proof. By structural induction on the type derivation of c and Lemma 2. �

We also achieve termination-sensitive security with the above modifications of the
transformation. We firstly present some auxiliaries lemmas. The following lemma states
that commands typed as high terminate and do not affect the low part of the memory:

Lemma 3. Given a command c and memory m so that Γ 
TS c : high , then 〈|c, m|〉⇓m′

and m =L m′.

Proof. By induction on the size of c. �

In order to show termination-sensitive security, we track the behavior of threadpools
after executing some number of yield and fork commands. We capture this by re-
lation →∗

y,f so that cfg →∗
1,0 cfg ′ if there is cfg ′′ such that cfg →∗ cfg ′′ where no

yield’s have been executed, cfg ′′ → cfg ′ results from executing a yield command;
and cfg →∗

y,f cfg ′ if there is cfg ′′ such that cfg →∗
y−1,f cfg ′′ (resp. cfg →∗

y,f−1 cfg ′′)
and cfg ′′ → cfg ′ results from executing a yield (resp. fork) command.

The next two lemmas state that low-equivalence between memories is preserved after
executing some number of yield and fork commands:
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Lemma 4. Given two non-empty threadpools �c and �c ′ of equal size, memories m1 and
m2, and number σ so that Γ 
TS ci ↪→ c′i where ci ∈ �c and c′i ∈ �c ′, m1 =L m2, and
〈|σ, 〈�c ′〉, m1|〉 →∗

1,0 〈|σ′, 〈�c ′′〉, m′
1|〉, then there exists m′

2 such that 〈|σ, 〈�c ′〉, m2|〉 →∗
1,0

〈|σ′, 〈�c ′′〉, m′
2|〉, and m′

1 =L m′
2.

Proof. By simple induction on the number of steps of →∗
1,0. �

Lemma 5 (yield/fork lock-step execution). Given two non-empty threadpools �c and
�c ′ of equal size, memories m1 and m2, numbers σ, y, and f so that Γ 
TS ci ↪→ c′i
where ci ∈ �c and c′i ∈ �c ′, m1 =L m2, and 〈|σ, 〈�c ′〉, m1|〉 →∗

y,f 〈|σ′, 〈�c ′′〉, m′
1|〉, then

there exists m′
2 such that 〈|σ, 〈�c ′〉, m2|〉 →∗

y,f 〈|σ′, 〈�c ′′〉, m′
2|〉, and m′

1 =L m′
2.

Proof. By induction on y + f and by applying Lemmas 3 and 4 when necessary. �

The final theorem shows that the transformation eliminates the need for protect:

Theorem 3. If Γ 
TS c ↪→ c′ then c′ satisfies termination-sensitive security.

Proof. By applying Lemma 5 with �c = 〈c〉, �c ′ = 〈c′〉, and σ = 1 and observing that a
divergent configuration (originating from c′) performs an infinite number of yield’s. �

5 Related Work

An overview of information flow controls for concurrent programs can be found in [12].
We briefly mention most closely related work. External timing-sensitive information-
flow policies have been addressed for a multithreaded language [13], and extended
with synchronization [9], message passing [11], and declassification [6]. Type systems
have been investigated for termination-sensitive flows in possibilistic [1] and proba-
bilistic [18, 15, 16] settings. Recently, we have presented a type system that guarantees
termination-insensitive security with respect to a class of deterministic schedulers [8].
Information flow via low determinism, prohibiting races on low variables from the out-
set, has been addressed in [21, 5].

6 Conclusion

We have presented a transformation that prevents timing leaks via cooperative sched-
ulers. We argue that this technique is general: it applies to a wide class of schedulers
(although only a round-robin scheduler has been considered here for simplicity).

We have experimented with the GNU Pth [3], a portable thread library for threads
in user space. We have modified this library to allow the round-robin scheduling policy
from Section 2. We have successfully applied the transformation for source-to-source
translation of multithreaded programs without yield’s into GNU Pth programs. The
security of this translation is ensured by Theorems 1 and 3.

Acknowledgment. This work was funded in part by the Information Society Technolo-
gies program of the European Commission, Future and Emerging Technologies under
the IST-2005-015905 Mobius project.
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Abstract. This paper considers the problem of recognition and rep-
resentation of dynamically changing chordal graphs. The input to the
problem consists of a series of modifications to be performed on a graph,
where modifications can be additions or deletions of complete r-vertex
graphs. The purpose is to maintain a representation of the graph as long
as it remains a chordal graph and to detect when it ceases to be so.

1 Introduction

A graph G is said to be chordal if every cycle of length 4 or more contains a chord
(an edge between two non-consecutive vertices in a cycle). From the practical
point of view, chordal graphs have numerous applications in, for example, sparse
matrix computation (e.g., see [1]), relational databases [2], and computational
biology [3].

Several authors have studied the problem of dynamically recognizing and rep-
resenting various graph families. [4] devises a fully dynamic recognition algorithm
for chordal graphs which handles edge operations in O(n) time. The authors of
[5] improve the current complexities for maintaining a chordal graph by starting
with an empty graph and repeatedly adding or deleting edges. They use their
result to ameliorate the time bound for the biology-based problem of improving
the matrix representation of an evolutionary tree (phylogeny) which contains er-
rors. For proper interval graphs [6], each update can be supported in O(d+log n)
time where d is the number of edges involved in the operation.

Unlike the existing works, we develop an algorithm for maintaining represen-
tations of chordal graphs under complete r-vertex graph insertions or deletions,
where cliques have at least 3 vertices. Since a clique tree of a chordal graph has
at most n nodes, each operation performs in O(n) time.

2 Preliminaries

In this article, we assume that the reader has a moderate familiarity with graph
theory. This section aims at defining notions and notations related to chordal
graphs.

I. Virbitskaite and A. Voronkov (Eds.): PSI 2006, LNCS 4378, pp. 481–486, 2007.
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Let G = (V (G), E(G)) = (V, E) be a finite undirected and simple graph
with |V | = n vertices and |E| = m edges. The subgraph of G induced by S is
G[S] = (S, E[S]), where E[S] = {uv ∈ E | u, v ∈ S}. Let Kr be a complete
r-vertex graph, where r ≥ 31. We define the following:

V (G) ∩ V (Kr) = p, E(G) ∩ E(Kr) = q,

G + Kr = {V (G) + (V (Kr) \ p), E(G) + (E(Kr) \ q)},

G − Kr = {V (G) − (V (Kr) \ p), E(G) − E(Kr)}.

A subset S of V is called a separator if G[V \ S] is disconnected. S is a uv-
separator if vertices u and v from G[V \S] are in different connected components
of G[V \ S]; S is a minimal uv-separator if none of S subsets is a uv-separator.
S is a minimal separator if S is a minimal uv-separator for all u and v from
G[V \ S].

A clique of a chordal graph G is a non-empty subset C ⊆ V such that all
the vertices of C are mutually adjacent. A clique K is maximal if K is not
properly contained in another clique. A clique tree of G is a tree T such that its
nodes have a 1-1 correspondence with maximal cliques of G, edges correspond
to non-empty intersections of pairs of maximal cliques, and for all vertices v in
G, the set of maximal cliques which contain v induces a subtree of T . It is worth
remarking that a graph G is chordal iff it has a clique tree (see [3],[8],[9] for
detailed explanation). We use u, v as vertex names of G and x, y as node names
of T . The nodes x and y correspond to maximal cliques Kx and Ky of G. A clique
tree has n nodes and each edge xy of T has the weight w(xy) = |Kx ∩Ky|. There
are known algorithms to find a clique tree of a chordal graph in O(m + n) time
(see, e.g.,[1]).

We use Ij = Kj ∩ N(Kj) to denote a minimal separator of a graph G, where
N(Kj) is a set of all nodes of a tree T adjacent with node j.

3 Algorithm

We consider how to implement modification operations. Some of these operations
are identical to those in [4], but are repeated here so that the reader can have
easy access to the full algorithm.

Our algorithm supports the following operations: Insert Query and Delete
Query which return ”yes” if a modified graph (G+Kr and G−Kr, respectively)
is chordal and ”no” otherwise; Insert and Delete modify the clique tree T
according to made modification.

We first deal with the insertion of a complete r-vertex graph Kr.

Lemma 1. ([10], [11]) Let G be a connected chordal graph with its clique tree
T . Then
1 For r = 1 an incremental dynamic algorithm which considers addition of vertices

is presented in [7], for r = 2 a dynamic algorithm which deals with addition and
deletion of edges is proposed in [4].
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(i) a set S is a minimal vertex separator of G iff S = Kx ∩ Ky for some edge
xy ∈ T ,

(ii) if S = Kx ∩ Ky for xy ∈ T , then S is a minimal uv-separator for any
u ∈ Kx \ S and v ∈ Ky \ S.

Theorem 1. Let G be a chordal graph without a complete r-vertex graph Kr.
Then G + Kr is chordal iff the following conditions are satisfied:

(i) G has a clique tree T with u ∈ Kx, v ∈ Ky such that u, v ∈ Kr for some
edge xy in T ,

(ii) there is a path from x to y in T such that Kr ∩ Ij �= ∅, where Ij is a set of
vertices contained in this path.

Proof. (i) Let I = Kx ∩ Ky �= ∅. Since uv is not an edge of G, we have u /∈
Ky, v /∈ Kx and hence u ∈ Kx − I, v ∈ Ky − I. By Lemma 1, I is a uv-separator.

Let C be any cycle in G+Kr with length ≥ 4 that contains uv where uv ∈ q.
Let P = C − uv, so that P is a path from u to v of length ≥ 3. Since I is a
uv-separator, P must contain a vertex s ∈ I. Then either su or sv is a chord of
P , which means C has a chord. Hence, G + Kr is a chordal graph.

(ii) Let an edge xy /∈ T where u ∈ Kx, v ∈ Ky for u, v ∈ p, then there exists
the path P from x to y in T and a minimal separator Ij of G, containing in this
path. Suppose to the contrary that there exists any node z in a clique tree T ,
such that Kr ∩ Iz = ∅, which is contained in the path P . Let Iz = {u′, v′} and
Kz ∩ Kx = u′, Kz ∩ Ky = v′, then u′, v′ /∈ Kr. Since uv ∈ G + Kr and there
exist the edges uu′ ∈ Kx, u′v′ ∈ Kz, v

′v ∈ Ky, G + Kr has a chordless cycle
(u, u′, v′, v). We get a contradiction. �

Insert Query(Kr)

If the conditions of Theorem 1 are satisfied, return ”yes”, otherwise return ”no”.

End Insert Query

We next show how to update a clique tree for G + Kr.

Insert(Kr)

1. Consider such edges of G + Kr that uv /∈ G with u ∈ Kx, v ∈ Ky such that
u, v ∈ Kr for any xy ∈ T . If such edges do not exist in G + Kr, we pass to
item 2. Otherwise, let I = Kx ∩Ky then K = I ∪{u, v} is a clique in G+Kr.
As K is not a clique of G, we must add to a new node z with Kz = K. We
must consider whether cliques Kx, Ky are maximal in G+Kr. Since v /∈ Kx,
then Kx ⊂ Kz iff Kx = I ∪ {u} iff |Kx| = |I| + 1. Similarly, u /∈ Ky, then
Ky ⊂ Kz iff Ky = I ∪ {v} iff |Ky| = |I| + 1. Thus, comparing |Kx|, |Ky|
and w(x, y) = |I| we determine, whether cliques Kx and Ky is maximal in
G + Kr.

Replace xy in T with a new node z representing Kz = I ∪ {u, v} and
add xz, yz, each with weight |I| + 1. Determine whether cliques Kx, Ky are
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maximal in G+Kr. If Kx, Ky are maximal then we pass to item 2. Otherwise,
if Kx is not the maximal clique, remove xz and replace x with z, if Ky is not
the maximal clique, remove yz and replace y with z.

2. Add a new node r to T corresponding to Kr. Connect r with other nodes i
such that Ki ∩Kr �= ∅, attribute to it weights w(i, r). Moreover, if Kw ⊂ Ki

for some w ∈ T then Kw is not maximal clique in G + Kr and we must
remove w from T .

End Insert

We will now examine a deletion of a complete r-vertex graph Kr.

Theorem 2. Let G be a chordal graph which contains a complete r-vertex graph
Kr. Then G − Kr is chordal iff the following conditions are satisfied:

(i) the edge uv ∈ Kr is contained exactly in two maximal cliques of G;
(ii) G does not contain any cycle consisting of vertices of the set Ir = Kr ∩

N(Kr).

Proof. (i) It is known that uv ∈ Kr, i.e. Kr is one of the maximal cliques
containing this edge. Then uv must be contained exactly in the one clique of
G except Kr. Suppose to the contrary that uv ∈ q is contained in two cliques
{u, v, s} and {u, v, t}, where st /∈ G, which are different from Kr. Then these
two cliques cannot be contained in one maximal clique of G. In this case the
deletion of Kr leads to the appearance of a chordless cycle (u, s, v, t) in G−Kr.
We get a contradiction.

(ii) Suppose to the contrary that Ir forms a cycle C. Note that Ir forms a
cycle iff it contains all vertices of a complete r-vertex graph Kr. Consider a case
when |N(Kr)| ≥ 2. Let Kx, Ky ∈ N(Kr), xy ∈ T and Ir = (Kx ∩ Kr, Ky ∩ Kr).
Since Ir forms a cycle C, it is clear that Kx ∩ Ky �= ∅. By the definition of a
chordal graph, all the cycles of G have length 3. The deletion of Kr leads to
the disappearance of a third edge for each clique N(Kr). Since these cliques are
connected between themselves by the common vertices or edges, the cycle of
length 2 · |N(Kr)| appears in G − Kr. It means that G − Kr has a cycle with
length ≥ 4. We get a contradiction. �

Delete Query(Kr)

If the conditions of Theorem 2 are satisfied, return ”yes”, otherwise return ”no”.

End Delete Query

We show how to update a clique tree for G − Kr.

Delete(Kr)

1. Consider edges uv of G such that uv /∈ G − Kr, with u ∈ Kx, v ∈ Ky and
u, v ∈ Kr for any xy ∈ T . If such edges do not exist in G − Kr, pass to item
2. Otherwise, T of G contains a node z corresponding Kz = K (see item 1
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of Insert for the definition of Kz). In G − Kr, the maximal clique Kz has
split into the cliques Ku

z = Kz − {v} and Kv
z = Kz − {u} which may not be

maximal.
Divide the set N(Kz) into Nu = {x ∈ N(z) | u ∈ Kx}, Nv = {y ∈

N(z) | v ∈ Ky} and Nw = {w ∈ N(z) | u, v /∈ Kw}. Then Ku
z is not maximal

in G−Kr iff ∃x ∈ Nu such that Ku
z ⊂ Kx and w(x, z) = k−1. Similarly, Kv

z

is not maximal in G−Kr iff ∃y ∈ Nv such that Kv
z ⊂ Ky and w(y, z) = k−1.

Replace z with two nodes z1 and z2 respectively representing Ku
z and Kv

z

and add the edge z1z2 with weight w(z1, z2) = k − 2. If x ∈ Nu, replace xz
with xz1. If y ∈ Nv, replace yz with yz2. If w ∈ Nw, replace zw with z1w or
z2w.

If Ku
z and Kv

z are maximal cliques then pass to item 2. Otherwise, if Ku
z

is not maximal because Ku
z ⊂ Kxi for some xi ∈ Nu then remove xiz1 and

replace z1 with xi. Similarly, if Kv
z is not maximal because Kv

z ⊂ Kyi for
some yi ∈ Nv then remove yiz2 and replace z2 with yi.

2. Remove r corresponding Kr from T .

End Delete

Corollary 1. If Ir = Kr ∩ N(Kr) forms two or more different paths Pi, then
Kr is a separator of G.

Proof. Let P1 and P2 be two paths formed by Ir = Kr ∩ N(Kr). Let Kx, Ky ∈
N(Kr) and Ir′ = Kx ∩ Kr, Ir′′ = Ky ∩ Kr. Assume that Ir′ ⊂ P1 and Ir′′ ⊂ P2.
Then we have Kx ∩ Ky = ∅. It means that deleting Kr leads to the appearance
of two connected components, where cliques Kx and Ky are contained in the
different connected components. Hence Kr is a separator of graph G. �
We use a clique tree T of a chordal graph G for performing the described oper-
ations. Since T has at most n nodes, each operation runs in O(n) time.

4 Conclusions

In this paper, we described a fully dynamic algorithm, which considers new mod-
ifications of graphs, i.e. insertions or deletions of complete r-vertex graph, where
r ≥ 3. The proposed algorithm could be a suitable addition to the algorithm of
Ibarra [10] for the maintenance of chordal graphs. Also, if it is known that the
edges which should be added to the input graph G form a clique, then we are
able to implement the algorithm more efficiently than if we were to add or delete
the edges one by one.

Acknowledgment. The author would like to thank V.A. Evstegneev for the state-
ment of the problem and I.B. Virbitskaite for her helpful comments and advice.
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Abstract. The paper presents a concept and architecture of a special-
ized Internet portal providing semantic access to cultural knowledge and
information resources (i.e. electronic collections). The information basis
of such a portal is an ontology that supports integration of information
resources relevant to the subject domain of a portal into a uniform in-
formation space and provides content-based (semantic) access to these
resources. The portal is adaptable to meet the needs of a variety of users:
it provides multilingual access and supports a user’s profile with per-
sonal preferences and areas of interests. The portal supports formulation
of queries in terms of the chosen subject domain and ontology-driven
navigation through the information space of the portal. Extension of the
information space is realized by both experts and specialized subsystem
searching for and automatically indexing relevant resources.

1 Introduction

A vast amount of information resources related to various fields of knowledge
or culture has been accumulated by now. However, access to these resources is
rather complicated, both because most of the fields of knowledge, especially in
the humanities, are insufficiently formalized, and because these resources are
disembodied, ill-structured, distributed over various Internet sites, electronic li-
braries and archives, and mostly inaccessible to the traditional search engines.

Besides, search engines themselves work inefficiently and quite often return to
user a flood of useless information. The reason for this is that the modern search
engines use primarily keyword search mechanisms, which are insensitive to the
query semantics, and index Web resources with virtually no tools for analysis of
the information presented in them.
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In recent years, there have been attempts to exploit thesauri and ontologies
[1] to describe the Web resource semantics. There are many examples of tools
currently being developed for semantic annotation of Web-pages and documents,
when each document is linked to its semantic content. Using such annotations,
the intelligent search agents provide more relevant responses to a user query
as compared to existing engines. For example, to do this, the SHOE system [2]
supplies HTML documents with a set of special tags for knowledge presenta-
tion, and the Semantic Web initiative [3] presumes supplying documents with
annotations in the RDF language [4]. There has been certain progress in this di-
rection, however that does not improve the situation in general, since Web-pages
annotated in such a manner are an infinitesimal drop in the sea of the Web.

There exists a further problem that cannot be solved with semantic annota-
tion of Web resources. When different groups of users communicate with search
engines, they use both their own professional terminology and terms widely used
in other communities with other meanings. This leads to decrease in relevancy
of information found and in search transparency, because the existing search
mechanisms do not take into consideration the context in which the information
exists.

One more difficulty is that, as a rule, the user submits queries in his or her own
language, while the Internet contains resources in different national languages.
Not all search engines and sites provide quality translation of the query into
other languages, and many are limited to one or two languages. Hence the user
cannot get a large share of information.

To solve most of the problems mentioned above, we suggest to create special-
ized topic-oriented Internet portals that have to provide multilingual content-
based (semantic) access to the knowledge and information resources for any given
field of knowledge or culture. Such topic-oriented portal, or knowledge portal,
would be useful for both a specialist in certain subject domain and ordinary
users interested in getting knowledge and information resources on this topic.

The paper is structured as follows. Chapter 2 presents functions and main
components of the knowledge portal. In Chapter 3, proposed architecture of the
portal is described in detail. Related works are discussed in Chapter 4. Chapter
5 presents main results and conclusions.

2 The Proposed Knowledge Portal: Functions and
Components

2.1 Functions of the Portal

The proposed knowledge Internet portal have to perform the following functions:

– provide access to knowledge and data on various aspects of culture and cul-
tural activity, such as: components of the culture (monument of the culture,
works of art, etc), the information about cultural events as well as persons,
creative teamworks and organizations involved in the cultural process;
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– integrate the multilingual resources on portal’s subjects which are located
in the Internet or in a local network;

– provide the user with advanced tools for navigating and finding the necessary
information in the entire information space of the portal;

– provide the user with tools for multilingual semantic-based search in the
Internet;

– provide the user with information support (for example, announcements on
various events and actions);

– support a flexible user interface that takes into account the user’s preferences
with respect to language and the user’s work with the resources and services.

2.2 Ontology of a Portal

The information basis of the portal is formed by the ontology [1,5,6] of the por-
tal and descriptions of the network resources associated with it. The ontology
is used for presentation of concepts and entities of given subject domain, inte-
gration of relevant Internet resources and external data sources in the informa-
tion space of the portal as well as basis for navigation through this information
space.

For a sufficiently complete and systematized representation of knowledge and
information resources relating to certain kind of culture, the ontology of a portal
includes two domain-independent ontologies such as ontology of cultural activity
and ontology of culture as well as ontology of a subject domain.

The ontology of cultural activity includes the concepts related to organization
of any cultural activity. For example, Organization, Person, Publication, Event,
Exhibition, etc.

Ontology of culture contains both primary terms and concepts in use and
the meta-notions which specify the structures for description of some kind of
culture. In particular, it includes diverse taxonomies: hierarchy of types of the
culture, hierarchy of schools of the culture, hierarchy of objects (artifacts) of the
culture, etc. These hierarchies are connected by the relations presenting various
associative connections between their elements. Thus ontology of culture serves
for ontology of subject domain as meta-ontology.

Ontology of subject domain describes a certain kind of culture (for example,
culture of Russia, Western culture, culture of ancient Rome). It is constructed
on the base of ontology of culture.

Whilst appreciating that there a variety of approaches in developing a work-
able solution to understanding and constructing ontologies and there is much
to be debated about the relative strengths and weaknesses of these approaches,
for our purposes the following working definition will suffice: a system, which
consists of a set of concepts associated by binary relations, their definitions and
assertions (axioms and rules) allowing one to constrain (restrict) the meaning
of concepts within some problem or subject domain. We consider that this pre-
sentation of ontology is adequate for our aims, i.e. integration of information
resource and provision of semantic access to it.



490 Y. Zagorulko et al.

2.3 Description of Information Resources

The description of information resources is an important component of the in-
formation content of a portal. It should be noted that information resource itself
is notion of ontology and includes specific attributes and relations that link the
resource with the other elements of the ontology.

The set of attributes and relations is based on Dublin Core [7] standard and
includes the following units: Title of the resource, Subject of the resource, Re-
source type, Language, Access permissions, etc. Besides, each resource is linked
to Semantic index which consists of a set of objects and relationships presenting
the resource content in terms of the portal ontology.

The information space of a portal integrates structured resources (external
databases), semi-structured resources (in HTML, XML, RDF) and unstructured
resources (text documents).

3 Proposed Architecture

The knowledge portal has traditional three tier architecture: information access
layer, information processing layer and the base layer (see Fig. 1).

Fig. 1. The high level architecture of the knowledge portal

The information access layer provides front-end of the portal for user. The
information processing layer supports all information (data) flows in the por-
tal from construction of ontology to processing of user query. The base layer
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maintains data and knowledge management using database and Semantic Web
technologies and services.

3.1 The Information Access Layer

The information access layer includes user interface which provides the users
with presentation of his queries and results of searching as well as navigation
through the information space of the portal.

Because of the use of an ontology this interface allows user to formulate queries
in terms of the chosen subject domain and supports ontology-driven navigation
through information objects, being instances of notions of the portal ontology,
and the indexed information resources.

The interface is adaptable to meet the needs of a variety of users. For cus-
tomization of the interface to a specific user or user group, the model of a user
is used. This model contains language and subject preferences, the list of addi-
tionally connected/disabled resources, the technique for visualization of pages,
etc. Note that the model of the user is updated at each logon and so it always
represents the current user model or metaphorically ”an information portrait”.

3.2 The Information Processing Layer

The information processing layer provides local and Internet searching for infor-
mation, data source integration, collection of ontology information, adjustment
of knowledge base and the portal management.

The Internet search engine provides advanced semantic-based search in the
Internet. The local search engine transmits a user query to the data source in-
tegration system and/or the location-based search module that perform query
processing and information retrieval. In order to provide the user with multilin-
gual semantic access to cultural resources a multilingual thesaurus is included
in the portal.

An important component of the information processing layer is data source
integration system which integrates accessible relevant external data sources in
the information space of a portal and provides advanced information search in
them. The specialized multi-agent system intended for semantic-based retrieval
of information from a collection of distributed heterogeneous structured and
semi-structured data sources is used as such system. In this system an access
to each of data source is provided by a special agent. In order to make this
system able to process user queries formulated in terms of the subject domain
of the portal, the data schema of each external data source is mapped onto the
ontology of the portal.

Facilities for adjustment of the portal are administrator interface and knowl-
edge base adjustment tools. The administrator interface is used to set up and
manage all subsystems of the portal. It also provides both linking to new infor-
mation resources (external data sources) and user registration and management.
The ontology editor and the thesaurus editor are intended for adjustment of the
knowledge base. The data editor serves for creation and edition of information
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objects, that are instances of notions of the portal ontology, and their linking
with other objects. All these tools are Web-applications and provide remote
adjustment of the portal.

To solve the laborious problem concerned with a filling of a portal with new
knowledge and data we suggest, in addition to the editors described above, to in-
clude a subsystem for extraction of knowledge and data from the Internet, which
is called the ontology information collector. This subsystem performs search and
collection of the relevant Internet resources (documents), their semantic analysis
and indexing (annotating) based on thesaurus and ontology.

The ontology information collector comprises two basic modules: the Inter-
net document collection module and the semantic indexing module. The former
consists of the following components: search bot, link database, terminology dic-
tionary. The search bot crawls through the Internet by following the links from
the link database and searches for documents containing keywords from the ter-
minology dictionary. The link database can be filled with links to new resources
relevant to the portal topics both manually (by expert) and automatically (with
links found in documents or discovered by the search mechanism of the por-
tal, which runs at defined intervals). The semantic indexing module analyzed
the document and builds its semantic index (annotation). Indexes of documents
are stored in an internal database of the portal and used for searching. In this
manner, the information content of the portal can be automatically updated.

3.3 The Base Technology Layer

The base technology layer performs management of data and knowledge which
are stored in the knowledge base and internal data base.

The knowledge base is a key component of the portal. It includes the ontology
of the portal and multilingual thesaurus elaborated in ISO 5964 standard. The
thesaurus contains terms, i.e. words and phrases of several natural languages
by means of which concept of ontology are presented in texts and queries of
user. Existing relations between the thesaurus terms and the concepts of ontol-
ogy create the prerequisites for their combined use in search and information
processing.

For holding and manipulation of the knowledge base the Semantic Web tech-
nologies (ontologies) and services are used.

Internal database stores all local data, including information objects and their
links (relations) with other objects, the indexes of documents, the descriptions
of information resources and data sources. This database can be managed by
traditional relational DBMS.

4 Related Work

Use of ontologies and other constituents of Semantic Web technologies for de-
velopment of the knowledge portal allows one to relate it to a sort of Semantic
Web Portal [8]. But our portal has particular features which makes it a portal
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of knowledge. In particular our portal provides content-based access to both
information resource and the systematized knowledge of certain subject domain.

There exist several portals that use approaches and methods similar to ours.
For example, the Esperonto Portal [9] is a case study of the ODESeW knowledge
portal generator developed by the Ontology Group at Facultad de Informatica,
Universidad Politecnica de Madrid. The information contained and its reliability
makes the Esperonto portal one of the best sources on ontology research. Five
different domain ontologies connected through several relations were developed
for this portal.

The OntoWeb Portal [10] is a community portal for both academic and indus-
trial partners who share an interest in the Semantic Web. The OntoWeb portal
is structured according to an ontology which serves as a shared basis for sup-
porting communication. OntoWeb community members can publish annotated
information on the web, which is then crawled by a syndicator and stored in
the portal knowledge base. However, the portal is a repository focused on the
project and depends on the contribution of users in content.

Besides, a few attempts to build a culture web portals have been made, such
as ”The portal of culture of Latin American and the Caribbean”1, Portal of
UNESCO Culture Sector2 and the portal ”Culture of Russia”3. Some of the
portals like this use also ontology-based approach, as for instance the semantic
portal ”MuseumFinland” that is intended for publishing heterogeneous museum
collections on the Semantic Web which is discussed in [11].

5 Conclusion

The paper presents a concept and architecture of specialized Internet portal
providing semantic access to the knowledge and information resources for any
given field of knowledge or culture.

Let us underline the most important features of the portal that allow us to
consider it as an Advanced Information System:

– Use of the common and subject knowledge at all levels and stages of portal
operation: user, conceptual, logical and physical.

– Possibility of adjustability at all levels: subject domain, data and knowledge
sources, the user’s area of interests, and a user as an individual.

– Support of several languages. To support a new language, it is only necessary
to add corresponding terms of this language to the thesaurus.

– Simplicity of information space extension. This is provided by the linking of
new data sources through mapping the ontology into their data frameworks
and the automatic indexing of semi-structured and non-structured resources
relevant to the subject domain of the portal.

At present, the core of a portal including the ontology and data editors as well
as facilities for search and navigation through information space of the portal
1 http://www.lacult.org
2 http://portal.unesco.org/culture
3 http://www.culture.mincult.ru/
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has been implemented. Based on the core, a specialized Internet portal providing
semantic access to systematized knowledge and information resources relating
to archeology has been successfully developed. This development demonstrates
the soundness of the proposed approach and justifies the implementation of the
complete portal from the core.

Our immediate goals are to develop a more detailed architecture for knowledge
portal and its key components based on the concepts proposed. Further, we
want to apply this architecture for development of a specialized Internet portal
for multilingual semantic access to information resources relating to vanishing
cultures. We plan to supplement the portal with thesaurus for several languages,
first of all for Russian and English.
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