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Preface

This volume contains the final proceedings of the Sixth International Andrei
Ershov Memorial Conference on Perspectives of System Informatics (PST 2006),
held in Akademgorodok (Novosibirsk, Russia), June 27-30, 2006.

The conference was held to honour the 75th anniversary of a member of
the Russian Academy of Sciences Andrei Ershov (1931-1988) and his outstand-
ing contributions towards advancing informatics. The role of Andrei Ershov in
the establishment and development of the theory of programming and systems
programming in our country cannot be overestimated. Andrei was one of the
founders of the Siberian Computer Science School. He guided and took active
part in the development of the programming system ALPHA and the multi-
language system BETA, and authored some of the most remarkable results in
the theory of programming. Andrei is justly considered one of the founders of the
theory of mixed computation. In 1974 he was nominated as Distinguished Fel-
low of the British Computer Society. In 1981 he received the Silver Core Award
for services rendered to IFIP. Andrei Ershov’s brilliant speeches were always in
the focus of public attention. Especially notable were his lectures “Aesthetic and
Human Factor in Programming” and “Programming—The Second Literacy.” He
was not only an extremely gifted scientist, teacher and fighter for his ideas, but
also a bright and many-sided personality. He wrote poetry, translated the works
of R. Kipling and other English poets, and enjoyed playing guitar and singing.
Everyone who had the pleasure of knowing Andrei Ershov and working with
him will always remember his great vision, eminent achievements and generous
friendship.

Another aim of the conference was to provide a forum for the presentation
and in-depth discussion of advanced research directions in computer science. For
a developing science, it is important to work out consolidating ideas, concepts
and models. Movement in this direction was a further goal of the conference.

The previous five PSI conferences were held in 1991, 1996, 1999, 2001, and
2003, and proved to be significant international events. The sixth conference fol-
lowed the traditions of the previous ones and included many of their subjects,
such as theoretical computer science, programming methodology, and new in-
formation technologies, which were among the most important contributions of
system informatics. Similarly to the previous PSI conferences, the programme
includes invited papers in addition to contributed regular and short papers.

This time 108 papers were submitted to the conference by researchers from
28 countries. Each paper was reviewed by three experts, at least two of them
from the same or closely related discipline as the authors. The reviewers gener-
ally provided high-quality assessment of the papers and often gave extensive
comments to the authors for the possible improvement of the presentation.
As a result, the Program Committee selected 30 high-quality papers for reg-
ular presentations and 10 papers for short presentations. A broad range of hot



VI Preface

topics in system informatics was covered by five invited talks given by prominent
computer scientists from different countries.

We are glad to express our gratitude to all the persons and organisations who
contributed to the conference — to the authors of all the papers for their effort in
producing the material included here, to the sponsors for their moral, financial
and organizational support, to the members of the Steering Committee for the
coordination of the conference, to the Programme Committee members and the
reviewers who did their best to review and select the papers, and to the members
of the Organizing Committee for their mutual contribution to the success of this
event. Finally, we would like to mention the fruitful cooperation with Springer
during the preparation of this volume.

November 2006 Irina Virbitskaite
Andrei Voronkov
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Separability in Conflict-Free Petri Nets

Eike Best!, Javier Esparza?, Harro Wimmel!, and Karsten Wolf3

! Parallel Systems, Department of Computing Science
Carl von Ossietzky Universitdt Oldenburg, D-26111 Oldenburg, Germany
{eike.best ,harro.wimmel}@informatik.uni-oldenburg.de
2 Abteilung Sichere und Zuverléssige Softwaresysteme
Institut flir Formale Methoden der Informatik, D-70569 Universitdat Stuttgart
esparza@informatik.uni-stuttgart.de
3 Institut fiir Informatik, D-18051 Universitéit Rostock
karsten.wolfQuni-rostock.de

Abstract. We study whether transition sequences that transform mark-
ings with multiples of a number k on each place can be separated into
k sequences, each transforming one k-th of the original marking. We
prove that such a separation is possible for marked graph Petri nets, and
present an inseparable sequence for a free-choice net.

1 Introduction

In concurrent systems verification, it is desirable to keep the portion of the
state space that needs to be explored in order to check some property as small
as possible. For example, if a system can be viewed as the composition of k
independent but similar systems, it may be sufficient to check only one of them,
instead of the whole set.

We are interested in Petri nets with k-markings, where by definition, a k-
marking is a marking with a multiple of &k tokens on each place (k being some
positive natural number). We study under which conditions a Petri net with an
initial k-marking M, can be separated, that is, viewed as k independent systems,
each with initial marking (1/k)-Mp. In such cases, some verification problems
(for example, the reachability of a k-marking) can be solved in a system with
greatly reduced state space.

The concept of separability has first been introduced and motivated in the
context of workflow nets [6]. In that paper, a class of acyclic marked graphs [1/4]
was proved to enjoy the separability property. In the present paper, we extend
this result to all marked graphs. We also show by means of a counterexample
that the separability property is not generally valid for free-choice nets [2].

The paper is organised as follows: Section ] contains basic definitions and
introduces the notion of separability formally. Section [B] contains the proof of
the main result. In Section [l we explore generalisations and limitations of this
result. Section [l contains concluding remarks.

I. Virbitskaite and A. Voronkov (Eds.): PSI 2006, LNCS 4378, pp. 1-[I8 2007.
© Springer-Verlag Berlin Heidelberg 2007



2 E. Best et al.

2 Definitions

Definition 1 (Petri net). A Petri net (S, T, F, My) consists of two finite and
disjoint sets S (places) and T (transitions), a function F: (SxT)U(TxS)) — N
(flow) and a marking My (the initial marking). A marking is a mapping M : S —
N. A Petri net is plain if the range of F is {0,1}, i.e., F is a relation. A place
s is a side-condition of a transition t if F'(s,t) # 0 # F(t, s).

Definition 2 (Incidence matrix, Parikh vector). For a transition t, let At
be the vector with index set S defined by At(s) = F'(t,s)—F(s,t). The incidence
matriz C is an S X T matriz of integers where the column corresponding to a
transition t is, by definition, equal to the vector At. For a sequence o of tran-
sitions, its Parikh vector W, is a vector of natural numbers with index set T,
where W, (t) is equal to the number of occurrences of t in o.

A transition t is enabled (or activated) in a marking M (denoted by M|t)) if, for
all places s, M (s) > F(s,t). If t is enabled in M, then ¢ can occur (or fire) in M,
leading to the marking M’ defined by M’ = M + At (notation: M[t)M'). We
apply definitions of enabledness and of the reachability relation to transition (or
firing) sequences o € T*, defined inductively: M[e)M, and M [ot) M’ iff there is
some M" with M|[o)M" and M"[t)M’. A marking M is reachable (from M) if
there exists a transition sequence o such that My[o) M. We also generalise these
notions to subsets U C T. A marking M enables U as a step (or concurrently)
if for all places s, M(s) > >, F'(s,t). If U is enabled in M, all transitions of
U can occur from M in some arbitrary order.

Two firing sequences o and ¢’ are said to arise from each other by a single
permutation if they are the same, except for the order of an adjacent pair of
transitions which is concurrently enabled by the marking preceding them, thus:

o = ti...ttt' ... t, and o = ti...tpt't.. . t,,

such that the marking reached after t;...t; concurrently enables {¢,¢'}. Two
sequences ¢ and ¢’ are said to be permutations of each other (written o = o) if
they arise out of each other through a sequence of single permutations.

For any string w and letter a, let #(a,w) denote the number of times a
occurs in w. Two strings v and vs are called Parikh equivalent if for all letters
a, #(a,v1) = #(a,vs). Note that if a firing sequence ¢’ is a permutation of a
firing sequence o, then #(t, o) = #(t,0’) for each transition ¢, and so o and ¢’
are Parikh equivalent. However, two Parikh equivalent firing sequences are not
necessarily permutations of each other.

For any string w define a pair of strings (v1,v2) to be a border of w if vy is a
prefix of w, vs is a suffix of w, and vy, vy are Parikh equivalent Every string w
has the trivial borders (g,¢) and (w, w).

Definition 3 (k-marking, separation). Let k be a positive natural number.
A k-marking M is a marking where, for all places s, M (s) is divisible by k. For a

! Normally, one requires v; = vo, but this is too strong for our purposes.



Separability in Conflict-Free Petri Nets 3

k-marking M and a transition sequence T such that M[T)M', a separation (of T,
starting from M ) is a list 71, . .., T, of transition sequences and a list My, ..., My
of markings such that

k
. . 1
Vi1 <j<k: kM[Tj>M,- and ;wﬁ =,

Note that it depends on k£ whether or not some sequence can be separated. For
instance, if kK = 1, then every marking is a k-marking and every sequence ¢ can
trivially be separated.

We will argue that separability is very much tied to the absence of arc weights
greater than 1 and to the absence of conflicts. Intuitively speaking, a conflict sit-
uation is one in which some enabled transition can be disabled by the occurrence
of some other transition.

Fig. 1. A simple non-separable example (i) and an expansion (ii)

Consider the net in Figure [[(i), whose arcs have weight 2 and whose initial
marking is a 2-marking. The firing sequence o = t (moving two tokens at the
same time) cannot be separated (for k = 2), since no sequence can move only
one token. Note that this net is (intuitively) free of conflicts.

Let us try to simulate such a net with arc weights < 1. One possibility is
shown in Figure [[l(ii). This construction (using the regulatory circuit around ¢;
and ty) avoids both conflicts and deadlocks. The sequence o’ = tytattsts sim-
ulates the sequence o = t of Figure [[{i). However, ¢’ is separable (for k = 1);
indeed, the initial marking is no longer a 2-marking. Putting one more token
on the marked place of the regulatory circuit yields a 2-marking, but intro-
duces a conflict between t; and to after firing ¢; (and a deadlock as well, after
t1t1). The same is true if the circuit is omitted altogether. Thus, it appears
impossible to simulate a conflict-free net with initial 2-marking and with ar-
bitrary arc weights by a conflict-free net, also with initial 2-marking, which is
plain.

In order to eliminate the first, rather trivial, source of non-separability, we
will henceforth require all Petri nets to be plain, i.e., all arc weights to be 0 or
1. We then focus on studying what effects the absence or presence of conflicts
has on separability.

In Petrinet theory, the ‘absence of conflicts’ can be captured by defining various
net classes which intuitively guarantee the absence of conflicts. In Section [, we
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concentrate on marked graphs, which are a particularly simple and well-unders-
tood class of conflict-free nets. In Section ] we recall other classes of conflict-free
nets.

Definition 4 (Marked graphs [14]). A net N = (S,T, F, My) is called a
marked graph, if for all places s, Y, cp F'(s,t) <1 and ), . F(t,s) < 1.

3 Marked Graphs Are Separable

3.1 Theorem Statement, and Proof Outline

Theorem 1. Let N be a marked graph and let My be a k-marking (k > 1). Let
T € T* be a firing sequence starting from My. Then there is a separation of T.

Proof. By induction on k& > 1.

Base: k£ = 1. Then the result is immediate: define 7, = 7.

Step: k > 2. Then k = k' + 1, with ¥ > 1. Consider the firing sequence My[).
As a consequence of Lemn}aﬂl whose proof can be found below, there are firing
sequences 7 and & with (% Mo)[n), (L Mo)[€), and ¥, + ¢ = ...

Since ’: My is a k’-marking and k' < k, we may apply the induction hypothesis,
finding k&’ sequences 71, ..., T with

1 K _ Y
(k’( i Moy))[r;) for every j, and ZWTJ, =Y,.
j=1
Putting 7, = £ yields a separation 7, ..., 7; of 7. m

The remainder of this section describes the proof of the following auxiliary result.
Throughout this section, we assume N to be a marked graph, M to be its initial
marking, and My to be a k-marking with £k =k’ + 1 and &' > 1.

Lemma 1. Let 7 be a firing sequence from My. Then there are firing sequences
n and & such that

Moo, ( MOIE), amd w4 =

The main idea is to use coloured firings in order to separate 7. Originally, all
tokens are assumed to be ‘black’. We may colour them, in some appropriate way,
into red and green tokens. By r-firing (g-firing), we mean that a firing consumes
and produces only red (green, respectively) tokens. We use indices , and 4, or
red and green, to indicate this. Any coloured set of tokens can be decoloured
by turning red and green back into black. Separating a black firing sequence
additively into two subsequences will be done by choosing a red/green-colouring
and realising the black sequence by r-firings and g-firings. Once this is done, all
r-firings can easily be collected into one subsequence and all g-firings into the
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@) ®

e ()
o Q O @

Fig. 2. A net with red and green tokens: initially (L.h.s.), and after [titat1tat), (r.hus.)

other subsequence. The main difficulty of the proof is to show that every black
sequence can indeed be realised by r-firings and g-firings.

Figure [2 shows an example. Red tokens are represented as solid circles. The
other (plain circle) tokens are supposed to be green. This colouring could corre-
spond to a case in which k' = 1. Let Mj be the initial marking of the net shown
on the left-hand side, with black tokens, i.e., the decoloured version of the one
actually shown in the figure. We discuss how the (black) firing sequence

Mo [ty totytatt)

can be separated into two sequences, using the two colours. Suppose that we use
red tokens as much as possible. Then we can fire as follows:

Mo [t t2\t’1 tat) M [t)2¢
red

where M is the marking shown on the right-hand-side of Figure[2 At this point,
t is (black-)enabled and needs to be fired next, but it is neither red- nor green-
enabled. Obviously, a separation of (black) t1tat1tott cannot be found in this
way. We need to use coloured firings more judiciously. For instance, if we choose
to let the second subsequence ¢ty green-fire instead of red-fire, then we get

-re

Mo [tity tits t )M [t)8
0[1212 > [>

red green red

In terms of black tokens, M is the same as M . However, red and green tokens are
distributed differently, and ¢ can green-fire at M. In this way, we get a separation
of (black) 7 = t1latitatt into (red) 71 = t1tat and (green) 7o = tytot. Indeed,
U, =¥, + V¥, as required.

By a recolouring of a firing sequence, we mean a sequence in which some
firings have been coloured differently. A recolouring does not itself have to be
a firing sequence, but we will be careful to apply recolouring when it is certain
that the recoloured sequence is actually firable. A recoloured sequence is Parikh
equivalent to the original, since the transition count is not affected.
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By a rearrangement of a firing sequence, we mean a firing sequence that arises
from the original one by permutations and/or recolourings. The Parikh vector
of a rearranged sequence is still identical to that of the original sequence. In
particular, if two sequences are rearrangements of each other, and if they are
started from the same (black) marking, then they reach the same marking.

We return to the proof of Lemma [Il An appropriate r/g-colouring will be
defined as follows. Since M is a k-marking, there is, for every s € S, a number
ds > 0 with My(s) = ds-k. Recall that k = k' 4+ 1. For every s € S, we define

Mo red(s) = ds'k" and M green(s) = ds. (1)

Then on each marked place, the ratio of red tokens to green tokens is k’, and
decolouring gives back the original M. If we can realise a black firing sequence
with red-/green-firings starting from such a colouring, the red part can be seen
to start from (k'/k)Mp and the green part from (1/k)My, as required in the
lemma. It follows that Lemma/[Il is proved, provided we can prove the following:

Lemma 2. With a red/green-colouring as in ([Il), whenever t is a transition and

(that is, o leads from My to M, M enables t, and M neither r-enables nor
g-enables t), then there is a rearrangement o' of o such that Mylo'YM and
M r-enables t or M g-enables t.

Proof. This proof is divided into three steps as follows. Section contains a
lemma about borders in marked graphs, Section describes the special case
that o has only r-firings, and the general case is dealt with in Section [3.4

3.2 Borders of Firing Sequences in Marked Graphs

The next lemma holds for arbitrary (uncoloured) marked graphs. Its purpose is
to identify subsequences of firing sequences, such as t1ty in the example, which
need to be coloured in different colours.

Lemma 3. Let t be a transition and let o be a firing sequence starting from M.
Suppose that #(t,0) > 1. Then o can be permuted into a sequence ¢ such that
o has a border (1, B2) with the following property:

L if #(z,0) > #(t,0)
0 if #(z,0) < #(t,0).

In particular, the border that is claimed to exist by this lemma does not contain
t, because ¢ does not occur more than #(t¢, o) times in o.

Ve eT: #(x,01) = #(z,[2) = {

Proof. We will proceed by induction, primarily on the number of transitions that
occur more often than ¢ in o, and secondarily on the length of . That is, we
consider a constant number of ¢s. Let the length of o be n.
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Base case: All transitions occur at most #(¢, o) times in . Then we immedi-
ately have a border of the desired kind, namely (g, €).

Induction step: Assume that there is at least one transition = with #(z, o) >
#(t,0).

The first thing we will do is to permute ¢ in such a way that the first transition is
one which occurs most often in o. More precisely, let m = max{#(z,0) | z € T}
and let U = {u € T' | #(u,0) = m}. By the above assumption, we have ¢ ¢ U.
We will make sure that the new first transition is one from the set U.

To this end, we start with o, pick any w € U and consider the first (leftmost)
occurrence of u in 0. We try to exchange this occurrence of u successively with
its immediate left neighbouring transition. Suppose that this is not possible, for
some left neighbour «’. Then we have the following situation:

—~

Mo[...) M [/ )M [u) M" | P ) M,
~—
w occurs #(u,o)—1 times

such that there is some place s € u’* N *u with M’(s) = 0. Transition u/ cannot
occur less often in o than u, because otherwise, s could not get sufficiently many
tokens during the tail p for u to occur as often as it does there (namely #(u, o)—1
times, since we chose the first occurrence).

Hence, v/ is another transition in U. We abandon u and continue in the same
way with v/, choosing its first occurrence in the part leading up to M"”. Moving
this occurrence of ©’ to the left cannot encounter u again, since all occurrences of
u are to the right. Continuing in this way, eventually, we end up with a sequence
of the form

- zg ~
Mo[tity .ot ..ty ) M
~

in which ¢; € U, and in particular, #(t1,0) > #(¢,0). Call this sequence ¢’ and
note that t; # ¢ and that, by construction, ¢’ = o.

We chop the first element, viz. t1, off ¢/, denoting by o the shorter sequence,
viz. to .. .t,. This sequence starts with the marking M; reached after ¢, i.e. by
firing My[t1)M;. Note that we might have ¢ = t. Note also that og still contains
every transition except t1 (and in particular, t) as often as o does.

Now it is possible to apply the inductive hypothesis to oy. The induction
hypothesis implies that there is some permutation g of g such that oy has
a border, say (v1,72), which contains exactly once every transition that occurs
more often than ¢ in op (and that is also the set of transitions the desired border
of the longer sequence should contain, except possibly for t1).

Let us now consider the following sequence o”:

)
~ )
MO [tl Yo t
~

-

~
. 72>Mna
4

ol

which is a permutation of ¢’ since o is a permutation of og. ¢ has a prefix of
the form ¢; 7, and a suffix of the form ~-. Note that v, and 2 do not overlap,
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since there is some ¢ in between, and neither of them contains ¢. If we could find
some occurrence of ¢; between ~; and 72 which could be moved in front of the
suffix v, then we would have constructed a border of the longer sequence and
we would be done.

First case: 77 (and hence also 72) does not contain t;. Then, there is some
occurrence of ¢; between them, because otherwise, there would be only one
occurrence of ¢; in the whole of ¢ (namely, its first element), contradicting the
fact that ¢; occurs at least twice (at least once more often than ¢, which occurs
at least once) in o”.

Choose the last occurrence of ¢; (which is also the last one between the two ~s).
This can be moved to the right in front of the 72, for the following reason:

Suppose that there is some occurrence of some transition ¢’ with which this
last occurrence of t; cannot be permuted. We show that this occurrence of
t" must be in the first element of the suffix-border ~2, and hence that we
have moved t; far enough already. More precisely, we consider the following
situation:

Mo [tiy .. )M [t )YM['YM"[... ) M,

such that there is some place s € t1* N *t’ with M’(s) = 0. Because M'(s) = 0,
there are at least as many instances of ¢’ in the sequence leading from Mj to
M’ as there are instances of #; in it. But because we are moving/ﬁhe last t; and
since t; € U, we also have t’ € U, and moreover, the ¢’ after M is the last of
its kind. By t; # t', ¢ € U, and the inductive hypothesis, there must be some
occurrence of ¢’ in 2. But because the ¢’ after M is the last of its kind, it is the
first element of the border.

Hence, in this case, we find a permutation o of ¢” (and hence of o) of the
form

B B2
Pray A~~~
MO[EWI ot th)Mn
~

g

with border (81, 82) = (t171,t172).

Second case: t; occurs in y; and in 7. Consider the (unique) occurrence of
t1 in the prefix -1, which is the second overall occurrence of ¢1 in ¢”. Because
every other transition in 1 occurs there once only, this occurrence of ¢; can be
right-moved to the end of the prefix ;. Thereafter, we may just forget about it,
i.e., exclude it from the border-to-be-constructed.

More precisely, we now have a permutation o of ¢ of the following form:

=7
fl/‘lx
Mo[tl ’Yltl R A ")/2>Mn
~ ~ -

g
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where 7] does not contain ¢;, but is otherwise is the same as ;. We can now
combine the very first ¢; with 74 to form a border (51, 82) = (t17v1,72) of 7:

B Ba
SN
~ =
M() [tl ’}/1 tl AP AN Y2 >Mn
N~ -~ 4
G
The two cases are exhaustive[d This proves the claim.

3.3 A Special Case of Lemma [2]

Note first that the colouring defined in () satisfies the following properties:

(A) VseS: MO,red(S) > MO,green(s)
(B): Vs e S: Myyred(s) > 0= My green(s) > 0.

Lemma 4. Let t be a transition and let My [0)yeq M[t)2 9.
Then there is a firable (at My) rearrangement of o, leading to M, such that
M g-enables t.

Note that the conclusion is slightly stronger than required to prove Lemma
This facilitates the inductive proof of the general case, as will be seen later.

Proof. Suppose that
g = tl e tn

with n > 0. We construct a rearrangement of o such that ¢ is eventually g-
enabled.

First, note that My does not enable ¢, for the following reason. Since ¢ is not
g-enabled at M, and since no green tokens are moved during o, ¢ is not g-enabled
at My either. By (B), t is not enabled at all at My. In particular, n > 1.

If ¢ does not occur in o, then M[t)Z¢ is impossible. To see this, consider any
input place s of t with M green(s) > 0 and Myeq(s) = 0. Such a place must exist be-
cause otherwise, ¢ is not enabled or M r-enables t. At M, we have My, green(s) > 0
as well, since green tokens have not been moved. Hence My eq(s) > 0, by (A).
But since the net is a marked graph and since ¢ does not occur in o, these red
tokens on s cannot have been moved in My[o) M, contradicting M, cq(s) = 0.

Hence, t occurs at least once in o, and then we may decompose o as follows:

MO [ El V ti >red Mz [ >red [ti+2 B >red M[t>:§ . (2)
no t occurs here t=tit1

Moreover, we have i > 1 since My does not enable ¢.
We define structurally a set of transitions that must occur within {¢y,...,¢},
as follows. Let °(t, Mp) be the set of transitions, excluding ¢, that lie on a directed,

2 In the second case, it may be impossible to move the 1 that occurs in 2 to the front
of v2. Hence the border satisfies 1 = (2, but possibly, 81 # (.
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red-token-empty (at M), path leading into ¢. The set ° (¢, My) is nonempty, since
t has at least one input place without any red tokens at My, and this place must
have some input transition since otherwise, ¢ would be dead at My. Moreover,
°(t, Myp) is free of cycles since otherwise ¢ would again be dead.

Intuitively, °(¢, My) is the set of transitions that must r-fire at least once, prior
to the first r-enabling of t. We now claim that

every transition in °(t, My) occurs more often in o than t.

First, note that the transitions in °(¢, My) occur at least as often as ¢ even before
the last occurrence of ¢ in o. This 1s so, since otherwise there is some place on

some path from some transition in °(¢, My) to ¢ which has negative red-token
balance,which is impossible.

Second, to see that every transition in °(¢, Mg) occurs at least once more in
o, assume that, on the contrary, t' € °(¢, My) occurs exactly as often in o as t.
Let s be the (unlque) input place of t that lies on a dlrected path from t to t.

Since Mo, req(s) = 0, we also have Mred( ) = 0, where M is the marking reached
after the last ¢ in o, and hence also M,.q(s) = 0, since no ¢’ occurs later. By the
fact that M enables ¢, we have Mypeen(s) > 0, and hence also My green(s) > 0,
and then, by (A), Mo, req(s) > 0. However, this contradicts the fact that, by the
definition of the set °(¢, Mo), Mo, rea(s) = 0.

Hence, every transition in °(¢, My) occurs more often than ¢ in o. By an appeal
to Lemma[3] (using the red tokens only), we find a permutation & of o which has
a border (81, 82) such that all transitions in °(¢, My), but no ¢, occur in 8; and
in Bo; i.e., 0 = (1 k B2 with

all of °(t, Mg) occur here

o
every ¢ occurs here all of °(¢, My) occur here
=~

/ N =~ -
Mo[\ ﬂl K ﬂz />M[t>ﬁ§
~
o (r-firing)

Moreover, by Lemma [3, no transition occurs more than once in 3.

Up till now, no recolouring has taken place; all firings in o are still red.
However, we will now change the suffix G5 into 51 and let it green-fire instead of
red-fire:

r-firing r-firing g-firing
= —~ — AN —~
Mo [ (80 )M [ TR VML B ) M2, (3)
~

Then we have:

(i) By can indeed be g-fired at W7 since 31 could be r-fired to start with,
property (B) holds, and the green tokens have not been moved during the
first §; and k. Since every transition occurs at most once in 3, there are
sufficiently many green tokens in My to fire 81 (even though My may contain
less green than red tokens).

(ii) The sequence 0’ = (i red Kred [1,green in [B) is indeed a rearrangement of o,
since (3 is Parikh equivalent with 32, and ¢’ is therefore a rearrangement of
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o, which is a permutation of o. Thus, the marking M reached in @) is the
same as the marking M reached in (2)) in terms of black tokens; however,
the red and green tokens are differently distributed.

(iii) Finally, M g-enables t. To see this, note that since green tokens have not
been moved between M and M, °(t, My) equals °(t, W), if the latter set
is calculated using only the green tokens. Previously, in terms of the red
tokens, by firing every transition of °(¢, My) at least once, but not ¢, it was
possible to r-enable ¢ (and keep it r-enabled until it occurs) from Mj. But
the suffix 8; contains every transition in °(¢, My) at least once, and no ¢.
Hence g-firing 1 from M” g-enables ¢. 41}

In the example discussed on Figure B the border is (51, 82) = (t1t2, t1t2).

3.4 The General Case of Lemma [2]

Lemma 5. Let t be a transition and let Mo [01)red [02) green M [t)2 9.

Then there is a firable (at My) rearrangement of o109, leading to M, such
that M g-enables t.

Note that My [Ul>red[02>greenM describes the general case, since r-firings and
g-firings can be arbitrarily permuted.

Proof. Suppose that

M() [0'1> M/ [0’2> M[t> with g1 :tl...tn and 092 =21 ...Tm-
N N
r-firing g-firing

We wish to show that o109 can be rearranged in such a way that eventually,
t is g-enabled, and we prove this by induction on the number of pairs (,5) €
{1,...,n} x{1,...,m} with ¢; = ;.

Base case: There are no such pairs.

Then we have {t1,...,t,} N {z1,..., 2y} =0 and
M() [tl...tn >red M/ [1‘1...(Em >greenM [t>

We show that
Vs € *{x1, ., Tm}: Moq(s) > Mgeen(s)-

This is so because the same property already holds at My by (A), since none
of the z; occurs amongst the {¢1,...,t,} and because as a result (and by the
marked graph property), none of the ¢; can move any red token away from any
input place of any of the ;.

Hence, under the conditions of the base case, the sequence z; ...z, is not
only g-firable, but also r-firable from M’:

Mo [t tn Yrea M’ [ 21 .. T Yvea M [t),
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where M’ is the same as M , except for the distribution of red and green tokens.
The claim thus reduces to Lemma F

Inductive step: There is at least one such pair.

Then we choose some pair (i,7) € {1,...,n} x {1,...,m} with minimal sum
i+J, that is, one of the ‘first’ such pairs. Let v = t; = ;. We then have:

M()[tl...ti,1>[u>[ti+1...tn>M/[$1...1'j,1>[’U,) [1‘j+1...$m>M[t>7

such that {t1,...,t;-1} N{z1,...,zj1} = 0 and u ¢ {t1,...,t;—1} and u ¢
{z1,...,2j-1}, by the minimality of the pair (z, 7).

We claim that w is already enabled at M. For suppose it isn’t. Then there is
some input place s € *u such that My(s) = 0. The token count on s turns from
=0 at My to > 0 both after ¢;...¢;—1 and after 1 ...z;_1. Hence the (unique,
by the marked graph property) input transition of s occurs both in ¢;...¢;_1
and in @ ...x;_1, contradicting {t1,...,t;i—1}N{z1,...,z;-1} =0.

Hence u is already enabled, and thus both r-enabled and g-enabled, at M.
In fact, by (), every input transition of u has at least k' red tokens and at
least one green token at Mj. Therefore, u can be left-moved once in the green
sequence and at least once, and up to k' times, in the red sequence (provided
that it contains that many u-transitions). Let ¢ be the number of occurrences of
winty...t,.

Case 1: ¢ > k.

Then we can permute as follows:

My [yvg t’l...t; Yred M [UZ1 ... Zj—1Tj41 .. T Jgreen M [t),

k'’ times

and the first green u can be permuted further to the front to occur just after the
first &’ red us. Now we can red-fire u &’ times and green-fire u once, in order to
obtain the following;:

MO [y o ’lj>red [u>green MO [ tll .. t; >red [‘Tl e L1 Ljpl -+ - Ty >green M [t>7

k’ times

The marking 1\70 satisfies the same properties (in particular, a distribution of
colours as in () as the marking My, and the remaining r/g-sequence

/ /
tl ...th1 L1 TG4 - - T

has at least one pair of common transitions less than the original one. The claim
follows from the induction hypothesis.
Case 2: { < K.

Then there are, in My, k' — £ > 0 excess red tokens on each input place of
u, which are not used during the red sequence, nor, of course, during the green
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sequence. Hence we can insert &’ — ¢ additional red-firings of u at the beginning
of the sequence, thus:

—

—~/
Mo [@ v % >red [u>green Mo [tlll .. t;o/ >red [.731 .o ..Z‘j_l $j+1 PR ipees >green M [t)

(k' —0)+¢

—~/ —
The induction hypothesis can be applied to the sequence from My to M and
yields a rearrangement o of ¢/ .. .tgazl . Zj_1Tj41 ... Ty such that

—~ —~
Mo [y ~ u >red [u >green My [O—> M’ [t>green—enabled .
(k' —0)+£

Since the tokens produced by the excess k' —£ initial red u transitions are nowhere

needed to fire subsequent transitions, the last k' —¢ red u transitions can be taken

out of the sequence [ u...u )[u)green [0), settling Case 2 as well.
~

k’ times red

4 Generalisations

The proof in section Bluses the marked graph property several times. The marked
graph property prevents the appearance of conflict situations by imposing a
strong restriction on the structure of the net. It is natural to ask whether sepa-
rability is caused by the absence of conflicts alone, or by the structural property.
In this section we define a hierarchy of notions of conflict-freeness, and we show
that for live and bounded nets, and for a part of this hierarchy, the two prop-
erties (absence of conflicts and the marked graph property) coincide. We also
show that separability is not generally valid in free-choice nets, another net class
extending marked graphs.

Definition 5 (Liveness, boundedness). A Petri net is live if, for all reach-
able markings M and transitions t, there is a transition sequence o that can occur
from M and contains t. A Petri net is bounded if the set of markings reachable
from its initial marking is finite.

Definition 6 (Some Petri net classes). A net N = (S,T, F, My) is

— output-nonbranching (on) if all places s satisfy |s®| < 1;

— conflict-free (cf) (see e.g. [9]) if all places s satisfy |s®| > 1= s* C*s;

— behaviourally conflict-free (bef) if, whenever a reachable marking M enables
two transitions t,t' with t #t', then *tN°*t' = 0;

— persistent [7], if for all U C T and all reachable markings M, if M enables
every t € U, then M enables U as a step;

— and free-choice [2] if transitions sharing pre-places share all their pre-places,
i.e., if for all transitions t and t' and for all places s, F(s,t) # 0 # F(s,t)
implies F(s,t) = F(s,t').
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The first four notions can be viewed as different formalisations of the intuitive
notion of ‘freeness of conflicts’. We have the following hierarchies:

marked graph = on = c¢f = bcf = persistent
and marked graph = free-choice.

We show:

— The properties ‘on’ and ‘cf’ are, essentially, the same.

— In the presence of liveness and boundedness, every output-nonbranching net
is a marked graph.

— In the presence of liveness, and for k-markings with & > 2, every behavioura-
lly conflict-free net is output-nonbranching.

Lemma 6 (Reducing cf-nets to on-nets). For every conflict-free Petri net
N with initial marking My, there is an output-nonbranching net N' with initial
marking M} and isomorphic reachability graph.

Proof. Consider a place s in N for which |s®| > 1. By the conflict-freeness prop-
erty, s* C ®s, which means that s is a side-condition of every output transition
of s (though it may still have some input transitions to which it is not a side-
condition).

We may split s into |s®| places, each connected only to one of the output transi-
tions of s by a side-condition loop, such that all transitions in ®s\ s® are still input
transitions of each of the new places, and the marking of s is, by definition, also
the marking of every one of the new places. Apparently, the reachability graph
of the new net is isomorphic to that of the original one, but the new net has one
place with two or more output transitions less than the original one.

We repeat this until all places s satisfy |s*| < 1. The result is an on-net N’
with initial marking M, whose reachability graph is isomorphic to the original
one. 0

An (unmarked) net (5,7, F) is called structurally bounded if (5,7, F, My) is
bounded for every marking M.

Lemma 7 (Characterisation of structural boundedness). The following
are equivalent (where C7 is the transposed of C):

(i) (S,T,F) is structurally bounded.
(ii) There exists a vector x € NISI with x >0 and CT -z < 0.
(iii) There exists no vector y € NITI with C'-y >0 and C -y # 0.

Proof. (Sketch.) The equivalence between (ii) and (iii) is (a version of) Farkas’
lemma [§]. If some x as in (i) exists, we have 0 < 27-M < zT-M; whenever M is
reachable from My, and hence Mj is bounded, for any M. Conversely, if a vector
y as in (iii) exists, we may define a marking that has sufficiently many tokens
so that a transition sequence with Parikh vector y can repeatedly be executed,
leading to unboundedness. @
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Lemma 8 (Reducing on-nets to marked graphs). Let N = (S,T, F, M)
be a live, bounded, and output-nonbranching net. Then N is a marked graph.

Proof. Let N = (S,T, F, My) be live, bounded, and output-nonbranching. By
liveness and boundedness, each connected component of N is strongly connected.
Since N is output-nonbranching, it is also free-choice. From the structure theory
of free-choice nets (cf. Theorem 5.6 in [2]), it follows that each connected compo-
nent of (5, T, I') is structurally bounded, so that (S, T, F) is structurally bounded
itself. Define y = 1, with index set 7. Then, by the fact that NV is output-
nonbranching and its connected components are strongly connected, C' -y > 0.
Assume now that N is not a marked graph. Then also C'-y # 0, since we have at
least one place with more than one input transition. But this contradicts struc-
tural boundedness by Lemma[7l Hence N is indeed a marked graph. ]

Lemma 9 (Reducing bef-nets to on-nets). Let N = (S, T, F, My) be a live,
behaviourally conflict-free net and let My be a k-marking, for some k > 2. Then
N is output-nonbranching.

Proof. We prove the claim of this lemma for k = 2. Let N be live and be-
haviourally conflict-free, and let the initial marking, My, be a 2-marking. We
show that N is output-nonbranching.
Assume, on the contrary, that N is not output-nonbranching. Then there is some
structural conflict, i.e., there are a place s and two transitions ¢, ¢’ with ¢ # t’ such
that F(s,t) > 0 and F(s,t’) > 0. We plan to prove that this structural conflict
can actually be realised, that is, that there is some marking M (reachable from
My) which activates both ¢ and ¢/, contradicting behavioural conflict-freeness.
Because My is a 2-marking, the set of initial tokens can be divided into green
ones and red ones, such that every place initially either has no tokens, or at
least one green token and at least one red token (we may, e.g., distribute equally
many green and red tokens). We claim:

— when the red tokens are omitted from the net, transition ¢ can be activated
in the resulting net, i.e., using only the green tokens;
— symmetrically, transition ¢’ can be activated using only the red tokens.

From this, it follows immediately that the structural s,¢,t" conflict can be re-
alised, since one can use the green tokens to activate ¢t and, independently, the
red tokens to activate ¢, leading to a marking in which both ¢ and ¢’ are enabled.
What remains to be proven is that ¢ can be activated using only the green
tokens. To show this, we consider a sequence of length n activating ¢, viz.,

MO [totl e tn_1> M with M [t),

where we can assume, w.l.o.g., that ¢ does not occur in tgty...t,—1. Such a
sequence exists by liveness. Our aim is to find, from this sequence, another one
which also activates ¢ and consists of adjacent pairs of same transitions, thus:

Mo ['LL()’U,() uiur ... um,1um,1> M\ with ]/\Z[t>
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In such a sequence, every second marking, i.e., every marking M; reached af-
ter uoug ... uj—1uj—1 (0 < j < m) is a 2-marking; this is true, in particular,
for M. Tt follows that the sequence where every second transition is omitted,
ie., wouq ... uUm_1, is firable by moving green tokens only, and what is more,
also activates t, since M is a 2-marking. (Note that this depends essentially on
plainness, i.e., all arc weights being no greater than 1.)

Now consider the sequence tgty . ..t,_1, which leads to an activation of ¢ from
M. Starting with tg, we will gradually transform this sequence into a sequence
UQUYUAUL « + . Upy—1 U —1 aS desired.

Case 1: Suppose that tg does not occur in {t1,...,t,-1} (and also, by assump-
tion, to # t); that is, ¢y occurs exactly once in the sequence tg . ..¢,_1. Because
My is a 2-marking, ¢y can occur twice from My (again, we use plainness of the
net), and what is more, ¢y cannot be in structural conflict with any of the tran-
sitions in {¢1,...,t,—1,t} — because if it could, this would contravene structural
conflict-freeness. Therefore, if we enlarge the sequence by adding another ¢, after
the first one:
toto tits ... tn_1,

the extended sequence remains executable from M, and still activates ¢ in its
final marking. We can now chop tgtg off the left-hand end of the sequence and
deal with the shorter sequence tits...%,—1 — of length n—1 — in the same way
(note that the marking reached after tot( is again a 2-marking).

Case 2: Suppose that o occurs as one of the t;’s (1 < j < n—1), but still, by
assumption, ty # t. Then the sequence tgt; ...t,_1 is of the following form:

too1toos,

where we may, w.l.o.g., assume that o1 does not contain another occurrence of
to (though o2 may). By the same argument as before, ¢y cannot be in structural
conflict with any of the transitions occurring in ;. Hence the second occur-
rence of tg can be permuted back through o1 to a place adjacent to the first
occurrence:

toto 01092.

The inductive step now proceeds as above, except that the remaining sequence,
0109, is of length n—2.

No other cases remain. This shows that a sequence uguoui1uy - .. Upm—1Um—1
activating ¢t from My can be found, as was claimed, finishing the proof for & = 2
altogether.

The proof is similar for k& > 2, the general principle being that we create
blocks of k adjacent same transitions.

g

Theorem 2. Let N = (S, T, F, My) be a live, bounded, and behaviourally conf-
lict-free net, let Mo|T)M, and let Mo, M be k-markings. Then there exists a
separation T, ...,k of T.
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Proof. If k = 1, then there is nothing to prove (we may take 7, = 7). If k > 2,
then N is output-nonbranching by Lemma[d a marked graph by Lemma [, and
the result follows from Theorem [l

Figure [B] proves that the result cannot be generalised to free-choice nets, even
if liveness and boundedness is assumed. The net shown in this figure is live,
bounded, and free-choice. Moreover, the initial marking is a 2-marking, and the
transition sequence T = tst1talstats is repetitive (i.e., leads back to the initial
marking). But it is not separable (for k = 2): t5 needs a prior ¢; which, in turn,
needs a prior t3; t4 needs a prior t3 or ts; but since t5 and t3 occur only once,
all occurrences of t1,t9,t3,ts (and consequently also the two occurrences of ts5)
must occur in the same subsequence.

The question of separability remains open if liveness and/or boundedness are
dropped in Theorem 1 Intriguingly, it also remains open for persistent nets,
even if liveness and boundedness are assumed.

Fig. 3. A live and bounded free-choice net with a non-separable transition sequence

5 Outlook

In future, we aim at finding out whether the separability property can be proved
for persistent nets, and at investigating separability in terms of concurrent,
rather than interleaving, behaviour. Other research directions will be to check
the usefulness of separability in applications where synchronic distances [5] play
an important role, and to implement the separation property in model-checking
systems that exploit the marking equation (e.g., [3]).
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In 1969 the Second All-Soviet Programming Conference took place here, in
Akademgorodok. One of the hot issues discussed at that conference was the
problem of crisis of programming, which was proposed by Andrei Ershov. In-
deed, programs were becoming bulky and complicated, and were swarming with
errors; the programmer’s labor efficiency was thus low, and the development
process hardly manageable. The laundry list of troubles can be continued. One
can recall the dramatic story of developing the OS 360, which Brooks told in his
“The Mythical Man Month”. The world has changed drastically over the past
years, much due to the advances in computer science. Even the mighty OS 360
is, by today’s standards, an all-average program. But have all those troubles and
problems been solved? No — and they’ve kept accumulating.

One of the essential reasons for this situation is the different rates of progress
in the two opposing sectors of computer science: research versus development,
software industry versus academic community. It’s high time we spoke not of the
crisis of programming in general, but of crisis in research. It’s exactly how we can
view the numerous works on the so called Grand Challenges, developed by such
organizations as the British Computer Society, Computer Research Association,
President’s Information Technology Advisory Committee, etc.

I intend to touch upon only the few of the serious problems which system
programming is facing.
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Spec# is research programming system that aims to provide programmers with
a higher degree of rigor than in common languages today. The Spec# language
extends the object-oriented .NET language C#, adding features like non-null
types, pre- and postconditions, and object invariants. The language has been
designed to support an incremental path to using more specifications. Some of
the new features of Spec# are checked by a static type checker, some give rise
to compiler-emitted run-time checks, and all can be subjected to the Spec#
static program verifier. The program verifier generates verification conditions
from Spec# programs and then uses an automatic theorem prover to analyze
these.

In this talk, I will give an overview of Spec#, including a demo. I will then
discuss in more detail some aspects of its design and our experience so far.

Joint work with Mike Barnett, Bor-Yuh Evan Chang, Robert DeLine, Bart Ja-
cobs, Manuel Fahndrich, Francesco Logozzo, Peter Miiller, David A. Naumann,
Wolfram Schulte, and Herman Venter.
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Verification of requirement specifications is an important stage of the software
development process. Detection of inconsistency and incompleteness of require-
ment specifications, as well as discovering of wrong decisions at early stages of
the design process decreases the cost of software quality. An approach to require-
ment verification has been considered in the papers [5-8]. The language of basic
protocols is used there for specification of distributed concurrent systems and
formalizing requirements for them.

Basic protocols combine well known Hoare triples with the model of interac-
tion of agents and environments [1-4]. Each basic protocol is an expression of
the type Va(a(z) —< u(x) > f(x)), where z is a (typed) list of parameters,
a(z) and ((z) are a precondition and a postcondition, respectively, and u(x)
is a finite process expression. Preconditions and postconditions are formulas of
some logic language (usually first order one) called the basic language. This lan-
guage is used to describe the properties of the states of a system represented
as composition of an environment and agents inserted into this environment.
The process u(x) describes the behavior of the environment with inserted agents
in the states that satisfy the precondition. A basic protocols specification (BP
specification) of a system is defined by means of a set of basic protocols and an
environment description, which determines the signature and interpretation of
the basic language, the syntax of actions of the environment and agents, and the
properties of possible initial states. The specified system is assumed to be an
attributed labeled transition system, that is a transition system with transitions
labeled by actions and states labeled by attribute labels. For a concrete model
they are the interpretations of distinguished predicate and functional symbols
of the signature of the basic language called attributes (propositional variables
in model checking). For an abstract model the attribute labels are formulas of
the basic language. In both cases the validity relation s = « is defined, which
means that the formula « is valid on the label of the state s.

The meaning of basic protocols can be defined in terms of temporal logics.
Each basic protocol can be considered as a temporal logic formula which ex-
presses the fact that the process u(z) may be initiated only if (for appropriate
values of parameters z) its precondition a(z) is valid on a system state, and if
the protocol starts then after its successful termination the labeling satisfies the
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postcondition B(x). A system that satisfies this requirement is called an imple-
mentation of the system of basic protocols. The set of possible interpretations
can be restricted by introducing additional requirements depending on a subject
domain.

Requirement specifications of distributed systems from real engineering prac-
tice, such as telecommunications, embedded and other kinds of distributed soft-
ware systems, usually have the form very close to basic protocols and, as our
experience shows, can be easily formalized in this form. Basic protocols also per-
mit different levels of abstraction from concrete models with a given number of
agents inserted into an environment and explicit attributes changing their val-
ues during evolving of the system states to abstract (symbolic) models with the
states of the environment represented by the properties of the attributes.

Two abstract implementations Sp and S¥ of BP specification defined by a set
P of basic protocols and an environment description are considered. Both use
two restrictions on transitions and the labeling of the specified system. The first
restriction is expressed in terms of a predicate transformer — a transformation
defined over formulas of the basic language. It transforms the condition v, which
characterizes the state labeling prior to applying a protocol, and the respective
postcondition § into a new labeling pt(v, 8) (the transformed postcondition). A
predicate transformer must satisfy the condition pt(y,3) — (3 and therefore it
strengthens the postcondition w.r.t. the strengthened precondition.

The second restriction relates to possible interpretations of actions. It is de-
fined in terms of permutability relation on the set of actions and is formulated
as follows. The environment of the implementation controls all running proto-
cols and a new protocol can be initiated only if its first action is permutable
with all actions that can be performed by all running protocols. Moreover, an
action performed by a protocol must be permutable with all actions that can be
performed by all protocols initiated before it.

The restriction defined by permutability can be expressed in terms of composi-
tion of processes called partially sequential composition. In case of permutability
of all actions of two basic protocols, their composition degenerates into a parallel
composition, and if no actions are permutable — into a sequential composition
of processes. Partially sequential composition generalizes the notion of weak
sequential composition introduced by Renier [11] for the definition of formal
semantics of MSC diagrams.

The states of abstract implementations are formulas of the basic language,
and the behavior S, of a system in a state 7 is defined by the equation:

S, = Z proc(p) * (T(v,p) : 4) * St(y,p)-
PEP(7)
The following notations are assumed in this formula. Let
p=Vr(a(r) =< u(z) > f(z))

be a basic protocol. Its parameters © = (x1,x2,...) may have types and have
particular value domains. Substitution of symbolic constants or values from the
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respective domains for parameters into the body a(x) —< u(x) > p(z) of
the basic protocol is called its instantiation. For an instantiated basic protocol
q = Vz(a(t) =< u(t) > B(t)) let us denote: pre(q) = «(t), post(q) = 5(t),
proc(q) = u(t). Let Pi,s be a set of instantiated basic protocols. Then

P(v) ={p € Pinst | v — pre(p)}

for the system Sp and

P(y) ={p € Pinst | 7 |E ~(y A pre(p))}

for the system S¥, T(v,p) = pt(y, post(p)), * denotes a partially sequential
composition, A is a successfully terminated process, and « : s denotes a state
or behavior s labeled by a condition «. Some additional constructions can be
added to distinguish the states of successful termination.

The systems Sp and S¥ are abstractions of concrete implementations and if
basic protocols are formalization of requirement specifications, they precede the
concrete implementation that must appear later. The question of how abstract
implementations are connected with concrete ones was considered in [8]. To
answer this question, the notion of abstraction relation was defined on the class
of attributed systems. This notion generalizes some specific abstractions used in
symbolic model checking [9,10] and is defined as follows.

Let S and S be two attributed (not necessarily different) transition systems
with common states and attribute labels and BL be the basic language. Define
the abstraction relation Abs C S x S’ on the set of states as follows:

(s,s8") € Abs & V(a € BL)((s E a) = (s' E a)).

We say that the system S is an abstraction (or an abstract model) of the sys-
tem S’ and the system S’ is a concretization (or a concrete model) of the system
S if a relation ¢ C Abs™! exists, which is a relation of modeling (simulation).
In other words, for any action a the following statement holds:

V(is€ S, s cS)(s,s)ephs—t=3(t €8)(s =t A, t)€yp)).

For systems with the set of initial and final states, the requirement of pre-
serving the initial and final states is added.

This notion of abstraction means that each transition of an abstract model is
forced by some transition of its concretization. It is also interesting to consider
abstract models with the inverse property: each transition of a concrete model
is forced by the respective transition of the abstract model. In other words, the
relation ¢ C Abs™! has the following property:

V(s€ S,s" € 8)((s,s) €pns ot =3t eS) (s tA(t,t)€p)).

In this case we say about an inverse abstract model S of the system S’.
Both kinds of abstract models are useful for this purpose. For a direct model
it is true that if some property is reachable in its concretization then it is also
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reachable in the model. And if some property is reachable in the concretization,
it is also reachable in the inverse model. Therefore direct models can be used for
verification of a system and inverse models for test generation.

In [8], for some specific signature and BP specification P, there was defined
a class K(P) of concrete models of P and the main result was proved: a system
Sp is a direct abstraction of all systems from the class K(P) and S¥ is an
wnverse abstraction of all concrete systems from this class.

The abstract models of basic protocols are implemented in the VRS system
developed for Motorola [5-8] and have been successfully applied for verification of
requirement specifications of real engineering projects. The tools of VRS include
the following:

— checking consistency and completeness of preconditions of BP specifications.
In the strongest case consistency means that preconditions of different pro-
tocols with the same starting actions in the process cannot intersect (never
valid at the same time) and completeness means that the disjunction of
preconditions for protocols with the same starting actions is always valid.
Consistency provides determinism and completeness checks such properties
as the absence of deadlocks.

— proving safety conditions on abstract models. Proving is fulfilled by induc-
tion using the deductive system of VRS or by modeling of direct or inverse
abstractions.

— proving reachability of properties. Symbolic and concrete modeling is used.

The languages MSC, SDL, and UML with annotations are used for description
of processes. Deductive tools include the proving procedure for first order typed
predicate calculus integrated with linear inequalities for integers (Pressburger)
and reals.
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Formal methods traditionally aim at verifying and proving correctness (a typical
academic activity), while testing can only show the presence of errors (that is what
practitioners do). Recently, there is an increasing interest in the use of formal models
and methods in testing. In this talk, we first present a traditional framework of model—
based testing, considering a variety of state-oriented (automata) models, such as Finite
State Machines (FSM), Communicating FSM, Extended FSM, where input and output
are coupled for each transition; and input/output automata (a.k.a. transition systems),
where inputs are outputs are decoupled. We provide an overview of existing test
derivation techniques based on automata models, while paying a special attention to
the underlying testing assumptions and fault detection capability of the resulting tests.

We distinguish two testing scenarios, where an implementation under test is treated
as a black-box and either a formal specification of the expected behavior or a set of
desired properties is given, respectively, model-based and property-based testing. A
property-based testing framework for distributed systems is also presented in the talk.
The processes in a system are instrumented to generate events, such as send and
receive of messages, local events and others. The collected events constitute a
partially ordered event trace and some user-defined properties can be checked on the
trace offline. We present an approach to property-based testing, where a trace of a
distributed system is converted into a collection of communicating automata that
serves as an input to a model checker that tests whether given properties are violated
in the trace. We discuss possibilities of merging both scenarios and conclude by
pointing to open problems.
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Abstract. The Universal Resolving Algorithm was originally formu-
lated for inverse computation of tail-recursive programs. We present an
extension to general recursion that improves the efficiency and termina-
tion of inverse computation because partially produced output is used to
reduce the search space. In addition, we present a transformation using a
new unification-based equality operator. Examples demonstrate the ad-
vantages of the new technique. We found that these extensions can also
improve inverse computation in the context of functional-logic languages.

1 Introduction

Many problems in computation can be specified in terms of computing the in-
verse of an easily constructed function. Inverse computation is the calculation
of the possible input of a program for a given output. The Universal Resolving
Algorithm (URA) [2I3] is an algorithm for inverse computation in a first-order
functional language. The algorithm is sound and complete with respect to the
solutions defined by a given program. Termination and efficiency depends di-
rectly on the search space traversed when performing inverse computation. The
original algorithm relied only on perfect driving [6] to reduce the search space
and was restricted to a tail-recursive programming language.

In this paper we present an extension of the original algorithm to general
recursion. This allows us to reduce the search space drastically when partially
defined output becomes available. We show how termination and efficiency of in-
verse computation can be improved by intersection and unification-based equal-
ity. We demonstrate the gains of our method with several examples. This paper
concerns the question on how to make inverse computation faster and more
terminating. Another proposal [I7] which approximates functional programs by
grammars is complete, but sacrifices soundness for termination. It is well-known

* Supported by the Russian Foundation for Basic Research grant No. 06-01-00574.
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that an algorithm for inverse computation cannot be sound, complete and always
terminating. URA is sound and complete, so we try to improve termination.

To summarize the contributions: We present an extension of the original
URA [2I3] to general recursion and show two novel solutions that can drastically
improve the efficiency and termination of the algorithm: (1) A new technique for
cutting and backpropagation based on intersection of classes during perfect driv-
ing. (2) A novel unification-based equality operator that provides a surprisingly
simple solution by an equivalence transformation of a given request for inverse
computation into the source language. Our techniques aim at reducing the search
space during inverse computation and can sometimes turn an infinite into a finite
search. This is of interest beyond URA. We found that inverse computation in
modern functional-logic languages can be improved by these techniques.

After reviewing the principles of inverse computation (Sect.[2]), we explain the
reduction of the search space (Sect. Bl) and the semantics of unification-based
equality (Sect. H]). Then we define a straightforward equivalence transformation
(Sect. [) and demonstrate the technique with several examples (Sect. [@]). We
conclude with related work (Sect. [[)) and future work (Sect. ).

2 Background: An Approach to Inverse Computation

This section summarizes the concepts behind the Universal Resolving Algo-
rithm [2I3]. For a given program p written in programming language L and
output dy:, inverse computation is the determination of an input ds;, such
that [p]r dsin = dout. Here, ds;y, is a list of values [dy, ... , dy] and dyy is a sin-
gle value. When additional information about the input domain is available, we
may want to restrict the search space of the input for a given output. Conversely,
we may want to specify a set of output values, instead of fixing a particular value
doyt- We do so by specifying the input and output domains using an input-output
class (io-class) cls;,. A class is a finite representation of a possibly infinite set of
values. Let [cls;,| be the set of input-output values represented by cls;,, then
the correct solution Inv(L, p, cls;,) to an inversion problem is specified by

I’TL'U(L,]L CZSZ'O):{ (dsina dout) ‘ (dsi'ru dout) S I_CIsio—Iv HP]]L dsin:dout } (]-)

where L is a programming language, p is an L-program, and cls;, is an input-
output class. The universal solution Inv(L, p, cls;,) is the largest subset of [ cls;, |
such that [p]L dsin = dous for all elements (dsip, dout) of this subset.

In general, inverse computation using a program invint for inverse computa-
tion for a language L takes the form

[invint] [p, clsio] = ans (2)

where p is an L-program and cls;, is an io-class. We say, cls;, is a request for
inverse computation of L-program p and ans is the answer. When designing an
algorithm for inverse computation, we need to choose a concrete representation
for cls;, and ans. We use S-expressions known from Lisp as the value domain
and represent the classes by expressions with variables and restrictions [2I3/16].
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The Universal Resolving Algorithm (URA) [BI2] is an algorithm for inverse
computation in a first-order functional language. The algorithm produces a uni-
versal solution, hence the first word of its name. The answer ans = {(61,71),...}
produced by URA is a set of substitution-restriction pairs that represents set
Inv(L,p, cls;,). The correctness of URA is given by

U[(clsio/ﬂi)/?ﬂ = Inv(L,p, clso) (3)
K3
where (cls;, /0;)/T; narrows the set of input-output values represented by io-class
cls;, by applying substitution 6; to it and then adding restriction 7;.

As an example, consider inverse computation of a program a2b (Sect. H).
Program a2b replaces each ’A by ’B in a list of symbols, leaving all other symbols
unchanged. For example, [a2b] [['A,’B,’A]] = ['B,’B, 'B]. Suppose that we have
the list ['B] as output and want to find all inputs that can produce this output.
For inverse computation of a2b, we specify the io-class

clsio = (([Xea], [B]), 0 ) (4)
DR s

ds n dout Tio

where ?l;m specifies the input, Eout the output, and 7;, = () is an empty re-
striction (no constraints on the domains of c-variables). Placeholders like Xeq
are called configuration variables (c-variables); they range over the set of S-
expressions. A restriction 7, is a finite set of inequalities that constrains the
domain of c-variables (e.g., we might specify {Xe; # ’A, Xe; # Xeo} as a restric-
tion). A rewrite system can be used to normalize such kinds of constraints [16].
We distinguish between a value, d, and an expression, /d\, that represents a sets
of values. Inverse computation with URA then takes the form:

[urd] [a2b, cls;o] = ans . (5)

In our example, the answer contains two substitution-restriction pairs each with
a substitution for Xe; and an empty restriction: ans = {([Xe; — ['A]],0),
([Xey — ['B]],0) }. This tells us that ['B] is produced by input ["A] and ['B].

URA is based on the notion of a perfect process tree [6] that represents the
computation of a program with partially specified input by a tree of all possible
computation traces. The algorithm constructs, breadth-first and/lgzily, a perfect
process tree for a given program p and input class cls;, = (ds,Tio) taken
from the given request cls;,, and extracts the answer ans from the finite traces
and leaves in the tree. The construction of a process tree is similar to unfolding
in partial evaluation where a computation is traced under partially specified
input [5]. It is important that each fork in a perfect tree partitions the input class
clsin into disjoint and exhaustive subclasses. URA is sound and complete [3],
but does not always terminate because the process tree is not always finite. The
algorithm is based on the idea of driving known from supercompilation [I9]. We
present now an important extension of the algorithm to general recursion that
can improve termination and produce answers faster.



30 S. Abramov, R. Gliick, and Y. Klimov
3 Reducing the Search Space

In this section we establish the idea of using an mgu-based intersection and the
constructor skeleton of an expression as an approximation of the output. The
following two examples show that intersection can drastically reduce the search
space of URA by cutting infeasible branches and backpropagating bindings.

Tracing a program with partially specified input may confront us with condi-
tionals that depend on unspecified values, and we have to consider the possibility
that either branch of the conditional is entered with some input. For instance,
if the program tests whether the value of a program variable is a pair, but the
variable is bound to Xep, then we have two possibilities (perfect split): it is a
pair Xes:Xes or an atom. This leads to two new branches in the perfect process
tree. Repeating these driving steps can lead to an infinite tree.

Cutting branches. Consider that we trace a2b along the following configura-
tions. Recall that we are looking for input that produces the output ['B].

c1 = <(call a2b [Xel]), (Z)> l 01 = [Xel = X62 : X€3], 02 = [Xez = ’A]
Cr = <’B:(call a2b [Xeg])7 ®> l 95 = [X€3 — Xea : X67], 96 = [Xeﬁ — 7A]
cg = ('B:’B:(call a2b [Xer7]),0) | ...

Clearly, the last configuration cg and its descendents can never lead to an answer
because their output will always be a list with a length greater than one, 'B:'B: e,
where e stands for the unknown output of (call a2b [Xer]), while we are looking
for a list of length one as output: 'B:[]. Instead of blindly continuing an infinite
search, we examine whether the partially computed output at cg can possibly lead
to the desired output and, if not, stop tracing. Intuitively, the current io-class
at ¢g and the given io-class (@) do not ‘unify’: their intersection is empty. Thus,
we can stop tracing at ¢g without loosing an answer. Cutting such unproductive
branches improves efficiency and, in our example, the process tree becomes finite.
Intersection x of the current io-class cls}, and the initial io-class cls;, is empty
(operation % will be defined below). The term ['A:’A: Xe7] in cls), is obtained
by applying 61,62, 05,06 to [Xei] of cls;,. We compute the intersection:

(((A’A: Xer],'B:'B:e),0) % (([Xei],'B:[]),0) = 0. (6)
current cls;O given cls;,

Backpropagation. The second example adds a function f that is defined by
(define f [x] ([x, (call a2b [x])])) .

Function f is simple: it takes a list x as input and returns as output a list
containing two elements: the original list x and the result of applying function
a2b to x. We specify the output domain as d,. = [[Xeo, Xeo, Xeo], B, B, B]].
For instance, it includes the value [['C,’C,’C],['B, B, 'B]]. The three identical
c-variables Xeq stand for three identical values. Also, we specify that the input
must be a list of length three: ?i;m = [Xey, Xes, Xes]. There are no restrictions
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c1 = ((call f [Xe1, Xea, Xes]),0)

Co = <[[X€1,X€2,X€3] (call a2b [X€1,X€2,X€3])],@>

cs={([['A, Xez, Xes], 'B:(call a2b [Xes, Xes])], 0)

ca= ([[Xel,Xeg,Xeg] Xeq:(call a2b [Xeq, Xes])], {Xe1 # 'A})

cs = ([['A,’A, Xes], 'B'B:(call a2b [Xes])],0)

ce = ([['A, Xez, Xes], 'B: Xea:(call a2b [Xes])], { Xe2 #A})

cr= ([[Xel,’A Xes], Xei:'B:(call a2b [Xes])],{Xe1 # 'A})

Ccg = <[[X€1,X€2,X€3] Xel Xez (call a2b [XGJ])] {X€1 # A,X@Q 75 ,A}>
co=(['A,"A,"A), [B,"B, 'B]J,)

= Answer: ([Xeo — A, Xe1 — A, Xes — ’A, Xesz — "A], 0)

c10 = <[[,A 7A X€3] [ B, 7B, X€3”, {Xed # 7A}> = No answers
ci1 = ([['A, Xez,’A], B, Xez, 'B]], {Xe2 # 'A}) = No answers
c12 = ([['A, Xea, Xes], ['B, Xea, Xes]], {Xea # A, Xes # ’A}) = No answers
c13 = ([[Xe1, A’ A [Xer, B, ’BJ], {Xe1 # A} = No answers

c1a = ([[Xe1, A, Xes], [Xe1, B, Xes]], {Xe1 # A, Xes # ’A}) = No answers

c15 = ([[Xel,Xeg, 'Al, [Xe1, Xea, 'B]], {Xe1 # ’A, Xea #’A}) = No answers
C16 = <[[X€1, Xeg, XGJ] [Xe1, Xeg, Xe;;”, {Xel 75 ,A, Xeg # 7A, Xeg 75 ,A}>

= Answer: ([Xeo — 'B, Xe1 — 'B, Xez — 'B, Xes — B[, 0)

Fig. 1. Perfect process tree without backpropagation

on the c-variables, so 7;, is empty. Thus, we have the initial io-class:

clsio = (([[Xer1, Xea, Xes]], [[Xeo, Xeo, Xeo], [B,’B,’B]]), 0 ). (7)
~ ~ -~ ~ - ~~
Zi;in a\out ?io

The process tree is finite because the length of the input list is fixed when we
trace f with cls;, in (@), but the construction time is exponential in the length of
the ?i;m since tracing explores all possibilities for the three elements of the list.
For example, trace the computation along the configuration sequence (Fig. [II):

c1 = ((call f [Xey, Xeq, Xes]),0) | unfold
([[Xe1, Xea, Xes], (call a2b [Xeq, Xeq, Xes))], 0) 1 61 = [Xe1 — "A]
= ([['A, Xea, Xes], 'B:(call a2b [Xea, Xes])],0) | =0 = {Xes #£°A}
([[A, Xea, Xeg], 'B:Xea:(call a2b [Xes])], { Xea # A})
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@

0" = [Xe1 — Xeo, Xea — Xeo, Xesz — Xeol;

91 = [Xeo [ 7A] —\01

c1 = {(call f [Xe1, Xea, Xes]),0)
c2 = (82,0) = ([[Xe1, Xea, Xes], (call a2b [Xe1, Xea, Xes))], 0)
partially computed output has form géut = skel(s;) = [[Xe1, Xez, Xes], Xe®],
necessary condition to meet desired output is given by substitution ¢’
(computed by mgu)
Cé = <[[Xe(), Xe(), Xe()], (call a2b [Xe(), XE(), XE()])], @>
ez ={([[A,’A,’A], B:(call a2b ['A,’A])],0)
Cq4 = <[[X€0, Xe(), Xe()], XE():(Call a2b [Xe(), XE()])], {XE() # 7A}>
es =([['A,’A,"A], ['B,’B,"B]], 0)
= Answer: ([Xeg — A, Xey — A, Xes — A Xeg — 'A], ()
o6 = ([[Xeas, Xea, Xes], [Xes, Xea, Xes]], {Xeo #'A})
= Answer: ([Xeo — "B, Xe; — 'B, Xes — 'B, Xes — 'B], )

Fig. 2. Perfect process tree with backpropagation

None of the descendents of ¢ can ever lead to an answer because they all violate
the requirement in d,,; that its first component is a list containing three identical
elements (restriction Xes # A requires that the second element Xes is different
from the first "A). Instead of tracing the program using only information from
the input class, we also backpropagate information from the output class to the
input class. Let us intersect the current io-class at ¢y with the given io-class ():

<([[X61,X62,X63H,[[X617X627X63L.D,®>
* <([[X617X627X63H’[[Xe()?XeO?XeO]? [7B7’B7’BH)’®> = {(9’(0)} (8)

where substitution 6 = [Xe; — Xeg, Xea — Xeg, Xeg — Xeg, ¢ — ['B,’B, 'B]].
The intersection is not empty and the result is a substitution-restriction pair
(0,0) that, when applied to any of the two io-classes, gives a new io-class that
represents the domain of the intersection. We use (6, ) to narrow configuration
2 to ¢ = ([[Xeo, Xeg, Xeo], (call a2b [Xe, Xeg, Xeg])], 0). Because the input of
a2b is now limited to lists containing three identical elements, backpropagating
the result of the intersection into c¢o leads to a dramatic speed-up: the search
time becomes linear in the length of the input list.

Method. The method to reduce the search space of URA is shown in Fig.
The central operation is the intersection (%) of the approximated io-class cls,
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Given a request with initial io-class cls;, = ((c?sm, gnm),?f,o) and program p:

Current process tree: Current node:
¢ = (§,7) current configuration,
cls = (is,?) current input class.
/‘\ clsprev
Approximate the current io-class cls}, of configu-
K ration ¢ by clsl, = ((ds, skel(3)),7) where skel(3) is

the known constructor skeleton of the output.

1) Cutting: if clsj, * cls;o = () (intersection of io-classes)
then

. 1. Cut node ¢
C8prev 2. Continue driving other branches.

2) Backpropagation: else let clsj, x cls;, = {(0,7)}

1. Define (0', 7') by removing from (0, 7) all bind-

ings and restrictions on c-variables that do not
clsprev . .
occur in the current input class cls.
K 2. Perform contractions on ¢ and cls:

Cnew = 0/9//?/,
clSpew = cls /0’ |7’
O, 7); 3. Add a new branch labeled (6,7") and a new node

. with configuration c¢,ew and input class clspew.
C snew

4. Continue driving.

Fig. 3. Reduction of search space by cutting and backpropagation

with the given io-class cls;,. If the intersection is empty, then the current con-
figuration can never lead to a valid answer; otherwise, the intersection returns a
contraction (0, 7) containing a substitution 6 and restriction 7 which may further
constrain the current configuration. The process tree cannot become larger by
performing the operations in Fig. Bl but it may have less edges. This can make
URA faster and more terminating. We now describe the main operations:

1. Intersection ( x ) of two io-classes is based on the most general unifier
(mgu). The mgu examines the entire constructor skeletons in dd, and dds of the
two classes. If the mgu succeeds, it is necessary to check that the substitution
0 = mgu(...) does not lead to a contradiction when applied to the restrictions
(71 +72) [B]L Thus, there are three cases: (i) the mgu fails, (ii) the mgu succeeds,
but 6 leads to a contradiction in the restrictions, and (iii) the mgu succeeds and
0 is consistent with the restrictions and the intersection is not empty.

! Ex.: applying 6 = [Xe1 — ’A] to 7 = {Xe1 # 'A} leads to a contradiction: {’A #’A}.
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Definition 1 (intersection of io-classes). Let clsy, clsy be two io-classes,
cls; = <@1,?1> and clsy = <@2,?2> such that var(clsy) N var(clss) = 0, and let
mgu(ﬁﬁl7 @2) denote the most general unifier of @1 and @2, if it exists, then
define io-class intersection (* ) by

0 if mgu(@hﬁag) fails
cls1 x clso def 1] if (Th +73)/60 = {contra} where 8 = mgu(ddy, dds)

{(0,7)} otherwise, where = mgu(ddy, dds), 7= (71 +72)/6.

2. Constructor skeleton ( skel). The output of the current configuration can be
approximated by taking the constructor skeleton skel(s) of the current state s,
that is, by replacing all function calls in 5 with fresh c-variables. For example,
if s ="B:'B:(call a2b ...) then skel(5) = 'B:'B: Xe® where Xe® is a fresh c-var-
iable. The io-class cls), of the current configuration ¢ can then be approximated
by combining the current input class cls and the approximated output skel(s).
The operation skel is a pure syntactic approximation of the output and does not
use any semantic information about the functions defined in a program.

Both operations, intersection and constructor skeleton, are important for our
method. If we do not use the intersection operation, but approximate it or only
check whether the intersection of the two classes is empty, we might miss a
chance to reduce the search space by not backpropagating enough information
into the current configuration. If we delay the intersection operation or do not
examine all of the known constructor skeleton at the current configuration, we
might miss a chance to cut a node that never leads to an answer.

4 Dealing with MGU-Based Equality

We introduced an improvement for inverse computation by URA in the previous
section and showed that intersection is a powerful operation to test during trac-
ing whether two io-classes represent sets of values that share values. We used
intersection to predict whether the current configuration may lead to an answer
that lies in the given output domain or not. If the intersection is empty then the
current configuration can never lead to a valid answer. This observation leads us
to the second idea, namely, to the introduction of a new mgu-based equality in
the source language which is different from the usual matching-based operations
found in most functional-logic languages and lazy functional languages.

We use the first-order, lazy functional language
Nested Typed S-Graph (NTSG) that extends the
original language S-Graph [6] with nested function

(define f [x]
([x, (call a2b [x])]))

(define a2b [x] calls and a new non-atomic equality. The body
(if (cons? x ht ) of a function is an expression e which is either a
(if (equ? h'A) function call, a conditional, a cons-pair (e : e),

('B:(call a2b [t]))  an atom ’z or a program variable z (Fig. H). The
(h:(call a2b [t])))  semantics of NTSG is similar to the semantics of
[ TSG that was given elsewhere [2I3]. Values can be
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p u= ¢ Program

q == (define f z* ¢) Definition

e == (call fe*) | (ifkee) | (e:€) | 2| x Expression

k == (equ? ee) | (cons? e xe we xa) Condition

x == ze | za Typed variable

Fig. 4. Abstract syntax of NTSG

Condition Equ?

e=c¢' passive(e) passive(e)
Fi (equ? e e’) e1 e2 = e

mgu(skel(e), skel(e')) fails
Fis (equ? e €’) e1 e2 = e

Transition for Conditional

redex(s) = (s',[@e— (ifk e1 e2)]) Hhykeiea=e
Frs—s'/le— ¢

Fig. 5. Excerpt of operational semantics: the equality test

tested and/or decomposed in two ways. Condition equ? checks the equality of
two S-expressions and condition (cons? e ze’ ze” xa) works in the following way:
if e has the form (¢’ : €”), then variable xe’ is bound to head e’ and variable ze”
to tail e”’; if e is an atom, then variable xa is bound to this atom. For simplicity,
we write ¢’ when a variable is not used (e.g., in the first condition of function
a2b where the else-branch returns an empty list). The original URA [23] allowed
only an atomic equality test eqa?, while our extension uses equ? instead. We
will now discuss the equality test in the context of a lazy language.

Operational semantics. The semantics of the equality test (equ? e ¢') is
straightforward (Fig. B} other rules omitted due to limited space): The true-
branch (e1) is chosen if e and e’ are passive and identical (strict equality). An
expression e is passive iff it contains no function calls and no if-subexpressions

The false-branch (ez) is chosen if mgu(skel(e), skel(e¢’)) fails, that is, when the
constructor skeletons of ¢’ and e” disagree in some position (non-strict non-
equality). The operator skel replaces every function call and if-subexpression in
an expression by a fresh c-variable. If the mgu fails then e and ¢’ can never
become equal even if all redexes in the two expressions are evaluated. This can
speedup evaluation by detecting a failure early. When the mgu does not fail
and at least one of the two expressions is not passive, neither strict equality nor

2 In the operational semantics, when both operands are ground and passive, mgu
reduces to pattern matching; only during driving, the mechanism is fully used.
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Condition Equ?

0 = mgu(e,e’) passive(e) passive(e’)
s (equ? €€) €1 ex = (€1,0)

0 = mgu(skel(e), skel(e’))  —(passive(e) A passive(e'))
t~r (equ? € €') €1 e2 = ((if (equ? €¢') €1 €2),0)

mgu(skel(€), skel(€')) fails 0 = mgu(skel(e), skel(e"))
H—if (equ? é\g) E1 é\z = (é\z, @) H_if (EQU? Eg’) 61 62 = (62, ﬁ9)

Transition for Conditional

redex(3) = (3, [0 v (if k €1 &)]) by ké1 62 = (6,k) 7/r # {contra}
br (5,7) — (5'/[e—€,7) /K

Fig. 6. Excerpt of trace semantics for perfect process trees: the equality test

non-strict non-equality can be established (the expression that is not passive
has to be evaluated further until it becomes passive or mgu fails). While strict
equality is common in functional-logic languages, the use of mgu to detect a
failure fast by examining the available constructor skeleton, and in an evalua-
tion order independent way, is not (even in modern functional-logic languages
like Curry [9] or Babel [11]). The function redex in the transition rule for condi-
tionals (other transition rules omitted) picks the conditional according to some
evaluation strategy and splits the current state s into a context s’ containing a
hole e and a substitution that binds the redex.

Perfect driving. URA traces the computation of a program with partially spec-
ified input and builds a perfect process tree representing all possible computation
traces, as outlined in Sects. 2l and Bl In contrast to the operational semantics,
the input to a program may contain c-variables (non-ground input) and there
may not be enough information to decide which branch to choose when tracing
conditionals. In this case, tracing has to follow both branches. The assumptions
that lead us to choose a branch are returned as additional information from the
rules for conditionals. The rules for equality return a pair (e, k) where € is an
expression and k a contraction. A contraction k is either a substitution 6 or its
negated form —f. The transition rule for the conditional if checks whether there
is a contradiction between the new contraction and the current restriction. This
is done be applying the new contraction s to restriction 7 and checking that
there is no contradiction: 7/k # { contra }. If there is a contradiction, then the
branch is infeasible. We now describe the tracing semantics for equ? (Fig. [).
The rule for selecting the false-branch (3rd rule) is identical to the one in the
operational semantics: if some constructors in the constructor skeletons disagree,
the false-branch must be selected (and no other rule applies). Because we are
dealing with non-ground expressions that may contain c-variables, mgu may
succeed and return a substitution 6. Then there are two possibilities and in
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For all NTSG-programs p and for all input-output classes clsin:

Inv(NTSG, p, clsi,) = Inv(NTSG, p’, cls},) 9)
where
clsio = (([d1, ..., dn], dout), 7)
clsiy = (([d1, .., dn, dous], "True), 7)
p' = [(define main [ini, ..., in,, out]
(call test [(call mainfct(p) [ing, ..., ing,]), out])),

(define test [res,out]
(if (equ? res out) 'True 'False))] + p

Fig. 7. Answer equality of a transformed request

either case two rules apply at the same time. This leads to a branching in the
perfect process tree. First, both expressions € and ¢’ are passive: the 1st and 4th
rule apply and substitution # and its negated version —f are propagated into
the then- and else-branch, respectively. Second, at least one of the expressions,
€ or €, is not passive: the 2nd and 4th rule apply and substitution 6 and its
negated version —f are propagated. Because at least one of the expressions is
not passive, we cannot yet enter the then-branch (as in the 1st rule). We need
to drive a non-passive expression and again check the result.

5 Equivalence Transformation of Requests

Now we show another, surprisingly simple, solution based on the mgu-based
equality test that we introduced in the previous section. Instead of implementing
the method in Fig. Blin URA, we perform an equivalence transformation of the
given request for inverse computation into the source language of URA.

There is an implementation of URA for NTSG according to [3] for the given
source language. Instead of modifying URA to implement the method described
in Sect. B we perform an equivalence transformation of the given request. The
transformation is shown in Fig. [l Given a program p and input-output class
clsin, we transform them into a new program p’ and a new input-output class
cls’, . The new program p’ is constructed by adding two new functions to the
original program/q The new main function is defined as a p’s main function call
nested to call of function test. Function test compares the result computed by p
with the desired output out, and returns the corresponding Boolean value.

The new input-output class cls,, is a reformatted version of cls;, where the
desired output is fixed to 'True and the user desired output is now the last
argument for the new main function of p’. The restriction 7 remains unchanged.

Theorem 1 (answer equivalence of transformed request). Given lan-
guage NTSG, for all programs p and for all io-classes cls;,, equation (@) holds.

3 If the new functions (“main”, “test”) occur already in p then they are renamed.
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This transformation achieves the effects described above. Instead of extending
URA, we encode the inversion problem in the source language taking advantage
of the equality test (Fig.[T)). This is possible because the semantics of the equality
test coincides with the desired mgu-based method in Fig.

Why does it work? The transformation of the original request to the new
request makes test equ? the root of the perfect process tree. This has two ef-
fects. First, the test demands the calculation of the components of p’s output
until a mismatch with the desired output out is found, which establishes ’False.
This will stop any further development in the corresponding branch of the per-
fect process tree. This is the cutting operation. Second, any new contractions
on c-variables obtained by equ? are applied to the current configuration. This
achieves backpropagation. Another advantage is that the driving of p is guided
by the equality test. This avoids the unnecessary computations which do not
contribute to the goal of establishing an answer to the inversion problem. The
effectiveness of this approach will be demonstrated in the next section.

6 Demonstration

We demonstrate the improved efficiency of inverse computation using the equiv-
alence transformation in Fig. [ The examples include inverse computation of a
tree traversal function [I2] and experiments comparing inverse computation in
URA with equivalent requests in Curry [9], a modern functional-logic languageﬂ

1. A breadth-first labeling of a tree with respect to a given list of values is
a labeling of nodes in the tree with values in the list in breadth-first order. We
implemented a program in NTSG which, given a binary tree, collects the values
of the nodes by a breadth-first traversal. Inverse computation of the program
then performs the desired breadth-first labeling. We performed two experiments:
URA before and after the equivalence transformation of the request. Given a list
with 13 values, the time to find the 132 trees labeled in breadth-first order is
216.05 secs; the search does not terminate. After the equivalence transformation
of the request, the time to find the 132 trees is 6.90 secs (that is 31.3 times
faster); after 15.43 secs the search terminates!

2. Modern functional-logic programming languages like Curry [9] and Ba-
bel [II] allow programs to be written in a functional programming style while
their narrowing-based semantics can evaluate programs with non-ground input.
Requests for inverse computation can be formulated in these languages using the
equality operator available in these language (e.g., Curry’s =:=), much like the
transformation in Fig. [[ and setting ‘true’ as desired output of ‘test’. However,
since narrowing in Curry and Babel is not based on perfect splitting of io-classes
(they can overlap, duplicating search space) and the equality operators are not
mgu-based (e.g., in Curry, Babel), they do miss important chances for cutting

* All running times on CPU AMD Athlon 64 3500+ (2.2GHz), RAM 2GB, OS De-
bian Linux, The Glorious Glasgow Haskell Compilation System, version 6.4 (with
-H1536m run-time option, e.g. 1.5 GB heap size). Compiler: Curry into Prolog from
Portland Aachen Kiel Curry System (PACKS) 1.6.1-5 and SICStus Prolog 3.12.3.
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and backpropagation. (Example omitted.) As a result, inverse computation can
be less efficient and less work terminating than with URA. It will be an interest-
ing task to add perfect driving and mgu-based equality to a language like Curry
which is also meant as a platform for experiments in functional-logic languages.

7 Related Work

The Universal Resolving Algorithm presented in this paper is derived from per-
fect driving [6] and is combined with a mechanical extraction of the answers
(¢f. [TUT4]) giving the algorithm the power comparable to SLD-resolution, but
for a first-order functional language with tail-recursion (see [7]). The complete
algorithm is given in [3]. The constraint system for perfect driving can be normal-
ized by a rewrite system [16]. The idea for the algorithm was originally conceived
in the context of the programming language Refal [I§]. Logic programming in-
herently supports inverse computation. The use of an appropriate inference pro-
cedure permits the determination of any computable answer. Recently, work in
this direction has been done regarding the integration of the functional and logic
programming paradigm using narrowing, a unification-based goal-solving mech-
anism [§]; for a survey see [4]. The relation to functional-logic languages was
already discussed in Sect.

8 Conclusion and Future Work

We presented an extension of URA based on intersection that improves efficiency
and termination of inverse computation and introduce a new mgu-based equality
that allows us to achieve the same effect by mapping requests into the source
language. By doing so, we found that such an equality operator might consid-
erably improve inverse computation also in functional-logic languages. With the
mgu-based equality we established a solution for dealing with equality under
perfect driving. Our techniques work best for functions that produce some part
of the output in each recursion because partially known results can be examined
during the construction of the process tree and infeasible branches can be cut
or additional information can be propagated back into the tree. This can drasti-
cally reduce the size of the tree and even turn an infinite into a finite tree. Our
method might be viewed as a form of ‘reverse’ URA because output information
is exploited to guide the construction of the perfect process tree. Some methods
follow the traces in reverse order [I3)/14].

Further work is desirable in several directions. First, we plan to establish
more empirical results of the algorithm presented in this paper. The algorithm
is fully implemented in Haskell which serves our experimental purposes quite
well. Second, recent works [I0] on term rewrite systems define the notion of fully-
collapsed jungles on graphs. We want to investigate the use of these techniques in
the context of process tree construction as in [I5]. Third, it would be interesting
to examine the benefits of mgu-based equality by implementing it in a functional-
logic system together with a constraint system that leads to perfect process trees.
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Abstract. In the equivalent transformation (ET) computation model,
a specification provides background knowledge in a problem domain, a
program is a set of prioritized rewriting rules, and computation con-
sists in successive reduction of problems by rule application. As long
as meaning-preserving rewriting rules, called ET rules, with respect to
given background knowledge are used, correct computation results are
guaranteed. In this paper, a general framework for program synthesis in
the ET model is described. The framework comprises two main phases:
(1) equivalent transformation of specifications, and (2) generation of a
program from an obtained specification. A method for program gener-
ation in the second phase, called the squeeze method, is presented. It
constructs a program by accumulation of ET rules one by one on de-
mand, with the goal of producing a correct, efficient, and non-redundant
program.

1 Introduction

Equivalent transformation (ET) is one of the most fundamental principles of
computation, and it provides a simple and general basis for verification of com-
putation correctness. Computation by ET was initially implemented in experi-
mental natural language understanding systems at Hokkaido University in the
early 90’s, and the idea was further developed into a new computation model,
called the ET model [14]. A program in this model is a set of prioritized rewriting
rules for meaning-preserving transformation of problems, and a problem solving
process consists in successive rule application. Besides extensive use in the do-
main of first-order terms, the model has been applied in several data domains,
including RDF and XML (e.g. in [7] and [16], respectively).

Advantages of the ET model are best seen from the viewpoint of program syn-
thesis, where the possibility and effectiveness of generating correct and efficient
programs from specifications are of central importance. Programs are clearly
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pal(X) — rv(X, X)

I

o([],[]) <

UE[A|X] ,Y) —rv(X, R),ap(R,[A],Y)
(

<

ap([], X, X) —
ap([A|X],Y,[A|Z]) — ap(X,Y, Z)

U W N~
NN NSNS
<

Fig. 1. Definite clauses defining the predicates pal, rv, and ap

separated from specifications in this model. A specification provides background
knowledge for associating declarative meanings with problems and specifies a
set of problems of interest—mno procedural semantics is associated with specifica-
tions. From a specification, a program consisting of procedural rewriting rules is
constructed. The separation between programs and specifications greatly widens
the possibility of program synthesis—several kinds of rewriting rules with vary-
ing procedural expressive power can be generated from a specification. This is
in sharp contrast to program synthesis in declarative computation paradigms
such as logic programming [11] and functional programming [§], where specifica-
tions are regarded as programs by assuming a certain predetermined procedural
semantics and, consequently, program improvement can only be achieved by
transformation of specifications (i.e., program transformation [I3JT4/T5]).

The primary objective of this paper is to develop a basic method for program
construction in the ET model. A general program synthesis framework in this
model is presented. It consists of two phases: (1) equivalent transformation of
specifications, and (2) generation of a set of prioritized rewriting rules from a
specification. Methods and techniques from the wealth of literature on program
transformation and partial deduction (e.g. [QT2T3IT4ITH]) readily lend them-
selves as tools for the first phase. For the second phase, a heuristic program
generation method, called the squeeze method, is introduced.

The squeeze method generates a program by demand-driven accumulation of
meaning-preserving rewriting rules, called ET rules. It capitalizes on several ad-
vantages of the fundamental structure of the ET model; e.g., the correctness and
efficiency of an ET rule can be checked individually, and execution of a partial
program always yields problem reduction that provides a meaningful clue to gen-
eration of new ET rules towards completing the program. These characteristic
features facilitate componentwise program generation [6]—generating a correct
and efficient program by creating individually correct and efficient program com-
ponents (ET rules) one by one on demand—which appears to be an effective and
indispensable approach to program synthesis. Based on the squeeze method, a
program synthesis system has been implemented and used for constructing many
nontrivial programs.

To begin with, computation by transformation of problems in the ET model is
reviewed in Section[2l The general program synthesis framework and the squeeze
method are presented in Sections [l and [l respectively. Although the ET model
can deal with data structures of various kinds, the paper is deliberately confined
to the domain of first-order terms for reasons of simplicity.
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rpai:  pal(xx) = ru(xz, *x).
TT’UI: TU([*O’|*$]7 *y) = TU(*xv *U)v ap(*vv [*a’]7 *y)
Trog:  TU(kx, *y), ro(xx, %z) = {=(*y, *2)}, ro(xz, *y).

Tapy: ap(*x, *Y, [*a|*z]) = {:(*x7 [])7 :(*97 [*a|*z])}7
= {=(xz, [xa|*v])}, ap(*xv, *y, *z).

Trog: Tz, [*alxy]) = {=(xx, [xulxv]) }, ro(xv, xw), ap(xw, [xu], [*a|*y]).
Tapy:  ap(*x, [xa], [xb, xc[xy]) = {=(xz, [xb|*v])}, ap(xv, [xa], [xc[xy]).
Taps: ap(*x, [xa], [*b]) = {=(xz,[]), =(*a, *b)}.

rrogs ([ ) = {=(xz, [])}

Fig. 2. Examples of rewriting rules

2 Computation in the ET Model

2.1 An Introductory Example

Assume as background knowledge a set consisting of the five definite clauses in
Fig. I where pal, rv, and ap stand for “palindrome”, “reverse”, and “append”,
respectively. Consider the problem “find all ground terms ¢ such that [1|¢t] and
[2|t] are palindromes”. This problem is represented in the ET model as a set
consisting of a single definite clause

ans(X) — pal([1]X]), pal([2[X]),

where ans stands for “answer”, and this definite clause is intended to mean “X
is an answer if both [1|X] and [2|X] satisfy the definition of pal”. The rewriting
rules in Fig. Pl are devised for solving this problem. A detailed description of
their syntax and semantics is deferred until Subsection Table [ illustrates
a sequence of problem transformation steps by successive application of these
rules, where atoms to which the rules are applied are underlined and the rule
applied in each step is given in the last column. The transformation sequence
changes the initial problem (i.e., prbg) into the singleton set {ans([]) <}, which
means “the empty list is an answer (unconditionally) to the problem and there
exists no other answer”. The correctness of this computation can be verified by
proving that each rule in Fig.[2lis a meaning-preserving rule with respect to the
predicate definitions in Fig. [l

The rule r,.,, in Fig. 2 makes replacement of two atoms simultaneously (see,
e.g., its application to prby in Table[dl), and is called a multi-head rule. Every
other rule in the figure replaces a single atom at a time, and is called a single-
head rule. Each single-head rule in the figure operates as an unfolding rule using
the definition of the predicate appearing in its left-hand side, and is called an
unfolding-based rule. The rule 7,4 is applicable to any pal-atom containing any
arbitrary term, and is called a general rule. All other rules in the figure are
applicable to atoms having certain specific patterns, and are called specialized
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Table 1. Transformation of problems

Problem Problem representation a?rlllig d
prbo  {ans(X) «— pal([1]X]), pal([2|X])} Tpal
prby {ans(X) — ro([1]X], [1|1X]), pal([2|X])} Tpal
prbz {ans(X) — ro([1|X], [1]X]), ro([2|X], [2|X])} Tro
prbs  {ans(X) — rv(X, Al),ap(AL, [1], [1|X]), rv([2|X], [2|X]) } Troy
prba {ans(X) — ro(X, AL), ap(AL [1], [1|X]), ro(X, A2), ap(A2, 2], 2IX])} 7rus
prbs {ans(X) — ru(X, A1), ap(AL [1], [1|X]), ap(AL, 2], 21 X])}
prbs {ans([]) < rv([],[]), ap([], 2], [2]) Trog

ans(X) < rv(X, [1|A3]), ap(A3, [1], X), ap([1|A3], [2], [2|X])}
prbz {ans([]) < ru([], []), ap([], 2], [2]), Taps
ans([A4|A5]) «— rv(A5, A6), ap(A6, [A4], [1|A3]), ap(A3, [1], [A4]|A5]),
ap(([1]43], 2], [2, A4]45)}
prbs {ans(L) — ro((] (D, an(), 21 21}
prbo {ans([]) < ro([],[])} Trog

prowo {ans([]) <} -

rules. Employment of specialized rules allows content-based control of computa-
tion [4]—an appropriate reduction step can be decided based on the run-time
contents of clauses occurring in a computation state.

2.2 Comparison with Computation in Logic Programming

When computation by SLD resolution is viewed in the ET framework, expansion
of a node (generation of its children) in a search tree for finding SLD-refutations
corresponds to an unfolding transformation step. Accordingly, computation in
logic programming can be seen as computation using only one specific class of
rewriting rules, i.e., single-head general unfolding-based rules. By employment
of such a restricted class of rules alone, it is often difficult to achieve effective
computation control, in particular, for preventing infinite computation or for
improving computation efficiency.

As an example, consider the query illustrated in the preceding subsection,
which is represented in logic programming as the goal clause «— pal([1|X]),
pal([2|X]). It was shown in [4] that when executing this query, any logic program
for checking palindromes enters infinite computation after giving X = [], and
thus fails to infer that the empty list is the “only” ground instance of X that
satisfies the query. This difficulty is overcome in the ET model by content-based
control of computation and the possibility of employing several types of rewriting
rules, including specialized rules and multi-head rules. Consider, for example,
the role of the multi-head rule r,,, in successful termination of the reduction
sequence in Table[Il The application of this rule creates an additional information
connection, i.e., via the common variable A1, between descendants of pal([1]|X])
(i.e., the rv-atom and the first ap-atom in pros) and a descendant of pal([2| X])
(i.e., the second ap-atom in prbs). Through this connection, the constraint on a
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term possibly substituted for X imposed by the first pal-atom and that imposed
by the second pal-atom can be exchanged as a finite information pattern; i.e.,
if X # [], then by the rv-atom in prbs, A1 # [], and then by the first and
the second ap-atoms in prbs, A1 = [1]¢] and A1 = [2|¢'], respectively, for some
terms ¢ and ¢'. Consequently, the contradiction occurring when X # [] can
be found in finite reduction steps. Such an additional information connection
cannot be created by single-head rules[] Note that the multi-head rule Tryy 1S
devised based on the functionality of the “reverse” relation, and its operation is
completely different from unfolding.

Problem transformation in the ET model and program transformation in logic
programming [I3/T5] have different objectives. The former is a method for prob-
lem solving; it aims to reduce a problem into a simplified form. The latter is a
method for program improvement; it aims to derive a more efficient logic program
from an initially given one. Since computation using a logic program always cor-
responds to computation using only single-head general unfolding-based rules,
any palindrome-checking logic program obtained from program transformation
still fails to terminate when executing the query considered above.

2.3 Syntax and Operational Semantics of Rewriting Rules

The class of rewriting rules used in this paper will now be described. Usual
atoms are used in a rule to denote atom patterns in a definite clause. In addi-
tion, atoms of a special kind, called executable atoms, are used to denote built-
in operations; e.g. an executable atom =(¢,t¢') denotes the operation “find the
most general unifier of terms ¢ and ¢ (‘=" denotes the unification operation)E
An executable atom is evaluated by some predetermined evaluator, and if the
evaluation succeeds, it yields a substitution as the result; e.g. the evaluation of
—([11X], Y2, Z]) yields {X/[2, 2], Y/1}.
A rewriting rule r in this paper takes the form

Hs = {Es1}, Bsi;
= {Es,}, Bsy,

where n > 1, Hs is a nonempty sequence of (usual) atoms, the Es; are sequences
of executable atoms, and the Bs; are sequences of (usual) atoms. For each i
(1 < i < n), the pair ({Es;}, Bs;) is called a body of r, and {FEs;} and Bs; are
called an execution part and a replacement part, respectively. An execution part
is optional. When Hs contains more than one atom, r is called a multi-head rule.
It is called a single-head rule otherwise. Variables used in rewriting rules and

! Detailed analysis of the role of the multi-head rule 7., in successful termination of
the reduction sequence in Table [l can be found in [4]. It is also shown in [4] that
no finite successful reduction sequence for the above query can be obtained by using
single-head rules alone.

2 Arbitrary built-in deterministic operations, e.g. arithmetic functions, can be used as
executable atoms. In this paper, only the unification operation is used.
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those used in definite clauses are of different types. The former variables are
used for representing patterns of terms, and, for the sake of syntactically clear
distinction, they always have an asterisk prefixed to their names.

Given a definite clause C' containing atoms by, ..., b,,, where m > 1, in its
body, the rule r is applicable to C at by, ..., by, iff Hs matches these atoms by
a substitution 6 (i.e., Hsf is the sequence by, ..., b,,). To apply r to the clause
C, the pattern-matching substitution 6 is additionally required to instantiate all
variables that occur in r but not in Hs into distinct usual variables that do not
occur in C'. The application then replaces C' with the clauses that are obtained
as follows: for each 7 (1 < i < n), if the evaluation of Es;f succeeds and yields
a substitution o, then a clause obtained from Co by replacing bio,..., b0
with Bs;0o is constructed. The reader is referred to [3I4] for more elaborate
operational semantics and a larger class of rewriting rules.

3 Program Synthesis in the ET Model

3.1 Specifications, Programs, and Program Correctness

Specifications. A specification in the ET model is a pair (D, @), where D is
a set of definite clauses, representing background knowledge, and @ is a set of
problems of interest. Each problem in @ is also a set of definite clauses. It is
required that for each problem prb € @, the predicates occurring in the heads of
clauses in prb occur neither in D nor in the bodies of clauses in prb. Given a set
A of definite clauses, the meaning of A, denoted by M(A), is the set |J;—_, T (0),
where T4 is the usual one-step consequence operator determined by A (see, e.g.,
[11]). The answer set of a problem prb with respect to a specification (D, Q) is
defined as

M(D U prb) — M(D),

i.e., the set of all ground atoms in M (D U prb) whose predicates occur in the
heads of clauses in prb.

Programs. A program in the ET model is a set of prioritized rewriting rules.
A rewriting rule r is said to be applicable to a problem prb iff r is applicable to
some definite clause in prb, and is said to transform prb into a problem prb’ in
one step iff prv’ is obtained from prb by applying r to a clause in prb one time
A program P is said to be applicable to a problem prb iff some rewriting rule in
P is applicable to prb, and is said to transform prb into a problem prb’ in one
step iff there exists a rewriting rule » € P such that

1. r is applicable to prb and r transforms prb into prd’ in one step,
2. for any rewriting rule ' € P, if v’ takes priority over r, then 7’ is not
applicable to prb.

3 Application of a rewriting rule to a definite clause is described in Subsection
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Computation. A computation of a program P on a problem prb is a finite or
infinite sequence com = [prbg, prby, prba, ...] of problems such that prby = prbd
and the following two conditions are satisfied:

1. For any two successive problems prb; and prb;;1 in com, P transforms prb;
into prb; 41 in one step.

2. If com is finite, then P is not applicable to last(com) (i.e., the last problem
in com).

If com is finite and last(com) consists only of unit clauses, then the answer set
obtained from com is the set

{9 | ((a <) € last(com)) & (g is a ground instance of a)},
otherwise the answer set obtained from com is undefined.

Program Correctness. A program P is correct with respect to a specification
(D, Q) iff for any problem prb € @ and computation com of P on prb, the
answer set obtained from com is defined and is equal to the answer set of prb
with respect to (D, Q).

3.2 Program Synthesis Problems and a Sufficient Condition for
Program Correctness

Program Synthesis Problems. A program synthesis problem in the ET model
is formulated as follows:

Given a specification (D, @), construct a program P such that P is cor-
rect with respect to (D, Q) and P is sufficiently efficient.

ET Rules and a Sufficient Condition for Program Correctness. A
rewriting rule is an ET rule with respect to a set D of definite clauses iff for any
problems prb and prb’, if the rule transforms prb into prd’, then

M(D U prb) = M(D U prt).

It is shown in [4] that a program P is correct with respect to a specification
(D, Q) if the following conditions are all satisfied

(ETR) P consists only of ET rules with respect to D.
(APP) For any problem prb € Q, if there exists a problem prb’ such that
— P transforms prb into prb’ (in a finite number of steps),
— prb’ contains some non-unit clause,
then P is applicable to prb’.
(TER) For any problem prb € @, every computation of P on prb is finite.

This sufficient condition for program correctness provides a basis for program
generation in the ET model.

* (ETR), (APP), and (TER) are abbreviations for “ET rules only”, “applicability of
a program”, and “termination of computation”, respectively.
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Phase I: Equivalent transformation of specifications

(D1,Q1) > (D2,Q2) »--- » (Dn,Qn)

Phase II:
Program generation

\

Program

Fig. 3. A two-phase program synthesis framework

3.3 A Two-Phase Program Synthesis Framework

As outlined in Fig. Bl program synthesis in the ET model consists of two main
phases: (1) equivalent transformation of specifications, and (2) generation of a
program from an obtained specification. In the first phase, an initially given
specification is transformed into an equivalent specification that has a more
suitable form for generation of efficient rewriting rules. Transformation meth-
ods and strategies from research works on program transformation [I3UT4UT5],
partial deduction [I2], and conjunctive partial deduction [9], e.g. fold/unfold
transformation, goal replacement, tupling, etc., can be employed in this phase.
In many cases, only the background-knowledge part (i.e., D;) of a specification
is changed

The second phase is concerned with generation of a set of prioritized rewriting
rules (a program) from a specification. A program generation method called the
squeeze method is used. The squeeze method will be described in the next section.

Program synthesis in the logic programming model can be viewed as a special
case of this two-phase framework. As explained in Subsection 2-2, computation
in logic programming corresponds to ET-based computation using single-head
general unfolding-based rules alone. Since a set of definite clauses (a background
knowledge part) always determines a unique (up to variable renaming) set of
single-head general unfolding-based rules, the second phase in this special case
is very simple—program generation is restricted to only a fixed one-to-one corre-
spondence between specifications and programs. With this restriction, improve-
ment of programs can be achieved only by equivalent transformation of specifi-
cations in the first phaseﬁ From an obtained specification, no search for more
effective programs is made—the power of the second phase is not exploited.

5 By applying data structure extension techniques, e.g. safe extension of specialization
systems [2], the problems in Q; can also be changed in the first phase.

6 Since a set of definite clauses is regarded as a logic program, equivalent transfor-
mation of specifications corresponds to “program transformation” in the logic pro-
gramming context.
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repeat
1. run the current program under certain control of execution
2. if some obtained final clause is not a unit clause then
begin
2.1 select one or more atoms in the body of a non-unit final clause
2.2 determine a general pattern of the selected atoms
2.3 generate an ET rule for transforming atoms that conform
to the obtained pattern
2.4 assign a priority level to the obtained rule
2.5 add the obtained rule to the current program
end
until all obtained final clauses are unit clauses

Fig. 4. The squeeze method

4 Program Generation Using the Squeeze Method

4.1 The Squeeze Method

The squeeze method is shown in Fig. [l It generates a program by accumulation
of rules one by one on demand, with the goal of producing a correct, efficient,
and non-redundant program.

Heuristic Parameters. Heuristics are used for suggesting a suitable rule to
be added in each iteration. They are given via the following parameters:

[RUN] Control of execution at Step 1.
[TAR] Guidelines on selection of target atoms at Step 2.1.
[PAT] Guidelines on determination of a general atom pattern at Step 2.2.

Rule Generation. The squeeze method is used both for the purpose of aiding
human programmers and for that of automated program construction. An ET
rule may be generated manually or automatically at Step 2.3. An algorithm
for automatic generation of ET rules, based on meta-computation, has been
developed in [I0]—given a set D of definite clauses and an atom pattern as
inputs, the algorithm generates an ET rule with respect to D for transforming
atoms that conform to the input pattern.

Rule Prioritization. The number of rule bodies provides a basis for rule pri-
oritization. In order to obtain an efficient program, rules with fewer bodies are
preferable on the grounds that a problem reduction sequence is typically longer
as the number of clauses in a computation state increases. Rules are prioritized
accordingly at Step 2.4.

Minimized Redundancy. By the “demand-driven” characteristic of the method,
redundant rules in a resulting program can be minimized—a new rule is generated
only when a non-unit definite clause to which no existing rule is applicable is found,
under the control of execution in use (specified by the parameter [RUN]).
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Table 2. An example of program generation using the squeeze method

Iter- Final Rule  Priority

ation problem Atom(s) selected Atom(s) pattern obtained assigned
1st  prbo  pal([1]X]) pal (xx) Tpal PR-1
2nd  prba  ro([1|1X], [11X]) rv([*a|*x] *y) Tro, PR-1
3nd  prbg rv(X Al),rv(X, A2) ro(kz, xy), TO(XT,%2)  Tro, PR-1
4th  prbs  ap(Al,[1], [1]X]) ap(xx, xy, [xa|*xz]) Tap, PR-2
5th  prbs  rv(X,[1|A3]) ro(kz, [*a|+y]) Trog PR-1
6th  prbs ap([1|A3] (2], [2, A4|A5]) ap(xx, [*al, [xb, xc|*y])  Tap, PR-1
7th  pros  ap([], 2], [2]) ap(*z, [xal, [xb]) raps  PR-1
8th  prbg rv([] H)) rv( |, xx) Trog PR-1
9th p’f‘blo — _

Based on the squeeze method, an experimental automatic program synthe-
sis system has been implemented and used for constructing many nontrivial
programs (including the program in Subsection [Z]), and computer-aided pro-
gramming tools for supporting human programmers have also been developed.

4.2 Example

Assuming the background knowledge in Fig. [Il generation of the program con-
sidered in Subsection 1] will now be illustrated. The following parameters are
used:

[RUN] Usual rule selection based on rule priority is employed under one con-
straint: employment of low-priority rules should be minimized.
[TAR] One or more atoms can be selected, using the following guidelines:
— Select an atom that has a specific structure; e.g. ap([1|X],Y, Z) is
preferable to ap(X,Y, Z) since [1|X] is more specific than X.
— Select atoms that have common variables; e.g. ap(X,Y,Z) and
ap(X,V, W) with X as a common variable.
— A smaller number of selected atoms is preferable.
[PAT] A more general pattern is preferable as long as it does not lead to a
rule with a larger number of bodies.

As shown in Table 2] with these parameters the squeeze method produces
the rules in Fig. 2 within nine iterations. The construction process will now be
described in more detail (with reference to prbog—prbio in Table [I).

The 1st iteration: The initial program contains no rule; running the program
makes no change to the problem prbg. Either pal([1|X]) or pal([2|X]) may
be selected, and the atom pattern pal(xx) is determined. An ET rule for
this pattern is generated, and r,4; is obtained. Since 7,4, has a single body,
assign a high priority level, say PR-1, to it.
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The 2nd iteration: The current program contains only r,4;. Following the first
two problem reduction steps in Table [l running this program yields prbs as
the final problem. The two body atoms in prb, have the same pattern, and
one of them is selected as the target atom. The atom pattern rv([xa|+x], xy)
is determined. An ET rule for this pattern is generated, and 7, is obtained.
Since 7., also has a single body, the priority level PR-1 is assigned to it.

The 8rd iteration: Following the first four reduction steps in Table [Il running
the current program results in the problem prbs. The two rv-atoms in this
problem are selected as the target atoms, and the pair of rv(xx,*y) and
rv(xx, *z) is set as the target pattern[] The multi-head ET rule Try, 18 devised
based on the functionality of the “reverse” relation. Again, the priority level
PR-1 is assigned to it.

The 4th iteration: Following the first five reduction steps in Table[Il the current
program now yields prbs as the final problem. The first ap-atom in this
problem is selected as the target atom, and ap(xx, xy, [xa|xz]) is set as the
target atom pattern. An ET rule for this pattern is generated, and rgp, is
obtained. Since it has more than one body, a lower priority level, say PR-2,
is assigned to rgp, .

The 5th iteration: By the first six reduction steps of Table [[l the current pro-
gram transforms prbg into prbg. By the constraint imposed by the parameter
[RUN], although prbg can be transformed further using g, , this transforma-
tion step is not made. Instead, a new rule is constructed. The first rv-atom
in the second clause of prbg is selected as the target atom, and the atom
pattern rv(xz, [*a| * y]) is determined. The ET rule r,.,, is then generated,
and the priority level PR-1 is assigned to it.

The 6th iteration onwards: Following the squeeze method three more iterations,
the ET rules r4p,, Taps, and 7., are generated and added to the program in
succession. The priority level PR-1 is given to each of them. When running
the resulting program with the input problem prbg, a problem consisting
only of unit clauses is obtained, and the squeeze method ends.

By adjustment of the parameters of the method, a more efficient program
can be generated. For example, if the parameter [RUN] is changed into “only
single-body rules are used”, then the two-body rule 7,,, constructed in the 4th
iteration above will not be applied and a search for alternatively suitable target
atoms will be made. In this case, the parameter [TAR] recommends alternative
selection of the two atoms ap(Al,[1],[1|X]) and ap(AL, [2],[2]|X]) in prbs since
they have A1 and X as common variables. As shown in the full version of this
paper [5], this selection results in generation of a single-body rule (multi-head)
for ap-atoms, and the obtained program produces a shorter problem reduction
sequence (3 reduction steps less, compared with the sequence in Table [T).

" According to [TAR], any of the two ap-atoms in prbs is an alternative choice. How-
ever, selection of such an ap-atom would yield a two-body rule (see the 4th iteration).
By selecting the two rv-atoms, a single-body rule, which is preferable, is obtained.
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4.3 On the Correctness of the Squeeze Method

The correctness of the squeeze method can be analyzed based on the sufficient
condition for program correctness given in Subsection (i.e., (ETR), (APP),
and (TER)). Using the squeeze method, a program is generated from a specifi-
cation (D, @) by repeatedly

1. selecting a problem from @, and
2. accumulatively generating rewriting rules for solving the selected problem

until sufficient representative samples of the problems in ) have been selected.
As long as only ET rules with respect to D are generated (at Step 2.3 of Fig. ),
(ETR) is satisfied. While (ETR) can be checked by examination of each rewriting
rule individually, (APP) and (TER) are global properties—they involve analysis
of the interactions between obtained rules. Nonetheless, by its demand-driven
behavior, the squeeze method naturally directs a program generation process
towards satisfaction of (APP)—a new rule is generated whenever an intermedi-
ate problem to which a program is not applicable is found. By assuming some
well-founded ordering on atoms, (TER) can also be well controlled; e.g. only
rules that transform definite clauses into simpler ones with respect to the well-
founded ordering should be generated. Although it is difficult in general to assure
strict correctness with respect to (APP) and (TER) by stepwise rule accumu-
lation alone, the squeeze method works well in many cases and it provides a
good structure for developing additional techniques and strategies for controlling
(APP) and (TER), e.g. rule priority adjustment techniques and atom ordering
strategies.

4.4 How the ET Model Supports the Squeeze Method

From an abstract viewpoint, the squeeze method can be seen as a componentwise
program generation method that is applicable when its underlying computation
model satisfies the following requirements:

1. Correctness and efficiency of program components can be discussed.

2. The correctness (respectively, efficiency) of a component can be verified (re-
spectively, evaluated) independently of other components.

3. A correct (respectively, efficient) program can be constructed by accumula-
tion of individually correct (respectively, individually efficient) components.

4. A partial program suggests appropriate components to be added towards
completing the program.

In the ET model, rewriting rules are program components, and each ET rule
is regarded as a correct component. The quality of “being an ET rule” of one
rewriting rule does not depend on any other rewriting rule, and can be checked
individually. Since a set of unit clauses obtained from a sequence of problem
reduction steps using ET rules always yields a correct answer set, a correct pro-
gram can be constructed by accumulation of ET rules with some control strate-
gies for (APP) and (TER). An incomplete program in this model can always be
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executed; and when the execution terminates with a problem containing non-
unit definite clauses, the body atoms of the obtained clauses always provide a
clue to creation of new ET rules (e.g. the parameter [TAR] provides heuristics
for selection of appropriate body atoms). In regard to the efficiency aspect, a
rule with fewer bodies is considered as a more efficient component inasmuch
as it narrows down a search space. Obviously, the number of rule bodies is an
individual property of a rule. All the above requirements are thus satisfied.

In contrast, consider the logic programming model, where a set of definite
clauses is regarded as a program. Correctness of a definite clause can be defined
in such a way that it can be checked independently of other definite clauses.
However, the efficiency of a definite clause cannot be evaluated individually—
when a node in a partial SLD-tree is expanded using one predicate definition,
each clause in that definition possibly yields one child node, and, hence, the
number of all resulting child nodes is not known unless the predicate definition
is complete. Moreover, when a partial logic program fails to prove a given true
ground query, it is difficult to find an appropriate definite clause to be added—a
partial SLD-tree can be very large and there are various possible choices of nodes
and definite clauses from which a new branch should be created in the tree.

5 Concluding Remarks

A clear-cut separation between specifications and programs in the ET model
along with the generality of the ET principle for computation correctness opens
up the possibility of employing a very large class of rewriting rules—any rule
whose application always results in meaning-preserving transformation with re-
spect to given background knowledge can serve as an ET rule. As a conse-
quence, various classes of rewriting rules, with varying expressive power, can be
introduced. In the ETI systenﬁ developed at Hokkaido University, for example,
rules with execution parts, rules with applicability conditions (possibly involving
extra-logical predicates), and multi-head rules are provided.

Program synthesis in the ET model consists of two main phases—(1) equiv-
alent transformation of specifications, and (2) generation of a set of prioritized
rewriting rules from a specification. The second phase makes program synthe-
sis in this model significantly different from that in declarative computation
paradigms, in which specifications are regarded as programs and program syn-
thesis is based solely on equivalent transformation of specifications. In conjunc-
tion with a large variety of possible rule classes, the second phase enhances
the possibility of program improvement and optimization. Program synthesis
in logic programming, for example, corresponds only to the first phase of the
framework. Through the second phase, some problems that cannot be solved by
logic programs can be dealt with in the ET model.

All methods and techniques of fold /unfold transformation, partial deduction,
and conjunctive partial deduction, e.g. [QT2T3IT4TH], are applicable to the first

8 ETI is an interpreter system that supports ET-based problem solving. It is available
at http://assam.cims.hokudai.ac.jp/etpro.
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phase. An incremental program construction method for the second phase, called
the squeeze method, is described in this paper. How the structure of the ET
model supports componentwise program generation is discussed.

References

10.

11.

12.

13.

14.

15.

16.

. Akama, K., Shigeta, Y., Miyamoto, E.: Solving Logical Problems by Equivalent

Transformation—A Theoretical Foundation. Journal of the Japanese Society for
Artificial Intelligence 13 (1998) 928-935

. Akama, K., Koike, H., Mabuchi, H.: Equivalent Transformation by Safe Extension

of Data Structures. In: Bjgrner, D., Broy, M., Zamulin, A. (eds.): Perspectives
of System Informatics (PSI’01). Lecture Notes in Computer Science, Vol. 2244.
Springer-Verlag (2001) 140-148

. Akama, K., Nantajeewarawat, E., Koike, H.: A Class of Rewriting Rules and Re-

verse Transformation for Rule-Based Equivalent Transformation. Electronic Notes
in Theoretical Computer Science 59(4) (2001)

. Akama, K., Nantajeewarawat, E.: Formalization of the Equivalent Transformation

Computation Models. Journal of Advanced Computational Intelligence and Intel-
ligent Informatics 10 (2006) 245-259

. Akama, K., Nantajeewarawat, E., Koike, H.: Program Generation in the Equivalent

Transformation Computation Model using the Squeeze Method. Technical Report,
Information Initiative Center, Hokkaido University (January 2006)

. Akama, K., Nantajeewarawat, E., Koike, H.: Componentwise Program Construc-

tion: Requirements and Solutions. WSEAS Transactions on Information Science
and Applications 3(7) (2006) 1214-1221

. Anutariya, C. et al.: RDF Declarative Description (RDD): A Language for Meta-

data. Journal of Digital Information 2(2) (2001)

. Bird, R.: Introduction to Functional Programming. 2nd edn. Prentice Hall (1998)
. De Schreye, D. et al.: Conjunctive Partial Deduction: Foundations, Control, Algo-

rithms, and Experiments. Journal of Logic Programming 41 (1999) 231-277
Koike, H., Akama, K., Boyd, E.: Program Synthesis by Generating Equivalent
Transformation Rules. In: Proc. 2nd International Conference on Intelligent Tech-
nologies, Bangkok, Thailand (2001) 250-259

Lloyd, J. W.: Foundations of Logic Programming. 2nd edn. Springer-Verlag (1987)
Lloyd, J. W., Shepherdson, J. C.: Partial Evaluation in Logic Programming. Jour-
nal of Logic Programming 11 (1991) 217242

Pettorossi, A., Proietti, M.: Transformation of Logic Programs: Foundations and
Techniques. Journal of Logic Programming 19&20 (1994) 261-320

Pettorossi, A., Proietti, M.: Rules and Strategies for Transforming Functional and
Logic Programs. ACM Computing Surveys 28(2) (1996) 360-414

Pettorossi, A., Proietti, M.: Synthesis and Transformation of Logic Programs using
Unfold/fold Proofs. Journal of Logic Programming 41 (1999) 197-230
Wuwongse, V. et al.: A Data Model for XML Databases. Journal of Intelligent
Information Systems 20 (2003) 63-80



A Versioning and Evolution Framework for RDF
Knowledge Bases

Soren Auer and Heinrich Herre

University of Leipzig, 04109 Leipzig, Germany
auer@informatik.uni-leipzig.de
http://www.informatik.uni-leipzig.de/ auer/

Abstract. We present an approach to support the evolution of online,
distributed, reusable, and extendable ontologies based on the RDF data
model. The approach works on the basis of atomic changes, basically ad-
ditions or deletions of statements to or from an RDF graph. Such atomic
changes are aggregated to compound changes, resulting in a hierarchy
of changes, thus facilitating the human reviewing process on various lev-
els of detail. These derived compound changes may be annotated with
meta-information and classified as ontology evolution patterns. The in-
troduced ontology evolution patterns in conjunction with appropriate
data migration algorithms enable the automatic migration of instance
data in distributed environments.

1 Introduction

The goal of the envisaged next generation of the Web (called Semantic Web [2])
is to smoothly interconnect personal information management, enterprise appli-
cation integration, and the global sharing of commercial, scientific, and cultural
data'. In this vision, ontologies play an important role in defining and relat-
ing concepts that are used to describe data on the web []. In a distributed,
dynamic environment such as the Semantic Web, it is further crucial to keep
track of changes in its documents to ensure the consistency of data, to docu-
ment their evolution, and to enable concurrent changes. In areas such as soft-
ware engineering, databases, and web publishing versioning and revision control
mechanisms have already been developed and successfully applied. In software
engineering versioning is used to track and provide controls over changes to a
project’s source code. In database systems versioning is usually provided by a
database log, which is a history of actions executed by a database management
system. For web publishing the Web-based Distributed Authoring and Versioning
(WebDAV) standard was released as an extension to the Hyper Text Transfer
Protocol (HTTP) supporting versioning and with the intention of making the
World Wide Web a readable and writable medium.

For revision control of semantic-web data, unfortunately these developed tech-
nologies are insufficient. In software engineering and web publishing revision con-
trol is based on unique serializations, enabled by their data models. Such unique

! http://www.w3.org/2001 /sw/Activity
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serializations are not available for Semantic Web knowledge bases, usually con-
sisting of unordered collections of statements. Database logs on the other hand
cope with a multitude of different interrelated objects of their data model (e.g.
databases, tables, rows, columns/cells) in contrast to just statements of the RDF
data model.

In this paper, we present an approach for the versioning of distributed knowl-
edge bases grounded on the RDF data model with support for ontology evolution.
Under ontology versioning we understand to keep track of different versions of
an ontology and possibly to allow branching and merging operations. Ontol-
ogy evolution additionally shall identify and formally represent the conceptual
changes leading to different versions and branches. On the basis of this infor-
mation, ontology evolution should support the migration of data adhering to a
certain ontology version.

This paper is structured as follows: Our approach works on the basis of atomic
changes which are determined by additions or deletions of certain groups of state-
ments to or from an RDF knowledge base (Section ). Such atomic changes are
aggregated to more complex changes, resulting in a hierarchy of changes, thus
facilitating the human reviewing process on various levels of detail (Section ().
The derived compound changes may be annotated with meta-information such
as the user executing the change or the time when the change occurred. We
present a simple OWL ontology capturing such information, thus enabling the
distribution of change sets (Section [). Assuming that there will be no control of
evolution, it must be clarified which changes are compatible with a concurrent
branch of the same root ontology. We present a compatibility concept for ap-
plying a change to an ontology on the level of statements (Section ). To enable
the evolution of ontologies with regard to higher conceptual levels than the one
of statements we introduce evolution patterns (Section [f]) and give examples for
appropriate data migration algorithms (Section [). We further give account of
the successful implementation of the approach in Powl, summarize related work
and give an outlook on planned directions for future work (Section []).

2 Atomic Changes on RDF Graphs

To introduce our notion of atomic changes on RDF graphs we need recall some
preliminary definitions from [5]. Some of the main building blocks of the
semantic-web paradigm are Universal Resource Identifier (URI) and their RDF
counterparts URI References, whose quite technical definitions we omit here.

Definition 1 (Literal). A Literal is a string combined with either a language
identifier (plain literal) or a datatype (typed literal).

Definition 2 (Blank Node). Blank Nodes are identifiers local to a graph. The
set of Blank Nodes, the set of all URI references, and the set of all literals are
pairwise disjoint. Otherwise, the set of blank nodes is arbitrary.
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Definition 3 (Statement). A Statement is a triple (S, P,O), where

— S is either a URI reference or a blank node (Subject).
— P is a URI reference (Predicate).
— O is either a URI reference or a literal or a blank node (Object).

Definition 4 (Graph). A Graph is a set of statements.

The set of nodes of an graph is the set of subjects and objects of triples in the
graph. Consequently the blank nodes of a graph are the members of the subset
of the set of nodes of the graph which consists only of blank nodes.

Definition 5 (Graph Equivalence). Two RDF graphs G and G’ are equiva-
lent if there is a bijection M between the sets of nodes of the two graphs, such
that:

1. M maps blank nodes to blank nodes.

2. M(lit) = lit for all literals lit which are nodes of G.

3. M (uri) = uri for all URI references uri which are nodes of G.

4. The triple (s,p,0) is in G if and only if the triple (M (s),p, M (0)) is in G'.

Based on these definitions we want to discuss the possible changes on a graph.
RDF statements are in [7] identified to be the smallest manageable piece of
knowledge. This view is justified by the fact that there is no way to add, re-
move, or update a resource or literal without changing at least one statement,
whereas the opposite does not hold. We adopt this view but require the small-
est manageable pieces of knowledge to be somehow closed regarding the usage
of blank nodes. Moreover we want to be able to construct larger changes out
of smaller ones, and since the order of additions and deletions of statements
to a graph may matter, we distinguish between Positive and Negative Atomic
Changes.

Definition 6 (Atomic Graph). A graph is atomic if it may not be split into
two nonempty graphs whose blank nodes are disjoint.

Obviously, a graph without any blank node is atomic if it consists of exactly
one statement. Hence, any statement which does not contain a blank node as
subject or object is an atomic graph.

Definition 7 (Positive Atomic Change). An atomic graph Cq is said to be
an Positive Atomic Change on a graph G if the sets of blank nodes occurring in
statements of G and Cg are disjoint.

The rationale behind this definition is the aim of applying the positive atomic
change C¢ to the graph G. Hence, a positive atomic change on a graph G can
be applied to G to yield a new graph as a result. For this purpose we introduce
a (partial) function Apl™(X,Y) whose arguments are graphs.
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Definition 8 (Application of a Positive Atomic Change). Let Cq be a
positive atomic change on the graph G. Then the function Apl™ is defined for the
arguments G, Cq and it holds Apl*t(G,Cq) = GU Cq = G’ which is symbolized

by G % G, we say that Cq 1is applied to the graph G with result G'.

Application of the positive atomic change Cq to G yielding G’ is just identifying
the union of Cg and G with G’. Of course a graph may not only be changed by
adding statements leading to the notion of a negative atomic change.

Definition 9 (Negative Atomic Change). A subgraph Cc of G is said to be
a Negative Atomic Change on G if Cg is atomic and contains all statements of
G whose blank nodes occur in the statements of Cg.

Analogously to the case of positive changes we introduce a function Apl~ (G, Cg)
which pertains to negative atomic changes.

Definition 10 (Application of a Negative Atomic Change). Let Cg be a
negative atomic change on the graph G. Then the function Apl~ is defined for
the arguments G, Cq and is determined by Apl~ (G,Cg) = G\Ce = G’ which is

symbolized by G %G we say that Cq 1is applied to G with result G'.

These definitions require changes involving blank nodes to be somehow inde-
pendent from the graph in the sense that blank nodes in the change and in the
(remaining) graph do not overlap. This is crucial for changes being exchangeable
between different RDF storage systems, since the concrete identifiers of the blank
nodes may differ. It may have the negative effect though that large subgraphs,
which are only interconnected by blank nodes, have to be deleted completely
and added - slightly modified - afterwards.

3 Change Hierarchies

The evolution of a knowledge base typically results in a multitude of sequentially
applied atomic changes. These are usually small, and may often contain only a
single statement. On the other hand, in many cases multiple atomic changes
form one larger ‘logical’ change. Consider for example the case where the arrival
of the information of ‘being of German nationality’ for a person, results not only
in adding this fact to the knowledge base, but also in using the right spelling
for the persons name using umlauts. As shown in Example [ this could result
in three atomic changes. The information that those three changes somehow
belong together should not be lost, as we would like to enable human users to
observe the evolution of a knowledge base on various levels of detail. This could
be achieved by constructing hierarchies of changes on a graph.

To achieve this goal first of all Atomic Changes are called Changes of Level
0 and then changes of higher levels are defined inductively. Let At be the set of
atomic changes. General changes, which are simply called changes, are defined
as sequences over the set At. The set Changes(At) of changes over At is the
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C1
C3
C2
C4 C5

Fig. 1. Schematic visualisation of a change hierarchy. Black dots represent atomic
changes and gray triangles compound changes.

smallest set containing the empty sequence () and closed with respect to the
following condition: if {C1,...Cx} C Changes(At) U At, then (C4,...,Cy) €
Changes(At). An annotated change is an expression of the form C“4 where
C € Change(At), and A is an annotation object. No restriction is imposed
on the annotation object A which is attached to a change. In Section [l we
present a simple ontology schema, which may be used for capturing such change
annotations.

The changes of level at least n, denoted by Ch(n), are defined inductively.
Every change has a level at least 0, i.e Ch(0) = Changes(At). It Cy,...,Ck
are changes in Ch(n), then (Cy,...,Ck) € Ch(n + 1). A change C is of level
(exactly) n if C € Ch(n)\Ch(n + 1), i.e. C has level at least n but not level at
least n+1. The application functions App™, App~ may be extended to a function
App(G, C) whose first argument is a graph, and second argument is a change.
App is recursively defined on the level of the second argument C. Now we would
like to apply a change C' of level > 0 to a graph. Since C'is a sequence of changes
of smaller level, these changes — being components of C' — can be consecutively
applied to intermediate graphs. This is demonstrated in the following for the
change from Example [Tl

C'1 is applied to some graph G containing information about people and results
in a new revision of G, namely G":

lehiyel
Since C'1 consists of C'2 and C'3, C'1 it may be resolved into:
GEam S
And finally since C3 = (C4, C5):

Cc4

GEcL LB

C2, C4, and C5 are atomic changes and may be applied as proposed in Defini-
tions 8 and

Example 1 (Change Hierarchy). Consider the following update of the de-
scription of a person:
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1  Resource changed (C1)

2 Resource classified (€2)

3 http://auer.cx/Soeren hasNationality German

4 Labels changed (C3)

5 Label removed (c4)

6 http://auer.cx/Soeren rdfs:label "Soeren Auer"
7 Label added (C5)

8 http://auer.cx/Soeren rdfs:label "Soren Auer"

C1 represents a compound change with C1 = (C2,C3) and C3 = (C4,C5);
C2, C4, and C5 here are atomic changes. It may be visualized as in Fig. [l

We call a change of a level n > 1 a Compound Change. As visualized in Fig. [
it may be viewed as a tree of changes with atomic changes on its leafs. This
enables the review of changes on various levels of detail (e.g. statement level,
ontology level, domain level) and thus facilitates the human reviewing process.

A further advantage in addition to improved change examination is, that on
their basis a knowledge transaction processing may be implemented. Assum-
ing that a Relational Database Management System supporting transactions is
used as a triple store for knowledge bases, every compound change may then be
encapsulated within a database transaction. Meanwhile the repository will be
blocked for other write accesses. Compound Changes thus should not be nested
arbitrarily deep but up to some compound change, which was for example trig-
gered by a user interaction. We call such a top-level compound change Upper
Compound Change. Multiple, possibly semantically related compound changes
can be collected in a Patch for easy distribution, for example in a Peer-to-Peer
environment.

4 Change Conflict Detection

Tracking additions and deletions of statements as described in the last section
enables the implementation of linear undo / redo functionality. In distributed or
web-based environments usually several people such as knowledge engineers and
domain experts contribute changes to a knowledge base. In such a setting it is
highly demandable to rollback only certain earlier changes. Of course, this will
not be possible for arbitrary changes.

Consider the case when some statements were added to a graph in the change
C7 and removed later in the change C5. The rollback of the change C should not
be possible any longer after Cy took place. In the opposite case when statements
are removed from the knowledge base first and added again later, the rollback of
the deletion should not be possible either. The following definitions clarify which
atomic changes are compatible with a distinct knowledge base in this sense.

Definition 11 (Compatibility of a Positive Atomic Change with a Graph).
A Positive Atomic Change Cg is compatible with a graph G', iff Cq is not
equivalent to some subgraph of G'.
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Definition 12 (Compatibility of a Negative Atomic Change with a Graph).
A Negative Atomic Change Cq is compatible with a graph G', iff Cq is equivalent
to some subgraph of G'.

If a positive (negative) atomic change Cg is compatible with some graph G’
then it may be easily applied to G’ by simply adding (respectively removing)
the statements of C¢ to G’. Possibly blank node identifiers have to be renamed
in C¢ if the same occurs in G’.

The notion of compatibility may be easily generalized to compound changes.
Since the changes belonging to a compound change are ordered, every com-
pound change may be broken up into a corresponding sequence of atomic changes
(C1,...,Cy). If we consider the compound change from Example [l the corre-
sponding sequence of atomic changes will be (C2,C4,C5).

Definition 13 (Compatibility of a Compound Change with a Graph).
A compound change Cgr is compatible with a graph G, iff

— the first atomic change in the corresponding sequence of atomic changes
(Ch,...,Cy) is compatible with G and results in G*

— every following atomic change C; (1 < i < n) from the sequence is compatible
with the intermediate graph G*~' and its application results in G*.

The compatibility is especially interesting if G’ is some prior version of G, since
it supports the decision if the change may be rolled back. However, this com-
patibility concept only deals with possible conflicts on the level of statements.
In the remaining part of this section we point out directions how we can cope
with incompatibilities on higher conceptual levels than the one of statements.

In [6] the impact of distinct change patterns on instance data is studied.
Change patterns include all elementary operations on an OWL ontology such as
adding, deleting of classes, properties or instances. The effects on instances are
categorized into change patterns which result in information preserving, trans-
latable or information-loss changes. If a compound change contains an atomic
change matching a change pattern of one of the latter two categories, this can
be indicated to the user and possible solutions could be offered (cf. Section [l for
details on ontology evolution patterns). If the graph represents some Web Ontol-
ogy Language (OWL) knowledge base, furthermore a description logic reasoner
may be used to check whether a model is consistent after a change is applied or
not. Ideally an evolution enabled knowledge base editor provides an interface to
dynamically plug-in functionality to check the applicability of a distinct change
with respect to a certain graph.

5 Represention of Changes

To distribute changes on a graph (e.g. in a client server or peer-to-peer set-
ting), a consistent representation of changes is needed. We propose to represent
changes as instances of a class log:Change. Statements to be added or deleted



62 S. Auer and H. Herre

by atomic changes are represented as reified statements and referenced by the
properties log:added and log:removed from a change instance. The property
log:parentChange relates a change instance to a compound change instance of
higher level.

To achieve our goal of enhanced human change review, it should be possi-
ble to annotate changes with information, such as about the user making the
change, the date and time on which the change took place, a human-readable
documentation about why the change was made, and which effects it may have,
just to mention a few. Table [Il summarizes important properties attached to
log:Change. The complete OWL ontology schema for capturing the change in-
formation is provided at http:/powl.sf.net/log0Ont.

Table 1. Properties for representing and annotating changes

Property Description Example

Action A string or URI identifying ”Resource changed”
predefined action classes.

User A string or URI identifying the http://auer.cx/Soeren
editing user.

DateTime The timestamp in xsd:DateTime  ”20050320T16:32:11”
format when the change took
place.

Documentation A string containing a human Nationality added and
readable description of the change. name typing corrected

correspondingly.

ParentChange Optional URI identifying a
compound change this change
belongs to.

6 Evolution Patterns

The versioning and change tracking strategy presented so far is applicable to
arbitrary RDF graphs but also enables the representation and annotation of
changes on higher conceptual levels than the one of pure RDF statements. In this
section we demonstrate how it may be used and extended to support consistent
OWL ontology and instance data evolution.

OWL ontologies consist of classes arranged in a class hierarchy, properties
attached to those classes, and instances of the classes filled with values for the
properties. Now we classify changes operating on OWL ontologies according
to specific patterns reflecting common change intentions. The positive atomic
change (hasAddress,rdf:type,owl:0bjectProperty) for example can be clas-
sified to be an object property addition, since the predicate of the statement in
the change is rdf :type and the object is owl:0bjectProperty). Complemen-
tary there is a category of object property deletions for negative atomic changes
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with that predicate and object. Such categories of changes can be described more
formally and generally by our notion of Evolution Patterns.

Definition 14 (Evolution Pattern). A positive (negative) evolution pattern
is a triple (X,G(X), A(X)), where X is a set of variables, G(X) is a graph
pattern characterizing a positive (resp. negative) change with the variables X
and A(X) being an appropriate data migration algorithm.

Graph patterns are essentially graphs where certain URI references are replaced
by placeholders (i.e. variables). The precise definition is omitted here but can
be found in [8]. As an example we consider the following positive atomic change
of adding a cardinality restriction to the property nationality attached to the
class Person:

1  Person owl:subClassOf i

2 T rdf :type owl:Restriction
3 i owl:onProperty nationality

4 .1 owl:maxCardinality 2

The corresponding evolution pattern will be AddMaxCardinality =
(X,G(X),A(X)) with X = (class,property, maxCardinality), the graph
pattern G(X) will be:

1 ?class owl:subClassOf ?restriction

2 ?restriction rdf:type owl:Restriction
3  TPrestriction owl:onProperty ?property

4  ?restriction owl:maxCardinality %?maxCardinality

Finally, the data migration algorithm A(class,property, maxzCardinality)
will iterate through all instances of class and remove property values of
property exceeding maxCardinality.

Beside facilitating the review of changes on a knowledge base the classifica-
tion of changes into such evolution patterns enables the automatic migration
of instance data, even in settings where instance data is distributed. General
evolution patterns can be constructed out of sequences of positive and nega-
tive evolution patterns. The modification of a owl:maxCardinality restriction
can thus be made up by sequentially applying changes belonging to the nega-
tive evolution pattern DelMaxCardinality and the positive evolution pattern
AddM axCardinality.

In [4] a taxonomy of change patterns for OWL ontologies and their possible
effects on instance data is given. However, from our point of view these change
patterns will not be sufficient to capture change intentions and to enable au-
tomatic instance data migration. Intentions of changes can be made explicit
by precisely describing effects on instance data, e.g. by providing instance data
migration algorithms. We illustrate possible intentions for class deletions and
re-classifications in the next two subsections.

Class Deletions. The deletion of some entity from an ontology corresponds
to the deletion of all statements from the graph where an URI referencing the
entity occurs as subject, predicate, or object. The deletion of a distinct class
thus will result in the following serious effects:
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— former instances of the class are less specifically typed,

— former direct subclasses become independent top level classes,

— properties having the class as domain become universally applicable,
— properties having the class as range will lose this restriction,

In most cases some or all of these effects are not desired to be that rigorous,
but have to be mitigated. Before actually deleting the class, we then have to
cope with the following aspects of the classes usage.

— What happens with instances of the class? If instances of a class C' should
be preserved they may be reclassified to be instances of a superclass of C'
(labeled Ig). If C' has no explicit direct superclass the instances may be
classified to be instances of the implicit superclass owl:Thing. Otherwise all
its instances may be deleted (Ip).

— How to deal with subclasses? Subclasses may be deleted (Sp), reassigned in
the class hierarchy (Sg) or kept as independent top level classes (Sk).

— How to adjust properties having the class as domain (or range)? The do-
main (or range) of properties having the class as domain (or range) may be
extended (i.e. changed to a superclass - Pg) or restricted (i.e. changed to a
subclass - Pr). A further possibility is to delete those properties (Pp).

Some combinations of those evolution strategies obviously do not make sense
(i.e. (Ip,Sp, Pr) - deleting all instances and subclasses and restricting the do-
main and range of directly attached properties) while others are heavily needed
(see also Fig. 2)):

— (IR, Sk, Pr) - merge class with superclass

— (Ip,Sp, Pg) - cut class off

— (Ip,Sp, Pp) - delete complete subtree including instances and directly at-
tached properties

a) c)

b) .

Fig. 2. Different intentions for deleting a class: a) merge with superclass, b) cut class
off, ¢) delete subtree

As those different class deletions illustrate, different intentions to delete a class
result in different combinations of data migration strategies and finally in dif-
ferent evolution patterns. Some other example for a complex ontology evolution
pattern is the reclassification of a complete sub-class tree.

Reclassification. Often the distinction between abstract categories and con-
crete entities is not easy, resulting in different modeling possibilities, when it
is required to stay within OWL DL: representation as classes or instances. In
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a later modeling or usage stage the selected representation strategy (classes or
instances) may turn out to be suboptimal and reclassification is required.

If all classes in a whole class tree below a class C' have no instances and
directly attached properties, then they may be converted into instances. This
can be done by defining a functional property P, which is used to preserve the
hierarchical structure formerly encoded in the subclass-superclass relationship.
Then for all classes C; in the the subtree:

— add (Ci,rdf:type,C),

—if C; is a direct subclass of C, then delete the statement
(Ci,rdfs:subClass0f,C), else delete all statements
(Ci,rdfs:subClass0f,Cj) and correspondingly add (Ci,P,Cj).

Conversely, assuming we have a class C' and a functional property P with C
as domain and range, which does not reference instances in cycles. Then the
instances of C' then may be converted into subclasses of C' as follows:

— every statement (I1,P,]5) is converted into (Iy,rdfs:subClassOf,I5),
— if there is for I no triple (I1,P,I) add (I;,rdf:type,C).

Beside class deletions and reclassification there are other ontology evolution pat-
terns such as:

— Mowe a property A property P may be moved from a class C to a referenced
class Cy (labeled log:PropertyMove).

— 7"Widden” a restriction For a property P we may increase the number of
allowed values or decrease the number of required values.

— "Narrow” a restriction For a property P we may decrease the number of
allowed values or increase the number of required values.

— Split a class A class C may be split into two new classes C and Cs related
to each other by some property P (labeled log:ClassSplit).

— Join two classes Two classes Cq and Cy referencing each using a functional
property may be joined.

These examples show that the basic change patterns from [4] are not sufficient
to capture the intentions for ontology changes. To support independently, but
synchronously evolving schema and instance data, as visualized at the exam-
ple of splitting a class in Fig. Bl we propose to annotate compound (schema)
changes with their respective evolution patterns. Corresponding data migration
algorithms then can be used to migrate instanc